Altruism and Spite in Games

Guido Schäfer
CWI Amsterdam / VU University Amsterdam
g.schaefer@cwi.nl

Summer School on Algorithmic Game Theory
Samos, July 14–21, 2012
Motivation
Situations of strategic interaction

Viewpoint: many real-world problems are complex and distributed in nature

- involve several independent decision makers (*players*)
- decision makers attempt to achieve their own goals (*selfish*)

Examples: network routing, Internet applications, auctions, ...

Phenomenon: strategic behavior leads to outcomes that are suboptimal for society as a whole

Need: gain fundamental understanding of the effect of strategic interaction in such applications
Situations of strategic interaction

Viewpoint: many real-world problems are complex and distributed in nature

- involve several independent decision makers (players)
- decision makers attempt to achieve their own goals (selfish)

Examples: network routing, Internet applications, auctions, ...

Phenomenon: strategic behavior leads to outcomes that are suboptimal for society as a whole

Need: gain fundamental understanding of the effect of strategic interaction in such applications
Viewpoint: many real-world problems are complex and distributed in nature

- involve several independent decision makers (players)
- decision makers attempt to achieve their own goals (selfish)

Examples: network routing, Internet applications, auctions, ...

Phenomenon: strategic behavior leads to outcomes that are suboptimal for society as a whole

Need: gain fundamental understanding of the effect of strategic interaction in such applications
Situations of strategic interaction

Viewpoint: many real-world problems are complex and distributed in nature

- involve several independent decision makers (players)
- decision makers attempt to achieve their own goals (selfish)

Examples: network routing, Internet applications, auctions, ...

Phenomenon: strategic behavior leads to outcomes that are suboptimal for society as a whole

Need: gain fundamental understanding of the effect of strategic interaction in such applications
Contributions of AGT

Algorithmic game theory:

- mathematical toolbox to study such situations
- focus on algorithmic and computational issues
- advanced our understanding of several phenomena

Some contributions:

- complexity of reaching stable outcomes (PPAD, PLS)
- inefficiency of equilibria (price of anarchy, price of stability)
- mechanisms that steer selfish behavior into more favorable outcomes (coordination mechanisms)
- ...
Algorithmic game theory:
- mathematical toolbox to study such situations
- focus on algorithmic and computational issues
- advanced our understanding of several phenomena

Some contributions:
- complexity of reaching stable outcomes (PPAD, PLS)
- inefficiency of equilibria (price of anarchy, price of stability)
- mechanisms that steer selfish behavior into more favorable outcomes (coordination mechanisms)
- ...
Criticism

1 Most studies consider Nash equilibria as solution concept
 Assumption that computationally bounded players can reach such outcomes is questionable!
 ⇒ study inefficiency of more permissive solution concepts (correlated, coarse equilibria) and natural response dynamics (“robust price of anarchy”)

2 Self-interest hypothesis: every player makes his choice based on purely selfish motives
 Assumption is at odds with other-regarding preferences observed in practice (altruism, spite, fairness).
 ⇒ model such alternative behavior and study its impact on the outcomes of games
Criticism

1. Most studies consider **Nash equilibria** as solution concept. Assumption that computationally bounded players can reach such outcomes is questionable!

 ⇒ study inefficiency of more permissive solution concepts (correlated, coarse equilibria) and natural response dynamics ("robust price of anarchy")

2. **Self-interest hypothesis**: every player makes his choice based on purely selfish motives. Assumption is at odds with other-regarding preferences observed in practice (altruism, spite, fairness).

 ⇒ model such alternative behavior and study its impact on the outcomes of games
Criticism

1. Most studies consider Nash equilibria as solution concept. Assumption that computationally bounded players can reach such outcomes is questionable!

⇒ study inefficiency of more permissive solution concepts (correlated, coarse equilibria) and natural response dynamics ("robust price of anarchy")

2. Self-interest hypothesis: every player makes his choice based on purely selfish motives. Assumption is at odds with other-regarding preferences observed in practice (altruism, spite, fairness).

⇒ model such alternative behavior and study its impact on the outcomes of games
1. Most studies consider **Nash equilibria** as solution concept. Assumption that computationally bounded players can reach such outcomes is questionable!

 ⇒ study inefficiency of more permissive solution concepts (correlated, coarse equilibria) and natural response dynamics (“robust price of anarchy”)

2. **Self-interest hypothesis**: every player makes his choice based on purely selfish motives.

 Assumption is at odds with other-regarding preferences observed in practice (altruism, spite, fairness).

 ⇒ model such alternative behavior and study its impact on the outcomes of games.
Criticism

A

B
Criticism

1 Most studies consider Nash equilibria as solution concept. Assumption that computationally bounded players can reach such outcomes is questionable!

⇒ study inefficiency of more permissive solution concepts (correlated, coarse equilibria) and natural response dynamics (“robust price of anarchy”)

2 Self-interest hypothesis: every player makes his choice based on purely selfish motives.

Assumption is at odds with other-regarding preferences observed in practice (altruism, spite, fairness).

⇒ model such alternative behavior and study its impact on the outcomes of games.
Criticism

1 Most studies consider Nash equilibria as solution concept
 Assumption that computationally bounded players can reach such outcomes is questionable!
 ⇒ study inefficiency of more permissive solution concepts (correlated, coarse equilibria) and natural response dynamics (“robust price of anarchy”)

2 Self-interest hypothesis: every player makes his choice based on purely selfish motives
 Assumption is at odds with other-regarding preferences observed in practice (altruism, spite, fairness).
 ⇒ model such alternative behavior and study its impact on the outcomes of games
Criticism

1 Most studies consider Nash equilibria as solution concept. Assumption that computationally bounded players can reach such outcomes is questionable!

⇒ study inefficiency of more permissive solution concepts (correlated, coarse equilibria) and natural response dynamics (“robust price of anarchy”)

2 Self-interest hypothesis: every player makes his choice based on purely selfish motives. Assumption is at odds with other-regarding preferences observed in practice (altruism, spite, fairness).

⇒ model such alternative behavior and study its impact on the outcomes of games
Example: Single-item auction

Setting:
- \(n \) bidders are interested in receiving a single item
- every bidder \(i \) has a private value \(v_i \) and a bid \(b_i \)
- auctioneer: determines who obtains the item and a price \(p \)
- utility of bidder \(i \) is \(v_i - p \) if \(i \) gets the item and 0 otherwise

Theory: second-price auction ensures that bidding truthfully \((b_i = v_i) \) is a dominant strategy for every player \(i \)

Observations: bidders get carried away and submit bids that significantly exceed their value for the item (bidding frenzy) [Morgan et al. '03]

Explanation: bidders care negatively about the surplus of their competitors and might therefore be spiteful
Example: Single-item auction

Setting:

- n bidders are interested in receiving a single item
- every bidder i has a private value v_i and a bid b_i
- auctioneer: determines who obtains the item and a price p
- utility of bidder i is $v_i - p$ if i gets the item and 0 otherwise

Theory: second-price auction ensures that bidding truthfully ($b_i = v_i$) is a dominant strategy for every player i

Observations: bidders get carried away and submit bids that significantly exceed their value for the item (bidding frenzy) [Morgan et al. '03]

Explanation: bidders care negatively about the surplus of their competitors and might therefore be spiteful
Example: Single-item auction

Setting:
- n bidders are interested in receiving a single item
- every bidder i has a private value v_i and a bid b_i
- auctioneer: determines who obtains the item and a price p
- utility of bidder i is $v_i - p$ if i gets the item and 0 otherwise

Theory: second-price auction ensures that bidding truthfully ($b_i = v_i$) is a dominant strategy for every player i

Observations: bidders get carried away and submit bids that significantly exceed their value for the item (bidding frenzy)

Explanation: bidders care negatively about the surplus of their competitors and might therefore be spiteful

[Morgan et al. '03]
Example: Single-item auction

Setting:
- n bidders are interested in receiving a single item
- every bidder i has a private value v_i and a bid b_i
- auctioneer: determines who obtains the item and a price p
- utility of bidder i is $v_i - p$ if i gets the item and 0 otherwise

Theory: second-price auction ensures that bidding truthfully ($b_i = v_i$) is a dominant strategy for every player i

Observations: bidders get carried away and submit bids that significantly exceed their value for the item (bidding frenzy)

Explanation: bidders care negatively about the surplus of their competitors and might therefore be spiteful

[Morgan et al. '03]
Example: Public goods

Setting:
- \(n \) players are interested in a public good
- every player \(i \) chooses a contribution \(s_i \in [0, b] \)
- total contribution is doubled and distributed among players
- payoff of player \(i \): \(p_i = b - s_i + \frac{2}{n} \sum_{j=1}^{n} s_j \)

Theory: \(s_i = 0 \) is dominant strategy for every player \(i \) (each player will try to free-ride)

Observations: individual contribution of each player typically ranges between 40% and 60% of \(b \)

Explanation: players are partially altruistic and contribute to the public good even if they run the risk that others might free-ride
Example: Public goods

Setting:
- n players are interested in a public good
- every player i chooses a contribution $s_i \in [0, b]$
- total contribution is doubled and distributed among players
- payoff of player i: $p_i = b - s_i + \frac{2}{n} \sum_{j=1}^{n} s_j$

Theory: $s_i = 0$ is dominant strategy for every player i (each player will try to free-ride)

Observations: individual contribution of each player typically ranges between 40% and 60% of b [Ledyard, Public Economics ’94]

Explanation: players are partially altruistic and contribute to the public good even if they run the risk that others might free-ride
Example: Public goods

Setting:
- n players are interested in a public good
- every player i chooses a contribution $s_i \in [0, b]$
- total contribution is doubled and distributed among players
- payoff of player i: $p_i = b - s_i + \frac{2}{n} \sum_{j=1}^{n} s_j$

Theory: $s_i = 0$ is dominant strategy for every player i (each player will try to free-ride)

Observations: individual contribution of each player typically ranges between 40% and 60% of b
[Ledyard, Public Economics '94]

Explanation: players are partially altruistic and contribute to the public good even if they run the risk that others might free-ride

Guido Schäfer
Altruism and Spite in Games
Example: Public goods

Setting:
- n players are interested in a public good
- every player i chooses a contribution $s_i \in [0, b]$
- total contribution is doubled and distributed among players
- payoff of player i: $p_i = b - s_i + \frac{2}{n} \sum_{j=1}^{n} s_j$

Theory: $s_i = 0$ is dominant strategy for every player i (each player will try to free-ride)

Observations: individual contribution of each player typically ranges between 40% and 60% of b
[Ledyard, Public Economics '94]

Explanation: players are partially altruistic and contribute to the public good even if they run the risk that others might free-ride
Question:
Can we gain an accurate understanding of the impact of such “social” interactions in games?
Overview

Motivation

Part I: Altruistic games
• modeling altruistic behavior in games
• inefficiency of equilibria

Part II: Smoothness technique
• smoothness and robust price of anarchy
• adaptations to altruistic games

Part III: Results in a nutshell
• linear congestion games
• fair cost-sharing games
• valid utility games

Concluding remarks
Altruistic Games
A cost minimization game \(G = (N, (S_i)_{i \in N}, (C_i)_{i \in N}) \) is a finite strategic game given by

- set of players \(N = [n] \)
- set of strategies \(S_i \) for every player \(i \in N \)
- cost function \(C_i : S_1 \times \cdots \times S_n \to \mathbb{R} \)

Every player \(i \in N \) chooses his strategy \(s_i \in S_i \) so as to minimize his individual cost \(C_i(s_1, \ldots, s_n) \)

Let \(S = S_1 \times \cdots \times S_n \) be the set of strategy profiles.

Social cost of strategy profile \(s = (s_1, \ldots, s_n) \in S \) is

\[
C(s) = \sum_{i \in N} C_i(s)
\]
A cost minimization game \(G = (N, (S_i)_{i \in N}, (C_i)_{i \in N}) \) is a finite strategic game given by

- set of players \(N = [n] \)
- set of strategies \(S_i \) for every player \(i \in N \)
- cost function \(C_i : S_1 \times \cdots \times S_n \rightarrow \mathbb{R} \)

Every player \(i \in N \) chooses his strategy \(s_i \in S_i \) so as to minimize his individual cost \(C_i(s_1, \ldots, s_n) \)

Let \(S = S_1 \times \cdots \times S_n \) be the set of strategy profiles.

Social cost of strategy profile \(s = (s_1, \ldots, s_n) \in S \) is

\[
C(s) = \sum_{i \in N} C_i(s)
\]
A cost minimization game $G = (N, (S_i)_{i \in N}, (C_i)_{i \in N})$ is a finite strategic game given by

- set of players $N = [n]$
- set of strategies S_i for every player $i \in N$
- cost function $C_i : S_1 \times \cdots \times S_n \to \mathbb{R}$

Every player $i \in N$ chooses his strategy $s_i \in S_i$ so as to minimize his individual cost $C_i(s_1, \ldots, s_n)$

Let $S = S_1 \times \cdots \times S_n$ be the set of strategy profiles.

Social cost of strategy profile $s = (s_1, \ldots, s_n) \in S$ is

$$C(s) = \sum_{i \in N} C_i(s)$$
A cost minimization game \(G = (N, (S_i)_{i \in N}, (C_i)_{i \in N}) \) is a finite strategic game given by

- set of players \(N = [n] \)
- set of strategies \(S_i \) for every player \(i \in N \)
- cost function \(C_i : S_1 \times \cdots \times S_n \rightarrow \mathbb{R} \)

Every player \(i \in N \) chooses his strategy \(s_i \in S_i \) so as to minimize his individual cost \(C_i(s_1, \ldots, s_n) \)

Let \(S = S_1 \times \cdots \times S_n \) be the set of strategy profiles.

Social cost of strategy profile \(s = (s_1, \ldots, s_n) \in S \) is

\[
C(s) = \sum_{i \in N} C_i(s)
\]
Equilibrium concepts

Nash equilibrium: $s = (s_1, \ldots, s_n) \in S$ is a pure Nash equilibrium (PNE) if no player has an incentive to unilaterally deviate

$$\forall i \in N : C_i(s_i, s_{-i}) \leq C_i(s'_i, s_{-i}) \quad \forall s'_i \in S_i$$

$(s_{-i} \text{ refers to } (s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n))$

More general solution concepts:

• mixed Nash equilibrium (MNE)
• correlated equilibrium (CE)
• coarse correlated equilibrium (CCE)
Equilibrium concepts

Nash equilibrium: \(s = (s_1, \ldots, s_n) \in S \) is a pure Nash equilibrium (PNE) if no player has an incentive to unilaterally deviate

\[
\forall i \in N : \quad C_i(s_i, s_{-i}) \leq C_i(s_i', s_{-i}) \quad \forall s_i' \in S_i
\]

(\(s_{-i} \) refers to \((s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n) \))

More general solution concepts:

- mixed Nash equilibrium (MNE)
- correlated equilibrium (CE)
- coarse correlated equilibrium (CCE)
Equilibrium concepts
Equilibrium concepts
Equilibrium concepts
Equilibrium concepts
Example: Congestion game

\[n = 10 \]
Example: Congestion game

\(n = 10 \)

Nash equilibrium: \(C(s) = 100 \)
Example: Congestion game

\[n = 10 \]

social optimum: \(C(s^*) = 75 \)
Example: Congestion game

\[n = 10 \]

\[
\text{inefficiency: } \frac{C(s)}{C(s^*)} = \frac{100}{75} = \frac{4}{3}
\]
Example: Congestion game

\[n = 10 \]
Example: Congestion game

\[n = 10 \]

Nash equilibrium: \[C(s) = 91 \]
Example: Congestion game

\[n = 10 \]

\[\text{inefficiency: } \frac{C(s)}{C(s^*)} = \frac{91}{75} \approx 1.21 \]
Inefficiency of equilibria

Let s^* be a strategy profile that minimizes the social cost $C(s)$.

Price of anarchy: worst-case inefficiency of equilibria

$$POA(G) = \max_{s \in PNE(G)} \frac{C(s)}{C(s^*)}$$

[Koutsoupias, Papadimitriou, STACS '99]

Price of stability: best-case inefficiency of equilibria

$$POS(G) = \min_{s \in PNE(G)} \frac{C(s)}{C(s^*)}$$

[Schulz, Moses, SODA '03]

Remark: definitions extend to other solution concepts (such as MNE, CE, CCE) in the obvious way
Inefficiency of equilibria

Let s^* be a strategy profile that minimizes the social cost $C(s)$.

Price of anarchy: worst-case inefficiency of equilibria

\[POA(G) = \max_{s \in PNE(G)} \frac{C(s)}{C(s^*)} \]

[Koutsoupias, Papadimitriou, STACS '99]

Price of stability: best-case inefficiency of equilibria

\[POS(G) = \min_{s \in PNE(G)} \frac{C(s)}{C(s^*)} \]

[Schulz, Moses, SODA '03]

Remark: definitions extend to other solution concepts (such as MNE, CE, CCE) in the obvious way
Let s^* be a strategy profile that minimizes the social cost $C(s)$.

Price of anarchy: worst-case inefficiency of equilibria

$$POA(G) = \max_{s \in PNE(G)} \frac{C(s)}{C(s^*)}$$

[Koutsoupias, Papadimitriou, STACS '99]

Price of stability: best-case inefficiency of equilibria

$$POS(G) = \min_{s \in PNE(G)} \frac{C(s)}{C(s^*)}$$

[Schulz, Moses, SODA '03]

Remark: definitions extend to other solution concepts (such as MNE, CE, CCE) in the obvious way
Altruistic extensions of strategic games

base game \(G = (N, (S_i)_{i \in N}, (C_i)_{i \in N}) \)
Altruistic extensions of strategic games

base game $G = (N, (S_i)_{i \in N}, (C_i)_{i \in N})$

altruism level $\alpha_i \in [0, 1]$ for every player $i \in N$
Altruistic extensions of strategic games

base game $G = (N, (S_i)_{i \in N}, (C_i)_{i \in N})$

altruism level $\alpha_i \in [0, 1]$ for every player $i \in N$

altruistic extension $G^\alpha = (N, (S_i)_{i \in N}, (C_i^\alpha)_{i \in N})$ of G with

$$C_i^\alpha(s) = (1 - \alpha_i)C_i(s) + \alpha_iC(s)$$
Altruistic extensions of strategic games

base game \(G = (N, (S_i)_{i \in N}, (C_i)_{i \in N}) \)

altruism level \(\alpha_i \in [0, 1] \) for every player \(i \in N \)

altruistic extension \(G^\alpha = (N, (S_i)_{i \in N}, (C_i^\alpha)_{i \in N}) \) of \(G \) with

\[
C_i^\alpha(s) = (1 - \alpha_i)C_i(s) + \alpha_iC(s)
\]

\(\alpha_i = 0 \) \hspace{1cm} \alpha_i \hspace{1cm} \alpha_i = 1 \\
egoist \hspace{1cm} \alpha_i\text{-altruist} \hspace{1cm} altruist
Some remarks

Viewpoint:

- C_i^α is the perceived cost of i (encodes i’s altruistic behavior)
- outcome is determined by players minimizing their perceived costs
- C_i is the actual cost that player i contributes to the social cost
 ⇒ consider unaltered social cost function

$$C(s) = \sum_{i \in N} C_i(s)$$

Advantages of this approach:

- altruistic extension contains the base game as a special case
- stay in the domain of the base game (here: strategic games)
- can use standard solution concepts, methodologies, etc.
Some remarks

Viewpoint:

• C^α_i is the perceived cost of i (encodes i’s altruistic behavior)
• outcome is determined by players minimizing their perceived costs
• C_i is the actual cost that player i contributes to the social cost
 ⇒ consider unaltered social cost function

$$C(s) = \sum_{i \in N} C_i(s)$$

Advantages of this approach:

• altruistic extension contains the base game as a special case
• stay in the domain of the base game (here: strategic games)
• can use standard solution concepts, methodologies, etc.
Other models

1. \(C_i^\alpha(s) = (1 - \alpha)C_i(s) + \alpha C(s) \) [Chen et al., WINE '11]
2. \(C_i^\beta(s) = (1 - \beta)C_i(s) + \frac{\beta}{n} C(s) \) [Chen, Kempe, EC '08]
3. \(C_i^\xi(s) = (1 - \xi)C_i(s) + \xi \sum_{j \neq i} C_j(s) \) [Caragiannis et al., TGC '10]
4. \(C_i^\alpha(s) = C_i(s) + \alpha C(s) \) [Apt, Schäfer '12]
5. . .

Observation: above models are equivalent for suitable transformations of the altruism parameters
Example: Altruistic congestion game

PNE conditions: s is Nash equilibrium of G^α if for every $i \in N$:

$$(1 - \alpha)C_i(s_i, s_{-i}) + \alpha C(s, s_{-i}) \leq (1 - \alpha)C_i(s', s_{-i}) + \alpha C(s', s_{-i})$$
Example: Altruistic congestion game

\[\alpha = 0 \]

PNE conditions: \(s \) is Nash equilibrium of \(G^\alpha \) if for every \(i \in N \):

\[
(1 - \alpha)C_i(s_i, s_{-i}) + \alpha C(s_i, s_{-i}) \leq (1 - \alpha)C_i(s'_i, s_{-i}) + \alpha C(s'_i, s_{-i})
\]

\[\Leftrightarrow (1 - \alpha)10 + \alpha (10 \cdot 10) \leq (1 - \alpha)10 + \alpha (9 \cdot 9 + 10) \]

\[\Leftrightarrow \alpha \leq 0 \]
Example: Altruistic congestion game

PNE conditions: s is Nash equilibrium of G^α if for every $i \in N$:

$$(1 - \alpha)C_i(s_i, s_{-i}) + \alpha C(s, s_{-i}) \leq (1 - \alpha)C_i(s'_i, s_{-i}) + \alpha C(s'_i, s_{-i})$$
Example: Altruistic congestion game

PNE conditions: s is Nash equilibrium of G^α if for every $i \in N$:

$$(1 - \alpha)C_i(s_i, s_{-i}) + \alpha C(s_i, s_{-i}) \leq (1 - \alpha)C_i(s'_i, s_{-i}) + \alpha C(s'_i, s_{-i})$$

$\Leftrightarrow (1 - \alpha)9 + \alpha(9 \cdot 9 + 10) \leq (1 - \alpha)10 + \alpha(8 \cdot 8 + 2 \cdot 10)$

$\Leftrightarrow \alpha \leq 1/8$
Example: Altruistic congestion game

\[0 < \alpha \leq \frac{1}{8} \]

PNE conditions: \(s \) is Nash equilibrium of \(G^\alpha \) if for every \(i \in N \):

\[
(1 - \alpha)C_i(s_i, s_{-i}) + \alpha C(s_i, s_{-i}) \leq (1 - \alpha)C_i(s_i', s_{-i}) + \alpha C(s_i', s_{-i})
\]

\(\Leftrightarrow (1 - \alpha)9 + \alpha(9 \cdot 9 + 10) \leq (1 - \alpha)10 + \alpha(8 \cdot 8 + 2 \cdot 10) \)

\(\Leftrightarrow \alpha \leq 1/8 \)
Example: Altruistic congestion game

\[\frac{1}{8} < \alpha \leq \cdot \]

PNE conditions: \(s \) is Nash equilibrium of \(G^\alpha \) if for every \(i \in N \):

\[
(1 - \alpha)C_i(s_i, s_{-i}) + \alpha C(s_i, s_{-i}) \leq (1 - \alpha)C_i(s'_i, s_{-i}) + \alpha C(s'_i, s_{-i})
\]
Example: Altruistic congestion game

PNE conditions: s is Nash equilibrium of G^{α} if for every $i \in N$:

$$(1 - \alpha)C_i(s_i, s_{-i}) + \alpha C(s_i, s_{-i}) \leq (1 - \alpha)C_i(s'_i, s_{-i}) + \alpha C(s'_i, s_{-i})$$

$\Leftrightarrow (1 - \alpha)8 + \alpha(8 \cdot 8 + 2 \cdot 10) \leq (1 - \alpha)10 + \alpha(7 \cdot 7 + 3 \cdot 10)$

$\Leftrightarrow \alpha \leq 2/7$
Example: Altruistic congestion game

\[\frac{1}{8} < \alpha \leq \frac{2}{7} \]

PNE conditions: s is Nash equilibrium of \(G^\alpha \) if for every \(i \in N \):

\[
(1 - \alpha)C_i(s_i, s_{-i}) + \alpha C(s_i, s_{-i}) \leq (1 - \alpha)C_i(s'_i, s_{-i}) + \alpha C(s'_i, s_{-i})
\]

\[\iff (1 - \alpha)8 + \alpha(8 \cdot 8 + 2 \cdot 10) \leq (1 - \alpha)10 + \alpha(7 \cdot 7 + 3 \cdot 10) \]

\[\iff \alpha \leq \frac{2}{7} \]
Example: Altruistic congestion game

$\frac{2}{7} < \alpha \leq \frac{3}{6}$

PNE conditions: s is Nash equilibrium of G^α if for every $i \in N$:

$$(1 - \alpha)C_i(s_i, s_{-i}) + \alpha C(s_i, s_{-i}) \leq (1 - \alpha)C_i(s'_i, s_{-i}) + \alpha C(s'_i, s_{-i})$$
Example: Altruistic congestion game

\[
\frac{3}{6} < \alpha \leq \frac{4}{5}
\]

\[
\begin{array}{c}
\text{PNE conditions: } s \text{ is Nash equilibrium of } G^\alpha \text{ if for every } i \in N:
\\
(1 - \alpha)C_i(s_i, s_{-i}) + \alpha C(s_i, s_{-i}) \leq (1 - \alpha)C_i(s'_i, s_{-i}) + \alpha C(s'_i, s_{-i})
\end{array}
\]
Example: Altruistic congestion game

\[\alpha > \frac{4}{5} \]

PNE conditions: \(s \) is Nash equilibrium of \(G^\alpha \) if for every \(i \in N \):

\[
(1 - \alpha)C_i(s_i, s_{-i}) + \alpha C(s_i, s_{-i}) \leq (1 - \alpha)C_i(s'_i, s_{-i}) + \alpha C(s'_i, s_{-i})
\]
Example: Price of anarchy

POA
Related Work

[Chen and Kempe, EC ’08]: altruism and spite in non-atomic network routing games

- uniform altruism: \(\text{POA} \leq \frac{1}{\beta} \)
- uniform spite/altruism, affine latencies: \(\text{POA} \leq \frac{4}{3+2\beta+\beta^2} \)
- non-uniform altruism, parallel links: \(\text{POA} \leq \frac{1}{\bar{\beta}} \)

[Hoefer and Skopalik, ESA ’09]: uniform altruism in congestion games

- existence of pure NE (exist for affine cost functions)
- convergence of sequential best-response dynamics
Related Work

[Chen and Kempe, EC ’08]: altruism and spite in non-atomic network routing games

- uniform altruism: $\text{POA} \leq 1/\beta$
- uniform spite/altruism, affine latencies: $\text{POA} \leq \frac{4}{3+2\beta+\beta^2}$
- non-uniform altruism, parallel links: $\text{POA} \leq 1/\bar{\beta}$

[Hoefer and Skopalik, ESA ’09]: uniform altruism in congestion games

- existence of pure NE (exist for affine cost functions)
- convergence of sequential best-response dynamics
Related Work

[Caragiannis et al., TGC ’10]: uniform altruism in congestion and load balancing games
 • derive bounds on the POA for affine cost functions
 • phenomenon: POA increases as altruism level increases
 • POA decreases for symmetric load balancing games

[Buehler et al., WINE ’11]: altruism in load balancing games
 • players are (completely) altruistic towards “friends”
 • study cost of worst altruistic PNE relative to cost of worst selfish PNE (price of civil society)
 • also here: price of civil society increases as altruism increases
Related Work

[Caragiannis et al., TGC ’10]: uniform altruism in congestion and load balancing games
 - derive bounds on the POA for affine cost functions
 - phenomenon: POA increases as altruism level increases
 - POA decreases for symmetric load balancing games

[Buehler et al., WINE ’11]: altruism in load balancing games
 - players are (completely) altruistic towards “friends”
 - study cost of worst altruistic PNE relative to cost of worst selfish PNE (price of civil society)
 - also here: price of civil society increases as altruism increases
Smoothness Technique
Smoothness

A strategic game G is (λ, μ)-smooth if for any two strategy profiles $s, s^* \in S$

$$\sum_{i=1}^{n} C_i(s_i^*, s_{-i}) \leq \lambda C(s^*) + \mu C(s).$$

[Roughgarden, STOC '09]

The robust price of anarchy of a game G is defined as

$$RPOA(G) = \inf \left\{ \frac{\lambda}{1 - \mu} : G \text{ is } (\lambda, \mu)\text{-smooth with } \mu < 1 \right\}.$$
Smoothness

A strategic game G is (λ, μ)-smooth if for any two strategy profiles $s, s^* \in S$

$$\sum_{i=1}^{n} C_i(s_i^*, s_{-i}) \leq \lambda C(s^*) + \mu C(s).$$

[Roughgarden, STOC '09]

The robust price of anarchy of a game G is defined as

$$RPOA(G) = \inf \left\{ \frac{\lambda}{1 - \mu} \ : \ G \text{ is } (\lambda, \mu)\text{-smooth with } \mu < 1 \right\}.$$
Consequences in a nutshell

Theorem

Let G be a game with robust price of anarchy $RPOA(G)$.

1. The price of anarchy of coarse correlated equilibria of G is at most $RPOA(G)$.

2. The average cost of a sequence of outcomes of G with vanishing average external regret approaches $RPOA(G) \cdot C(s^*)$.

3. If G admits an exact potential function, then best-response dynamics quickly reach an outcome of cost at most $RPOA(G) \cdot C(s^*)$.

[Roughgarden, STOC '09]
Consequences in a nutshell

Theorem

Let G be a game with robust price of anarchy $RPOA(G)$.

1. The price of anarchy of coarse correlated equilibria of G is at most $RPOA(G)$.

2. The average cost of a sequence of outcomes of G with vanishing average external regret approaches $RPOA(G) \cdot C(s^*)$.

3. If G admits an exact potential function, then best-response dynamics quickly reach an outcome of cost at most $RPOA(G) \cdot C(s^*)$.

[Roughgarden, STOC '09]
Consequences in a nutshell

Theorem

Let G be a game with robust price of anarchy $\text{RPOA}(G)$.

1. The price of anarchy of coarse correlated equilibria of G is at most $\text{RPOA}(G)$.

2. The average cost of a sequence of outcomes of G with vanishing average external regret approaches $\text{RPOA}(G) \cdot C(s^*)$.

3. If G admits an exact potential function, then best-response dynamics quickly reach an outcome of cost at most $\text{RPOA}(G) \cdot C(s^*)$.

[Roughgarden, STOC '09]
Consequences in a nutshell

Theorem

Let G be a game with robust price of anarchy $\text{RPOA}(G)$.

1. The price of anarchy of coarse correlated equilibria of G is at most $\text{RPOA}(G)$.

2. The average cost of a sequence of outcomes of G with vanishing average external regret approaches $\text{RPOA}(G) \cdot C(s^*)$.

3. If G admits an exact potential function, then best-response dynamics quickly reach an outcome of cost at most $\text{RPOA}(G) \cdot C(s^*)$.

[Roughgarden, STOC ’09]
Suppose \(s = (s_1, \ldots, s_n) \in S \) is a pure Nash equilibrium. Fix an optimal strategy profile \(s^* = (s^*_1, \ldots, s^*_n) \in S \). Then

\[
C(s) = \sum_{i \in N} C_i(s_i, s_{-i}) \leq \sum_{i \in N} C_i(s^*_i, s_{-i}) \quad \text{(exploiting PNE conditions)}
\]

\[
\leq \lambda C(s^*) + \mu C(s) \quad \text{(exploiting \((\lambda, \mu)\)-smoothness)}
\]

By rearranging terms, we obtain

\[
\frac{C(s)}{C(s^*)} \leq \frac{\lambda}{1 - \mu} \quad \text{and thus} \quad POA \leq \frac{\lambda}{1 - \mu}.
\]
Suppose $s = (s_1, \ldots, s_n) \in S$ is a pure Nash equilibrium. Fix an optimal strategy profile $s^* = (s_1^*, \ldots, s_n^*) \in S$. Then

$$C(s) = \sum_{i \in N} C_i(s_i, s_{-i})$$

$$\leq \sum_{i \in N} C_i(s_i^*, s_{-i})$$

(exploiting PNE conditions)

$$\leq \lambda C(s^*) + \mu C(s)$$

(exploiting (λ, μ)-smoothness)

By rearranging terms, we obtain

$$\frac{C(s)}{C(s^*)} \leq \frac{\lambda}{1 - \mu}$$

and thus

$$POA \leq \frac{\lambda}{1 - \mu}.$$
Suppose \(s = (s_1, \ldots, s_n) \in S \) is a pure Nash equilibrium. Fix an optimal strategy profile \(s^* = (s_1^*, \ldots, s_n^*) \in S \). Then

\[
C(s) = \sum_{i \in N} C_i(s_i, s_{-i}) \\
\leq \sum_{i \in N} C_i(s_i^*, s_{-i}) \quad \text{(exploiting PNE conditions)} \\
\leq \lambda C(s^*) + \mu C(s) \quad \text{(exploiting } (\lambda, \mu)\text{-smoothness)}
\]

By rearranging terms, we obtain

\[
\frac{C(s)}{C(s^*)} \leq \frac{\lambda}{1 - \mu} \quad \text{and thus} \quad \text{POA} \leq \frac{\lambda}{1 - \mu}.
\]
Glimpse: Pure price of anarchy

Suppose \(s = (s_1, \ldots, s_n) \in S \) is a pure Nash equilibrium. Fix an optimal strategy profile \(s^* = (s_1^*, \ldots, s_n^*) \in S \). Then

\[
C(s) = \sum_{i \in N} C_i(s_i, s_{-i})
\]

\[
\leq \sum_{i \in N} C_i(s_i^*, s_{-i}) \quad \text{(exploiting PNE conditions)}
\]

\[
\leq \lambda C(s^*) + \mu C(s) \quad \text{(exploiting} (\lambda, \mu)-\text{smoothness)}
\]

By rearranging terms, we obtain

\[
\frac{C(s)}{C(s^*)} \leq \frac{\lambda}{1 - \mu} \quad \text{and thus} \quad \text{POA} \leq \frac{\lambda}{1 - \mu}.
\]
Suppose \(s = (s_1, \ldots, s_n) \in S \) is a pure Nash equilibrium. Fix an optimal strategy profile \(s^* = (s^*_1, \ldots, s^*_n) \in S \). Then

\[
C(s) = \sum_{i \in N} C_i(s_i, s_{-i})
\leq \sum_{i \in N} C_i(s^*_i, s_{-i}) \quad \text{(exploiting PNE conditions)}
\leq \lambda C(s^*) + \mu C(s) \quad \text{(exploiting } (\lambda, \mu)\text{-smoothness)}
\]

By rearranging terms, we obtain

\[
\frac{C(s)}{C(s^*)} \leq \frac{\lambda}{1 - \mu} \quad \text{and thus } \quad POA \leq \frac{\lambda}{1 - \mu}.
\]
Suppose \(s = (s_1, \ldots, s_n) \in S \) is a pure Nash equilibrium. Fix an optimal strategy profile \(s^* = (s_1^*, \ldots, s_n^*) \in S \). Then

\[
C(s) = \sum_{i \in N} C_i(s_i, s_{-i})
\]

\[
\leq \sum_{i \in N} C_i(s_i^*, s_{-i}) \quad \text{(exploiting PNE conditions)}
\]

\[
\leq \lambda C(s^*) + \mu C(s) \quad \text{(exploiting \((\lambda, \mu)\)-smoothness)}
\]

By rearranging terms, we obtain

\[
\frac{C(s)}{C(s^*)} \leq \frac{\lambda}{1 - \mu} \quad \text{and thus} \quad \text{POA} \leq \frac{\lambda}{1 - \mu}.
\]
Let $\sigma^1, \ldots, \sigma^T$ be a sequence of probability distributions over outcomes of G in which every player experiences vanishing average external regret, i.e., for every $i \in N$ and $s'_i \in S_i$:

$$E \left[\sum_{t=1}^{T} C_i(s^t) \right] \leq E \left[\sum_{t=1}^{T} C_i(s'_i, s^t_{\neg i}) \right] + o(T). \quad (*)$$

→ no-regret algorithms

[Hart and Mas-Colell '00]

Exploiting the smoothness condition and $(*)$, it follows that the average cost of this sequence satisfies

$$\frac{1}{T} \sum_{t=1}^{T} E \left[C(s^t) \right] \leq RPOA(G) \cdot C(s^*) \quad \text{as} \quad T \to \infty.$$
Let $\sigma^1, \ldots, \sigma^T$ be a sequence of probability distributions over outcomes of G in which every player experiences vanishing average external regret, i.e., for every $i \in N$ and $s'_i \in S_i$:

$$E \left[\sum_{t=1}^{T} C_i(s^t) \right] \leq E \left[\sum_{t=1}^{T} C_i(s'_i, s^t_{-i}) \right] + o(T).$$

→ no-regret algorithms [Hart and Mas-Colell ’00]

Exploiting the smoothness condition and (\ast), it follows that the average cost of this sequence satisfies

$$\frac{1}{T} \sum_{t=1}^{T} E [C(s^t)] \leq RPOA(G) \cdot C(s^*) \quad \text{as} \quad T \to \infty.$$
Glimpse: No-regret sequences

Let $\sigma^1, \ldots, \sigma^T$ be a sequence of probability distributions over outcomes of G in which every player experiences vanishing average external regret, i.e., for every $i \in N$ and $s'_i \in S_i$:

$$E \left[\sum_{t=1}^{T} C_i(s^t) \right] \leq E \left[\sum_{t=1}^{T} C_i(s'_i, s'^t_{-i}) \right] + o(T).$$

\rightarrow no-regret algorithms

Exploiting the smoothness condition and (\ast), it follows that the average cost of this sequence satisfies

$$\frac{1}{T} \sum_{t=1}^{T} E \left[C(s^t) \right] \leq RPOA(G) \cdot C(s^*) \text{ as } T \rightarrow \infty.$$
For a given strategy profile $s \in S$, define

$$C_{-i}(s) = \sum_{j \neq i} C_j(s).$$

An altruistic game G^α is (λ, μ, α)-smooth if for any two strategy profiles $s, s^* \in S$

$$\sum_{i=1}^{n} C_i(s^*_i, s_{-i}) + \alpha_i(C_{-i}(s^*_i, s_{-i}) - C_{-i}(s)) \leq \lambda C(s^*) + \mu C(s).$$

Define the robust price of anarchy of an altruistic game G^α as

$$RPOA(G^\alpha) = \inf \left\{ \frac{\lambda}{1 - \mu} : G^\alpha \text{ is } (\lambda, \mu, \alpha)\text{-smooth with } \mu < 1 \right\}.$$
For a given strategy profile $s \in S$, define

$$C_{-i}(s) = \sum_{j \neq i} C_j(s).$$

An altruistic game G^α is (λ, μ, α)-smooth if for any two strategy profiles $s, s^* \in S$

$$\sum_{i=1}^{n} C_i(s^*_i, s_{-i}) + \alpha_i(C_{-i}(s^*_i, s_{-i}) - C_{-i}(s)) \leq \lambda C(s^*) + \mu C(s).$$

Define the robust price of anarchy of an altruistic game G^α as

$$RPOA(G^\alpha) = \inf \left\{ \frac{\lambda}{1 - \mu} : G^\alpha \text{ is } (\lambda, \mu, \alpha)\text{-smooth with } \mu < 1 \right\}.$$
Adapted smoothness notion

For a given strategy profile $s \in S$, define

$$C_{-i}(s) = \sum_{j \neq i} C_j(s).$$

An altruistic game G^α is (λ, μ, α)-smooth if for any two strategy profiles $s, s^* \in S$

$$\sum_{i=1}^{n} C_i(s^*_i, s_{-i}) + \alpha_i(C_{-i}(s^*_i, s_{-i}) - C_{-i}(s)) \leq \lambda C(s^*) + \mu C(s).$$

Define the **robust price of anarchy** of an altruistic game G^α as

$$RPOA(G^\alpha) = \inf \left\{ \frac{\lambda}{1 - \mu} : G^\alpha \text{ is } (\lambda, \mu, \alpha)\text{-smooth with } \mu < 1 \right\}.$$
Implications

Can generalize most of the results of [Roughgarden, STOC ’09] to altruistic extensions of games:

Theorem

Suppose the robust price of anarchy of G^α is $RPOA(G^\alpha)$.

1. The price of anarchy of coarse correlated equilibria of G^α is at most $RPOA(G^\alpha)$.

2. The average cost of a sequence of outcomes of G^α with vanishing average external regret approaches $RPOA(G^\alpha) \cdot C(s^*)$.

3. If G^α admits an exact potential function, then best-response dynamics quickly reach an outcome of cost at most $RPOA(G^\alpha) \cdot C(s^*)$.
Results in a Nutshell

joint work:

Po-An Chen, Bart de Keijzer and David Kempe
Altruistic congestion games

Results in a nutshell:

1 The robust price of anarchy of α-altruistic linear congestion games is at most

$$\frac{5 + 2\hat{\alpha} + 2\check{\alpha}}{2 - \hat{\alpha} + 2\check{\alpha}},$$

where $\hat{\alpha}$ and $\check{\alpha}$ are the maximum and minimum altruism levels, respectively.

2 This bound specializes to $\frac{5 + 4\alpha}{2 + \alpha}$ for uniformly α-altruistic congestion games and is tight even for pure NE.

3 The pure price of stability of uniformly α-altruistic congestion games is at most $\frac{2}{1 + \alpha}$.

[Caragiannis et al., TGC '10]
Altruistic congestion games

Results in a nutshell:

1. The **robust price of anarchy** of α-altruistic linear congestion games is at most

$$\frac{5 + 2\hat{\alpha} + 2\check{\alpha}}{2 - \hat{\alpha} + 2\check{\alpha}},$$

where $\hat{\alpha}$ and $\check{\alpha}$ are the maximum and minimum altruism levels, respectively.

2. This **bound** specializes to $\frac{5 + 4\alpha}{2 + \alpha}$ for uniformly α-altruistic congestion games and is **tight** even for pure NE. [Caragiannis et al., TGC ’10]

3. The **pure price of stability** of uniformly α-altruistic congestion games is at most $\frac{2}{1 + \alpha}$.
Altruistic congestion games

Results in a nutshell:

1. The robust price of anarchy of α-altruistic linear congestion games is at most

$$\frac{5 + 2\hat{\alpha} + 2\check{\alpha}}{2 - \hat{\alpha} + 2\check{\alpha}},$$

where $\hat{\alpha}$ and $\check{\alpha}$ are the maximum and minimum altruism levels, respectively.

2. This bound specializes to $\frac{5 + 4\alpha}{2 + \alpha}$ for uniformly α-altruistic congestion games and is tight even for pure NE. [Caragiannis et al., TGC ’10]

3. The pure price of stability of uniformly α-altruistic congestion games is at most $\frac{2}{1+\alpha}$.
Bounds for uniform players

![Graph showing bounds for uniform players.]
Bounds for uniform players

Guido Schäfer

Altruism and Spite in Games
The pure price of anarchy of uniformly α-altruistic extensions of symmetric singleton linear congestion games is $\frac{4}{3+\alpha}$.

[Caragiannis et al., TGC '10]

The mixed price of anarchy of α-altruistic extensions of symmetric singleton linear congestion games is at least 2.

The pure price of anarchy of α-altruistic extensions of symmetric singleton linear congestion games with $\alpha \in \{0, 1\}^n$ is at most $\frac{4-2\bar{\alpha}}{3-\bar{\alpha}}$, where $\bar{\alpha}$ is the fraction of purely altruistic players.
Altruistic singleton congestion games

4 The pure price of anarchy of uniformly α-altruistic extensions of symmetric singleton linear congestion games is $\frac{4}{3+\alpha}$.

[Caragiannis et al., TGC '10]

5 The mixed price of anarchy of α-altruistic extensions of symmetric singleton linear congestion games is at least 2.

6 The pure price of anarchy of α-altruistic extensions of symmetric singleton linear congestion games with $\alpha \in \{0, 1\}^n$ is at most $\frac{4-2\bar{\alpha}}{3-\bar{\alpha}}$, where $\bar{\alpha}$ is the fraction of purely altruistic players.
The pure price of anarchy of uniformly α-altruistic extensions of symmetric singleton linear congestion games is \(\frac{4}{3+\alpha} \).

[Caragiannis et al., TGC ’10]

The mixed price of anarchy of α-altruistic extensions of symmetric singleton linear congestion games is at least 2.

The pure price of anarchy of α-altruistic extensions of symmetric singleton linear congestion games with $\alpha \in \{0, 1\}^n$ is at most $\frac{4-2\bar{\alpha}}{3-\alpha}$, where $\bar{\alpha}$ is the fraction of purely altruistic players.
The pure price of anarchy of uniformly α-altruistic extensions of symmetric singleton linear congestion games is $\frac{4}{3+\alpha}$. [Caragiannis et al., TGC ’10]

The mixed price of anarchy of α-altruistic extensions of symmetric singleton linear congestion games is at least 2.

The pure price of anarchy of α-altruistic extensions of symmetric singleton linear congestion games with $\alpha \in \{0, 1\}^n$ is at most $\frac{4-2\bar{\alpha}}{3-\bar{\alpha}}$, where $\bar{\alpha}$ is the fraction of purely altruistic players.
Altruistic cost-sharing games

Fair cost-sharing game: players choose facilities and the cost of each selected facility is evenly shared among the players using it.

Results in a nutshell:

1. The robust price of anarchy of α-altruistic cost-sharing games is $\frac{n}{1-\alpha}$ (with $n/0 = \infty$).

2. This bound is tight for the pure price of anarchy of uniformly α-altruistic extensions of network cost-sharing games.

3. The pure price of stability of uniformly α-altruistic cost-sharing games is at most $(1 - \alpha)H_n + \alpha$.
Valid utility games: model “two-sided market games” such as the facility location game

Results in a nutshell:

1. The robust price of anarchy of α-altruistic extensions of valid utility games is 2, independent of the altruism level distribution.

2. This bound is tight for the pure price of anarchy of α-altruistic extensions of valid utility games.
Concluding remarks
Concluding remarks

Summary:
- initiated the study of the impact of altruism in strategic games
- smoothness framework to bound the inefficiency of altruistic games
- approach is powerful enough to derive tight bounds on the robust price of anarchy of altruistic extensions of congestion games, cost-sharing games and valid utility games

Conclusions:
- altruistic behavior may lead to an increase in the inefficiency
- not a universal phenomenon though: the price of anarchy may decrease (singleton congestion games) or remain the same (valid utility games)
Ongoing and Future Work

Ongoing work: together with Krzysztof Apt

- use similar idea to define an alternative inefficiency measure

Question: How much altruism does one have to add to a game such that the price of stability becomes 1?

Selfishness level: smallest value α such that the α-altruistic extension has a price of stability of 1

Results:
- prove general characterization result
- invariant under linear transformations
- ordinal potential games have finite selfishness level
- determine selfishness level of several classical games

→ see next talk by Krzysztof!
Thank you!