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We study the ine"ciency and computation of pure Nash equilibria in unweighted congestion games, where the

strategies of each playerare given implicitly by the binary vectors of a polytopR,;. Given these polytopes, a

strategy pro#le naturally corresponds to an integral vector in thggregation polytope Px = Y.; P;. We identify

two general properties of the aggregation polytopg that are su"cient for our results to go through, namely

the integer decomposition property (IDP) and thebox-totally dual integrality property (box-TDI). Intuitively, the

IDP is needed to decompose a load pro#lePjp into a respective strategy pro#le of the players, and box-TDI

ensures that the intersection of a polytope with an arbitrary integer box is an integral polytope. Examples of

polytopal congestion games which satisfy IDP and box-TDI include common source network congestion games,

symmetric totally unimodular congestion games, non-symmetric matroid congestion games and symmetric

matroid intersection congestion games (in particulafarborescences and strongly base-orderable matroids).
Our main contributions for polytopal congestion games satisfying IDP and box-TDI are as follows:

(1) We derive tight bounds on the price of stability for these games. lis extends a result of Fotakis (2010)
on the price of stability for symmetric network congestion games to the larger class of polytopal
congestion games. Our bounds improve upon the ones for general polynomial congestion games
obtained by Christodoulou and Gairing (2016).

(2) We show that pure Nash equilibria can be computed in strongly polynomial time for these games. To
this aim, we generalize a recent aggregation/decomposition framework by Del Pia et al. (2017) for
symmetric totally unimodular and non-symmetric matroid congestion games, both being a special
case of our polytopal congestion games.

(3) Finally, we generalize and extend results on the computation of strong equilibria in bo$leneck
congestion games studied by Harks, Hoefer, Klimm and Skopalik (2013). In particular, we show that
strong equilibria can be computed e"ciently for symmetric totally unimodular bo$leneck congestion
games.

In general, our results reveal that the combination of IDP and box-TDI gives rise to an e"cient approach to
compute a pure Nash equilibrium whose ine"ciency is be$er than in general congestion games.

1 INTRODUCTION

Background and Motivation. Congestion games constitute an important class of non-cooperative
games which have been studied intensively since their introductionRnysenthal(1973. In a
congestion game, a (#nite) set of players compete over a (#nite) set of resources. Each resource
is associated with a non-negative and non-decreasing cost (or delay) function which speci#es its
cost depending on the total number of players using it. Every player chooses a subset of resources
from a set of available resource subsets (corresponding to the playerOs strategies) and experiences a
cost equal to the sum of the costs of the chosen resources. e goal of each player is to minimize
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her individual cost. Congestion games are both theoretically appealing and practically relevant.
For example, they #nd their applications in network routing, resource allocation and scheduling
problems.

In a seminal papeiRosentha(1973 establishes the existence of pure Nash equilibriain congestion
games. He proves this result through the use of @fact potential function which assigns a value
to each strategy pro#le such that the di%erence in potential value of any two strategy pro#les
corresponding to a unilateral deviation of a player is equal to the di%erence in cost experienced by
that player. Rosenthal proves that every congestion game admits an exact potential function, also
known asRosenthal’s potential. As a consequence, every best response sequence must converge
to a pure Nash equilibrium because the game is #nite. Further, this shows that the set of pure
Nash equilibria corresponds to the set of local minima of RosenthalOs potential. Especially this
correspondence has helped to shed light on several important aspects of congestion games in recent
years.

Rosenthal’s Potential: Local vs. Global Minimizers. One of the most predominant aspects that
has been studied intensively in recent years is the computational complexity of #nding a pure
Nash equilibrium. In a seminal papédtabrikant, Papadimitriou, and Talwg2004 show that the
problem of #nding a pure Nash equilibrium is PLS-complete, both for symmetric congestion games
and non-symmetric network congestion games. In particular, this suggests that a polynomial time
algorithm for #nding a pure Nash equilibrium is unlikely to exist for these games. In their proof they
construct instances of non-symmetric network congestion games where any best response sequence
has exponential lengthAckermann, Rglin, and \Vecking (2009 strengthen this result by exhibiting
instances of symmetric network congestion games for which every best response sequence (from
certain initial con#gurations) has exponential length. On the positive side, they prove that best
response dynamics converge in polynomial time for non-symmetric matroid congestion games,
where the available resource subsets of the players correspond to bases of a given matroid (see below
for formal de#nitions). le authors also show that basically this is the only class of congestion
games for which this property holds true.

Most previous works in this context focus on the analysis of decentralized dynamics to reach a
pure Nash equilibrium (see, e.g\ckermann et al(200§; Chien and Sinclai{2007; Christodoulou
et al (2012; Even-Dar et al(2007; Fabrikant et al (2004; Fotakis(2010; leong et al (2009);
said di%erently, these works focus on #nding a local minimum of RosenthalOs potential. Much
less is known about the problem of computing a pure Nash equilibrium that corresponds to a
global minimum. Fabrikant et al (2009 use this idea to show that a pure Nash equilibrium can
be computed in polynomial time for symmetric network congestion games. !e authors observe
that in this case a global minimum of RosenthalOs potential can be computed by a reduction to a
min-cost &ow problem (if all cost functions are non-decreasing). Note that this is in stark contrast
with the fact that best response dynamics might need exponential time in this caskgrmann
et al.2009.

Only very recently,Del Pia, Ferris, and Michin201) make further progress along these lines.
le authors consider congestion games where the strategy sets of the players are given implicitly
by apolyhedral description (see alsoGhan and Jian@01§). More precisely, for each playethe
incidence vectors of the strategies are de#ned as the binary vectors in a polytopdx : A;x ! b;},
whereA; is an integral matrix and; is an integral vector. ley (mostly) focus on the case where the
matrix A; is totally unimodular (See below for formal de#nitions) and thus the describing polytope
P; isintegral (i.e., all its extreme points are integral); they term these gamesly unimodular (TU)
congestion games. For symmetric TU congestion games (whenj| b; are identical), they devise
an aggregation/decomposition framework that reduces the problem of #nding a global minimum



of RosenthalOs potential to an integer linear programming problem. Using this framework, they
show that pure Nash equilibria can be computed e"ciently for symmetric TU congestion games.
le authors also show that this problem is PLS-complete for non-symmetric TU congestion games.
Further, they show that their framework can be adapted to the case of non-symmetric matroid
congestion games.

Another important aspect that has has been the subject of intensive research in recent years is the
ine"ciency of pure Nash equilibria in congestion games (see, eAépnd et al (201); Awerbuch et al
(2009; Caragiannis et al(200; Christodoulou and Gairing2016; Christodoulou and Koutsoupias
(2005; de Jong et al201§; Feldman et al(2016; Fotakis(2010; Gairing et al (200§; Koutsoupias
and Papadimitrioy(1999; Lucking et al (2009; Roughgarder{2015). Here the goal is to assess
the social cost (de#ned as the sum of the costs of the players) of a pure Nash equilibrium relative
to an optimal outcomeKoutsoupias and Papadimitrio{1999 introduced theprice of anarchy as
the ratio between the worst social cost of a Nash equilibrium and the social cost of an optimum.
Anshelevich et al(2004 de#ned theprice of stability as the ratio between the best social cost of a
Nash equilibrium and the social cost of an optimum.

Fotakis(2010 reveals an intriguing connection between the price of stability of network con-
gestion games and the price of anarchy of thawn-atomic counterparts. More speci#cally, he
shows that for symmetric network congestion games the ratio between the social cost of a global
minimum of RosenthalOs potential and the social cost of a social optimum is at D3t where
I (D) is a tight bound on the price of anarchy faton-atomic network congestion games with
latency functions in clas® introduced byCorrea, Schulz, and Stier-Mos@004. In particular,
this implies that the price of stability of symmetric network congestion games with cost functions
in D issat most! (D). For example, this parameter equal4or the class of a"ne functions and
(27+ 6 3)/23# 1.63 for quadratic functions. !ese type of bounds fall within RoughgardenOs
smoothness framework (Roughgarder2013.

Our Contributions. In light of the discussion above a natural question that arises, and which we
se$le in this paper, is:

Which structural properties of the strategy sets of the players are sufficient to
(A) efficiently compute a global minimum of Rosenthal’s potential, and
(B) bound the inefficiency of the resulting pure Nash equilibrium?

In order to tackle this question, we use a polyhedral approach similar to the oneShmyn and
Jiang(201§ andDel Pia et al(2017. But in contrast to these works, we do not restrict our a$ention
to polyhedral descriptions arising from totally unimodular matrices only. Instead, we identify more
general polyhedral properties of the describing systems that are su'cient to achieve (A) and (B).
Our main contribution in this paper is to unify and extend the results iD€l Pia et al2017 Fotakis
2010 to a much larger class of polytopal congestion games.

More speci#cally, we considefolytopal congestion games in which the incidence vectors of the
strategies of player are given by the binary vectors in a polytop® = {x : Ax ! b;}, whereA
is an integral matrix andb; is an integral vector. Given the polytopes of all players, a strategy
pro#le naturally corresponds to an integral vector in thggregation polytope Py = Y; Pi. We
identify two general properties of the aggregation polytopg which are su'cient for our results
to go through, namely thenteger decomposition property (IDP) and thebox-totally dual integrality
property (box-TDI) (formal de#nitions are given below). !e integer decomposition property is
needed to decompose a load pro#lefg to a respective strategy pro#le of the players. Intuitively,
the box-TDI property ensures that the intersection of a polytope with an arbitrary integer box is
an integral polytope.



Our main contributions for polytopal congestion games are as follows:

(1) We generalize the upper bound 6{D ) on the price of stability for symmetric network
congestion games blyotakis(2010 to the much larger class of polytopal congestion games
satisfying IDP and box-TDI (Secticf). To this aim, we introduce a novel property, which
we term thesymmetric difference decomposition property, and show that it is satis#ed by
our polytopal congestion games. By exploiting this property, we can generalize the proof
by Fotakis(2010 to these games. We also prove that our bounds are tight for these games.

(2) We provide a framework to derive an e"cient algorithm for computing a feasible load
pro#le minimizing RosenthalOs potential for polytopal congestion games satisfying IDP and
box-TDI (Sectiorb). !e time complexity of this algorithm is polynomial in the number
of players and resources, the largest entry Yy b; and the complexity of a separation
oracle for the aggregation polytope. lis generalizes the framework bfel Pia et al (2017
for symmetric TU congestion games and non-symmetric matroid congestion games, both
being special cases of our polytopal congestion games.

(3) We give a series of examples of combinatorial polytopal congestion games satisfying IDP
and box-TDI (Sectior®). lese examples include the symmetric TU congestion games
by Del Pia et al(2017, common source network congestion games, symmetric matroid
intersection congestion games (in particulararborescences and strongly base-orderable
matroids) and non-symmetric matroid congestion games.

(4) We show that the integer decomposition property and box-total dual integrality can be used
to generalize and extend some results on the computation of strong equilibria in bo$leneck
congestion games studied byarks, Hoefer, Klimm, and Skopal2013 (Section?). In
particular, we obtain the new result that strong equilibria can be computed in strongly
polynomial time for symmetric totally unimodular bo$leneck congestion games.

Further Implications and Significance. To the best of our knowledge, all previous works addressed
either (A) or (B), but not both. Note that the combination of (A) and (B) provides an e"cient
algorithm for the computation of a pure Nash equilibrium that comes with a provable ine"ciency
guarantee. Said di%erently, our contributions (1) and (2) can be seen as an e"cient equilibrium
selection procedure to #nd a pure Nash equilibrium whose social cost is at @) times the
optimal social cost. By exploiting contribution (1), we obtain new bounds on the price of stability
which improve upon the ones for general polynomial congestion gant&sistodoulou and Gairing
(2016 derive tight bounds on the price of stability of congestion games with polynomial cost
functions of maximum degreé, which grow liked + 1. However, for the clasB ; of polynomial
functions of maximum degreé, we have! (D) # d/ log(d) for larged (see, e.g.Feldman et al
2016), which is a signi#cant improvement over the general case. Al4@ ) is well-understood for
various classes of delay functio®; for example, a closed form expression is known fdb ;)

(see preliminaries).

Our upper bound ot (D) on the price of stability is (asymptotically) tight, even for symmetric
singleton congestion games with the class of delay functidhgontaining all constant functions
and being closed under dilations (see below for formal de#nitions). Note that singleton congestion
games constitute a special case of all polytopal congestion games mentioned in (3). In particular,
our results se$le the exact price of stability for these applications.

Our results also reveal that the price of stability for matroid congestion games is much more
well-behaved than the price of anarchgle Jong et a201§ show that for symmetrick-uniform
matroid congestion games with a"ne cost functions, the price of anarchy lies strictly betwek® 4
and 2813# 2.15. Obtaining a tight bound for this case seems (highly) non-trivial. In contrast,



for the price of stability we provide tight bounds for arbitrary non-symmetric matroid congestion
games with arbitrary cost functions.

Our framework in (2) uni#es and extends the aggregation/decomposition framewotksdPia
et al. (2017. In particular, the symmetric TU congestion games and non-symmetric matroid
congestion games (considered separatelylel(Pia et al2017) fall into our class of polytopal
congestion games satisfying IDP and box-TDI. Similarly, all combinatorial TU congestion games (i.e.,
network, matching, edge cover, vertex cover and stable set congestion games) and their respective
extensions to the maximum (or minimum) cardinality versions D€l Pia et al2017 can be handled
by our framework.

Contribution (2) can also be regarded as a Oblack-boxO approach for the computation of a pure
Nash equilibrium. Given a congestion game that exhibits some combinatorial structure, checking
whether our approach applies reduces to the following three tasks: (i) derive a polytopal description
P; for the strategy set of each playey (ii) verify whether the resulting aggregation polytop@y
satis#es the IDP, (iii) check that the system describing the aggregation polykgpis box-TDI. In
particular, if the integer decomposition dfy, can be done in polynomial time, then this approach
provides an e"cient algorithm to compute a pure Nash equilibrium. By exploiting this idea, we
derive strongly polynomial time algorithms for the computation of RosenthalOs potential minimum
for all applications mentioned in (3).

It is interesting to note that the IDP seems to be the limiting property for our approach to apply.
For example, non-symmetric network congestion games can naturally be modeled as polytopal
congestion games satisfying box-TDI. But it is easy to see that the IDP does not hold. In fact, it is
unlikely that an e"cient algorithm to #nd a pure Nash equilibrium exists because this problem is
PLS-completeRabrikant et al2004.

2 PRELIMINARIES

Congestion Games and Rosenthal’s Potential. A congestion gamel’ is given by a tuple
(N,E, (S))isn, (ce)ese), Wwhere N = [n] is a #nite set of playersE = [m] is a #nite set of re-
sources (or facilities)S; % 2F is a set of strategies of player$ N, andc. : Rgg' Ris a
cost function of resource $ E. Unless stated otherwise, the cost functions are assumed to be
non-negative and non-decreasing. For a strategy proste (s1,...,s,) $ (;S;, we de#nex,
as the number of players using resouregi.e.,x, = x.(s) = |{{ $ N : e $ s;}|. We callx the
load profile corresponding to strategy pro#le !e cost of player i $ N under a strategy pro#le
s = (s1,...,850) $ (;S;is given byCi(s) = Y.gs, ce(xe). If S; = S; foralli,j $ N, the game is
calledsymmetric. e social cost C(s) of a strategy pro#le refers to the sum of the playersO individual
costs, i.e.C(s) = >; Ci(s)-

We say thatd : (;S; ' R is anexact potential function for a congestion game if for every
strategy pro#les $ ( ;S;, for every playeri $ N and every unilateral deviatior) $ S; of i it holds:
D(s) * O(s+;,5)) = Ci(s) * Ci(s+1,8)). Rosentha(1973 shows thatd(s) = ¥.sr X3¢, ce (k) is an
exact potential. Subsequently, we refer to this potential function simplyRasenthal’s potential.
Further, a strategy pro#le minimizing RosenthalOs potential is said toRwseathal minimizer.

Inefficiency of equilibria. A strategy pro#les is a Nash equilibrium if for every playeri $ N it
holds thatC;(s) ! C; (s? s+;) for all sg $ S;. Further, a strategy pro#le is astrong equilibrium if
for every group of playerd %N and every deviation} $ (:$1S; of the players inl, it holds that
Ci(s) ! Ci(s),s+1) for somei $ I.



le price of anarchy (POA) and the price of stability (POS) of a gameare de#ned as

maxssne C(s)
ming+g(;s, C(s*)

minsgne C(s)

POAT) = —_———
AT) Mins+g(;s, C(s%)

and POH) =
where NE denotes the set of all Nash equilibria &f For a collection of gamed we de#ne
POAH ) = sup-gy POAT) andPOJH ) = sup-.g POST). lese notions naturally generalize to
the solution concept of strong equilibria.

Smoothness parameter. Correa et al(2004 show that fornon-atomic network congestion games
with latency functions in clas® the price of anarchy of an instance is at most

(D)= (1" "(D))", where (D)= sup ,$§F‘§.>OW

1)

le value of ! (D) is well-understood for many important classes of latency functions. For example,
letDy ={$:Rgo' Rgo:$(x) & u¥$(x), u $ [0,1]}. In particular,D ; contains all polynomial
latency functions with non-negative coe"cients and maximum degrée We have! (D,) =

(> (d+1)(+1),d)*1. le parameter ! (D) plays a crucial role in bounding the price of stability of
our congestion games.

Integral polytopes. We review some basic de#nitions and results from polyhedral combinatorics
which are used in this paper. A polytopR %R™ is the convex hull of a #nite set of vectors iR™.
We say thatP is integral if all its extreme points are integral vector®. is said to bebox-integral if
the intersection of? with any integral box, i.e.P-{ x:c! x! d}for arbitrary integralc andd,
yields an integral polytope.

A matrix A $ Q"(" is totally unimodular (TUM) if the determinant of each square submatrix of
Aisin {0,£1}. In particular, each entry of a totally unimodular matrix is if0, £1}. If A is totally
unimodular andb $ Z™ is an integer vector, then the polyhedrah = {x : Ax ! b} is integral
(Schrijver1986 leorem 19.1).

Edmonds and Gile€L977 introduced the powerful notion of total dual integrality. A rational
systemAx ! bwith A $ Q" (" andb $ Q" is totally dual integral (TDI) if for every integral
¢ $Z™, the dual of minimizingcx overAx ! b, i.e.max{#'b :# & 0, #'A = c'}, has an integer
optimum solution#, if it is #nite. If Ax ! b is a TDI-system and is integral, then the polyhedron
P={x:Ax! b}isintegral Schrijver1986 Corollary 22.1c). Note that TDI is a weaker su"cient
condition for the integrality of P than TUM.

le system Ax ! bis box-totally dual integral (box-IDI) if the systemAx ! b, I! x! wuis TDI
for all rational vectors! andu. We say that a polytope is box-TD], if it can be described by a
box-TDI system. If? has some box-TDI describing system, then every TDI-system describing
is also box-TDI chrijver1986 leorem 22.8). We will use the following properties of box-TDI
descriptions:

PROPOSITION 2.1. (Schrijver 1986, Section 22.5) The following statements are equivalent:
(i) The system Ax ! b, x & O is box-TDL

(ii) The system Ax + W=b, & 0, x & 0 is box-TDL

(iii) The system Ax ! %b, x & O is box-TDI for all %& O.

(iv) The system a8g+ Ax | b is box-TDI, where a is a column of A and & is a new variable.

Moreover, if a polytope P is box-integral, then every edge of P is in the direction of a {0, +1}-vector.

For our computational results we need the notion of a separation oracle. L& R™ be a
polytope de#ned by a #nite set of rational inequalities. Given a veét& Q", we assume that



there is aseparation oracle that decides whethe# $ P or not, and in the la$er case it returns a
vectora $ Q" such thata"x < a'# for all x $ P. All applications that we consider in this paper are
known to have e"cient separation oracles. Finally, for a vectivi$ Q" we de#ne thesize of # as
size#) = maX{logi#;) +1:i=1,...,r}

Matroids. We introduce some general terminology and facts for matroids (an extensive treaty
of matroids can be found, e.qg., iB¢hrijver2003). LetE be a #nite set of elements a6 2F
be a collection of subsets @f (calledindependent sets). e pair M = (E,| ) is amatroid if the
following three properties hold: (1)$ 1 , (2)ifA$ | andB %A, thenB $ 1|, (3)ifA,B $ |
and|A| > |B|, then there exists am $ A\ B suchthatB+a $ 1. AnindependentseB $ | of
maximum size is called aasis. We useB to denote the set of all bases bf . le matroid M also
has a rank function : 28 ' { 1,...,|E|} which maps every subset %E to the cardinality of the
largest independent set contained in

le base matroid polytope is given by

Py ={x:x(A)! r(4), Al E, x(E) =r(E), x &0},

wherex(A) = Y .54 x4 fOr all A %E. It is the convex hull of the incidence vectors of the base®in
(Schrijver2003. If in the description above the equality(E) = r(E) is replaced by (E) ! r(E),
we obtain theindependent set polytope which is the convex hull of the incidence vectors of the
independent sets.

We assume that the matroid is given by @ndependence oracle that takes as input a subset
A %2F and returns whether or noA $ | . Given an independence oracle, we can determine in time
polynomial in |E| and the complexity of the oracle, whether a set is a basis and what the rank of a
set is. Further, there exists a separation oraclefgr that runs in time polynomial in|E| and the
complexity of an independence oracle. !is follows from the fact that theost violated inequality
problem can be solved in time polynomial ifE| and the complexity of an independence oracle.
le most violated inequality problem takes as input a vectar $ Q™ and returns whether or not
x $ P, and if not, it returns a subsed for which r(A) * x(A) is minimized, see, e.gS¢hrijver2003
Section 40.3).

Given two matroidsM ; andM , on a common ground sef, the polytope

Pu,m,={x:x(A)! ri(Ad),Al E, x(E)=r;i(E)fori=12 x &0} (2)

is the convex hull of the common bases of matroids; andM », see, e.g.3chrijver2003 Corollary
41.12d). It follows directly thaPy , M, also has a separation oracle which runs in time polynomial
in |[E| and the complexity of the independence oracles b, andM ».

3 POLYTOPAL CONGESTION GAMES

We considerpolytopal congestion games T = (N, E, (S;)isn, (ce)ese) With N = [n] and E = [m],
where the set of strategieS; of each player $ N is given implicitly by a polytopal representation.
More precisely, leiX; be the #nite set of all incidence vectors of the strategies of playere.,
X;i={:8{04":";.=1i%e $s;fors; $S;}. e polytope P; representing the strategies of
playeri is de#ned as the convex hull of;, i.e.,P; = con\(X;) %[0, 1]™. We assume thap; is
given byP; = {x : Ax ! b;} %[0,1]™, whereA $ Z"(™ is an integralr ( m-matrix andb; $ Z" is
an integral vector. Note thak; = P; - { 0, 1}. For notational convenience, we subsequently use
S; also to refer to the set of incidence vectaxs; no confusion shall arise.

We say that(N, E, (S;)isn) is the polytopal tuple given byPs, . .. ,P,, whereS; = P; - { 0, 1}™.
Moreover, we de#ndy = {# : A# ! Y, b;} %R™ to be theaggregation polytope of the tuple.
If b; = b; = bforalli,j $ N, the tuple is calledsymmetric and denoted by(N, E, S) where



S =P-{0,1}" with P = {x : Ax | b}. If additionally we equip the tuple with cost functions
(ce)ese, we calll = (N, E, (S;)isn (ce)esr) the polytopal congestion game given by Py, . .., P,.

3.1 Aggregation Polytope: IDP and box-TDI

We identify two crucial properties that the aggregation polytopg; has to satisfy for our results to
go through:

(1) Py satis#es the integer decomposition property (IDP).
(2) 'le system A#! . b; describingPy is box-totally dual integral (box-TDI).

le aggregation polytope Py = {#: A# ! 3; b;} %R™ has theinteger decomposition property
(IDP) if every integralz $ Py can be wri$en ag = Y7, z', wherez' $ P;- Z™ foralli=1,...,n.}

We next introduce the notion of a feasible load pro#le. Given atude E, (S;):sn), aload pro#le
# $ N™ is said to befeasible for (N, E, (S;);sn) if there exists a strategy pro#le= (s1,...,s,) $
(;S; such that# is the load pro#le corresponding tg i.e. #, = x.(s) for all e $ E. We omit the
explicit reference to the tuple if it is clear from the context.

le IDP is crucial to establish a correspondence between feasible load pro#leg MrE, (S;)isn)
and the integral vectors iPy.

ProPosITION 3.1. If the aggregation polytope Px of a polytopal tuple (N, E, (S;)isn) has the IDP,
then the feasible load profiles of the tuple correspond precisely to the integral vectors in Py.

Proor. Lets = (s1,...,s,) $ (;S; be astrategy pro#le and letbe the load pro#le corresponding
to s. It follows directly thatx $ Py by de#nition of Py. Moreover, any integral vectot in Py
can be decomposed as= >\ ; z' wherez! $ P; - Z™ foralli = 1,...,n. lis implies that for
everyi the vectorz’ is the incidence vector of some strategy of playeand thusz is a feasible load
pro#le. O

le main reason as to why box-TDI is useful, is that it serves as a su“cient condition to show
that the polytope it describes is box-integral.

ProrosITION 3.2. If the system Ax ! b describing a polytope P is box-TDI and b is integral, then P
is box-integral.

Proor. By assumption, the describing systesn ! b of P is box-TDI. lus the system Ax !
b, 1! #! wis TDI for all rational vectord andu. In particular,Ax ! b, ¢! #! dis TDI for
arbitrary integral vectors andd. Becaus#é, c andd are integral, we can conclude that the polytope
P-{#:c! #! d}isintegral (see, e.9.S5€hrijver1986 Corollary 22.1c)). O

It seems that most/d-polytopes for which the integer decomposition property is known in the
literature, also have a box-TDI describing system. We do not know if this is true in general, but it
would imply that the box-TDI assumption is redundant in all our statements below.

4 PRICE OF STABILITY

We #rst introduce thesymmetric difference decomposition property. lis property is crucial to derive
the bound on the price of stability.

INote that in the symmetric case{ = bjforall i, j $ N) this de#nition reduces to the integer decomposition property for
a polytopePy = nP as introduced byBaum and Tro$ei(197§.



4.1 Symmetric Dilerence Decomposition Property

Definition 4.1 (Symmetric difference decomposition). Atuple (N, E, (S;);gn) satis#tes theymmetric
difference decomposition property (SDD) if for all feasible load pro#leg and$, there exist vectors
a',...,a? ${0,21}" suchthat$* f =3I  a* and, forallk =1,...,q, the load pro#lef + a* is
feasible andi* satis#es

=10 f,*$.>0 and =10 f,*x$ <O (3)

As an example, let us consider symmetric network congestion games, where the common strategy
set of all players is the set of all directed simplg-paths in some directed grap@i = (V, A) with
s,t $ V. Here each feasible load pro#le corresponds to an integral feasjbl&ows of value
n = |[N|. 'le symmetric di%erence of two &owg" and$ can be wri$en as the sum of unit circuit
&ows on cycles.le incidence vectors of these unit circuit &ows correspond to the vectar§ in
De#nition 4.1,

le following theorem establishes the symmetric di%erence decomposition property.

THEOREM 4.2. Let (N, E, (S;)ign) be a polytopal tuple given by Pi,...,P, and let Py be the
corresponding aggregation polytope. If Py satisfies the IDP and has a box-TDI description, then the
tuple has the symmetric difference decomposition property.

Proor. We start by adding slack-variables to the systet#h | ;s b; describingPy. Note that
by Proposition2.1(ii) box-TDI is preserved under adding slack variables. As a result, we obtain the
polytope

On ={# W) A +u=23;b;, N&O # &0}
for which its describing system is box-TDI. AlsQy is integral.

Let f and$ be two feasible load pro#les withf # $. By Proposition3.1, we havef,$ $ Py.
lerefore, there are non-negative integral slack vector§,) such that(f,(),($,)) $ On. Let
f)=(f,() and® = ($,) ). Observe that and) are integral because of the integrality af, 3", b;
and f and$, respectively.

Note that the pairsf) = (f,() and$ = ($,) ) are vectors irfZ"*" sinceA is anr ( m-matrix. Let
c,d $ 2™ be vectors de#ned by, = min{f),$)} andd; = max{f),$)} for j = 1,...,r + m, and
let B be the integral box de#ned b ={z:c! z! d} Y%R™*",

LEMMA 4.3. The polytope Qn - B is integral and every edge of Qn - B is in the direction of a
{0, £ 1}-vector.

Proor. !e integrality follows from box-TDI of the integral system Qy. For the second part of
the claim, we #rst show thaDy - B is box-integral. Note thaDy is box-integral by Propositior3.2
LetB) = {x:* | x| +} $Z™*" be an arbitrary integral box. Note thdQx- B)- B) = On- (B- B))
and thatB - B) is again an integral box, sincg is integral as well (becausg and$) are integral).
It follows that Qn - (B - B)) is an integral polytope. lus, (Qn - B) - B is integral which proves
that Qn - Bis box-integral. !e claim now follows from Proposition2.1 O

Note that f),$ $ Oy - B. Further, bothf) and$ are extreme points of this polytope because
they are extreme points of the baB. We now #x some edge @by - B containing f). Such an edge
must exist becaus@y - B contains at least two elements (singé # $)). Let(a?)) = (a?, pl) be the
non-zero{0, = 1}-vector describing the direction of the edgeSinceQx - B is an integral polytope
we can show thatf) + (a')) $ On - B. To see this, lek(, ) = f) +, &(a)) be a parametrization of

2A unit circuit &ow is a{0, +1}-&ow that satis#es &ow-conservation at every node, includirand ¢.
SHere, u! corresponds to the slack variables, an#to the original variables.



the edge for some range!0, ! ,*, whereh) = h(, *) is the other extreme point of the edge?)).
Sincef) is integral and(a')) a {0, +1}-vector, it must be that * is a strictly positive integer.

We have shown thaif) + (a')) $ Qn - B. It follows thatA(f + a?) + (( + pt) = X;¢n bi. 'US,
Aa' + pl = 0 becauself +( = Y;¢n bi. Moreover, by construction of the boR it follows that

@)=*10 f*$>0 and (a))=10 $*f) >0 ()

forj=1,...,r + m. Using the fact thata® + gy = 0, it now also follows tha®) * (al)]). $On- B.
To see this, note thatt($* a®) + () * p!) = AS+) * (Aa + pb) = Y;¢n b + 0. Moreover, we also
have$) * (a')) & 0 by construction, since ifa')) = 1 for somej then$) > f) & 0, so in particular
$)* 1& 0 (because of the integrality &).

We can now apply the same argument to the vectgPsand$ * (a')) in order to obtain a vector
(a?)) satisfying @) and for which f) + (a?)), $ * (a)) * (a?)) $ Qn. Repeating this procedure we
#nd vectors(a®)), . . . ,(a7)) satisfying ¢), and such tha®) * f) = 327_ (a*)) with ) + (a¥)) $ Oy
fork=1,...,¢"

We argue that this process terminates. For tkieth step of this procedure, we have by construc-
tion of the (a*)),

K
o S

k=1

<
1

K*1
($) * Z(ak))) * f)” =T(K* 1)
k=1 1
where|| & flis theLi-norm. Sincef),$ and thea* are all integral this guarantees that the expression
T(K) decreases by at least one in every step.

We conclude the proof by showing thgt and$ can be decomposed according to De#nitiéri.
We have(a¥)) = (a¥, u¥) as de#ned before. It then follows that, . . .,a? are vectors satisfyingd)
suchthat$* f =37 a with f+a* $ Py fork = 1,...,q. Note thata* might be the zero-vector,
if (a*)) only contained non-zero elements in the part of the vector corresponding to slack variables.
lese a* can be le' out. It remains to show thaff + a* corresponds to a feasible strategy pro#le
fork=1,...,q. is follows directly from the fact that Py has the IDP. le decomposition yields
the strategies of the players. O

For symmetric polytopal tuples with common polytodg we havePy = nP = {# : #/n $ P}.
le la$er polytope has a box-TDI description if and only ifP has a box-TDI description, which
follows from Proposition2.1(iii). lis yields the following corollary.

CoROLLARY 4.4. Let (N, E,S) be a symmetric polytopal tuple given by P. If P satisfies the IDP and
has a box-TDI description, then the tuple has the symmetric difference decomposition property.

4.2 Upper bound for price of stability
le following is the main result of this section.

THEOREM 4.5 (PRICE OF STABILITY). LetT' = (N, E, (S;)isN, (ce)esE) be a congestion game with
cost functions in class D . Suppose that the tuple (N, E, (S;)isn) satisfies the symmetric difference
decomposition property. Then POS(T') | | (D). Further, this bound is (asymptotically) tight, even for
symmetric singleton congestion games.

Recall thatt (D) is de#ned as ir{1) and refers to the price of anarchy afon-atomic network
congestion games with latency function in clags. We need the following lemma to prove
leorem 4.5 Its proof relies on the symmetric di%erence decomposition property.

4lis construction is essentially a conformal circuit decomposition, see, e.gQnn, Rothblum, and Tangi2009.



LEMMA 4.6. Let (N, E, (S;)isn) satisfy the symmetric difference decomposition property and let
(ce)esE be arbitrary cost functions. Let f be a feasible load profile that minimizes Rosenthal’s potential
®(§. Then for every feasible load profile $

AFS) = Y (fo* $Jee(f)* ), B* felfe+D)! 0.

efe>"c efe<"e

Proor. Let f be a global minimizer of RosenthalOs potential and ket an arbitrary feasible
load pro#le. !en by the SDD property, there exist vectors?, . . . ,a? such that$* f = Zzzlak
for someq. Moreover,

O(f)* o(f +a) = D clfe)* D clfe+D)! O

e:ak=*1 e: ak=1

forall k = 1,...,q, where the inequality holds becaugeminimizes RosenthalOs potentialBy
adding up these inequalities for ai = 1, . . . ,q, we obtain thatA(f,$) ! 0. To see this, note that if
e $ Ewith f, > $, then there are precisely, * $, vectorsa* with a* = * 1; similarly, ife $ E with
$. > f. then there are precisel$, * f, vectorsa* with ¥ = 1. O

Proor or THEOREM 4.5. !e upper bound proof follows the same line of arguments as i-ftakis
2010 Lemma 3). We sketch the main ideas here only and refefFtadkis201Q for more details.
Let f be a minimizer of RosenthalOs potential §nah arbitrary feasible load pro#le. Note thatis
a pure Nash equilibrium. It can be shown that

C(f)! CO+" (DI + Y. (fe* Sdeelfe)* D @ * fo)eelfe + ).

e:fe>"e e:fe<ue

By Lemma4.§ the sum di%erenca(f,$) is non-negative. By rearranging terms, we obtain
c(f)c@ ! (1* " (D))" =1(D),which establishes the upper bound. !e proof that this bound
is tight will be given in the full version of the paper. O

5 MINIMIZING ROSENTHALOS POTENTIAL

Del Pia, Ferris, and Michin2017 introduce anaggregation/decomposition method for computing a

global minimum of RosenthalOs potential. It consists of two phases: lagfegation phase, we

#nd a feasible load pro#l¢* minimizing RosenthalOs potential. In thecomposition phase, f* is

then decomposed into a feasible strategy pro#le. !e authors provide an aggregation approach

(detailed below) that works for totally unimodular matricesand one common vectad¥ = b; for

all i $ N. Here we extend this result to aggregation polytopRg that have a box-TDI description.
Recall from Propositior3. 1that if the aggregation polytopéy of a polytopal congestion game

has the integer decomposition property, then the feasible load pro#les correspond to the integral

vectors ofPy. As a result, the problem we need to solve in the aggregation phase is equivalent to

fe
(2) minZch(k) st. f$Py-2Z"

e$E k=1
Note that this formulation is not a linear program in the variablég.).s¢. As in the approach
of Del Pia et al(2017, this problem can be resolved by introducing binary variabh§5$ {0,1}
fork=1,...,nandj = 1,...,m. le interpretation is that h}‘ = 1if at leastk players are using
resourcej $ E, andhj.C = 0 otherwise. In particular, if the cost functiong.).sr are non-decreasing,



then the aggregation problert?) is equivalent to the problen{R) stated below:

(R) mniihw@

j=1 k=1
st [AA .. AR, ... kL B3, k2, RE )T Y by (5)
hE${01} k=1...nj=1....m (6)

le equivalence of (Z) and(R) follows from the following observations: If = (f1,...,fm) $
Py - Z™ is optimal for (Z), we de#neht = 1fork =1,...,f; andhf = Ofork = f; +1,...,n. e
resulting solutionh = (hj.‘) is feasible for(R). Similarly, ifh = (h}‘) is an optimal solution for(R),
then the vectorf de#ned byf; = >} _; h}‘ is feasible for(Z). Note that here we implicitly exploit

that the cost functions are non-decreasing.
We show that the integer progranfR) can be solved e"ciently for box-TDI aggregation polytopes.

LEmMMA 5.1. If Py has a box-TDI description and A is a {0, * 1}-matrix, then (R) can be solved in
time polynomial in n, m, Sizg}}; b;) and the complexity of a separation oracle of Py .

Proor. De#tned) = [A, A, ...,A] $ (™" andh = (h¥) $ Q™". le relaxation of the integral
system §) and ) can then be wrien as the systetlh | 3, b;, 0! h! 1. LetQn = {h:Ah!
>:bi, 01 h! 1} be the polytope described by this system.

We #rst show thatQy is integral. By assumption the description 8f = {f : Af ! Y;snbi}iS
box-TDI. In particular, by applying Propositiof.1(iv) repeatedly, we obtain that the system

[AA, .. Al(h],... k2 k2, K2, R )T SN by

is box-TDI as well. In particular, this implies that the systehh | >, b;, 0! h! 1is TDI because
the intersection of a box-TDI system with an arbitrary box yields a TDI system. Becaijdg and
the restrictions onk are integral vectors, we conclude th@ty is indeed integral.

We now show how to construct a separation oracle 9 from a separation oracle faPy. For
h=(hi,...,h, k2, ... k%, ... K%, ... k%) $ Q™" let the aggregated vectof $ Q™ be de#ned
asf; = Zzzlh}‘ forj=1,...,m. len h$ Qu ifand onlyif f $ Py. We now give a separation
oracle forQy. Let# = (#]’?) $ Q™" be an arbitrary rational vector and lef be de#ned as above.
We use the separation oracle 8§ to check if f $ Py or not. If f $ Py, then alsoh $ QOx and
we are done. Otherwise if ¢ Py the oracle returns a vectar $ Q™ such thata'x < a' f for all
x $ Py. In particular this means thata”,a', ... ,a")z < (a",a’,...,a"J# forall z = () $ Q.
lus, we obtain a separation oracle forQy.

We now conclude the proof with a running-time analysis. From the claims above, it follows that
we can e"ciently solve (R) with the ellipsoid method. In particular, bySchrijver1986 Corollary
14.1a) this can be done in time polynomialinm, siz€}’; b;), siz€c.) for e $ E, and the running
time of the separation oracle faPy. Frank and Tardo$1987 show that for every linear program
max{c'x : Ax | b} with a {0, +1}-matrix A, the objective functiort can be replaced by an objective
function ¢), which is polynomially bounded inn, that yields the same set of optimal solutions. e
function ¢) can be computed in strongly polynomial time. lis concludes the proof. O

We obtain the following main result from the discussion above.

THEOREM 5.2 (AGGREGATION). LetT = (N, E, (S;)isn, (ce)ese) be a polytopal congestion game
with aggregation polytope Py that satisfies the IDP and has a box-TDI description. Then a feasible
load profile minimizing Rosenthal’s potential can be computed in time polynomial in n, m, Sizg}’; b;)
and the complexity of a separation oracle of Pn.



For symmetric polytopal congestion games we obtain the following corollary.

CoRrOLLARY 5.3. LetT' = (N, E,S, (cc)ese) be a symmetric polytopal congestion game given by P.
If P satisfies the IDP and has a box-TDI description, then a feasible load profile minimizing Rosenthal’s
potential can be computed in time polynomial in n, m, Siz&}; b;), and the complexity of a separation
oracle of P.

To the best of our knowledge, there is no universal algorithm that can perform integer decom-
position of an arbitrary polytope satisfying the IDP in time polynomial ipm, sizg}’; b;) and
the complexity of a separation oracle. However, under a slightly stronger integer decomposition
property such a decomposition can be done as explained below. Here we focus on symmetric
congestion games for clarity; but these arguments can be extended to the non-symmetric case as
well (details will be given in the full version of the paper).

We say that a polytope satis#es theniddle integral decomposition property (McDiarmid 1983
if for n $ Nandw $ Z™, the polytopeP - (w* (n* 1)P) is integral. If this property is satis#ed,
the decomposition algorithm oBaum and Tro$ei(197§ can then be used to perform the integer
decomposition; details are given in the proof of leorens.4

THEOREM 5.4 (AGGREGATION/DECOMPOSITION). LetT = (N, E, S, (c.)esE) be a symmetric poly-
topal congestion game given by P. If P satisfies the middle integral decomposition property and has a
box-TDI description, then a feasible strategy profile minimizing Rosenthal’s potential can be computed
in time polynomial in n, m, Sizg}’; b;) and the complexity of a separation oracle of P.

We remark that all results in this section also hold for computing a social optimum of congestion
games withweakly convex cost functions, since this problem can be reduced to computing a global
optimum of RosenthalOs potential (sBel(Pia et al2017).

6 APPLICATIONS

We now give examples of polytopal tupld, E, (S;);sn) for which the aggregation polytope
has the IDP (or middle integral decomposition property), a box-TDI description and an e"cient
separation oracle. As a consequence, our results on the price of stability ('eor&f and the
computation of RosenthalOs potential minimizer (leorem2and Corollary5.3 apply.

6.1 Symmetric totally unimodular congestion games

Totally unimodular congestion game®El Pia et al2017 capture a wide range of combinatorial
congestion games. Here the common strategy set of the players is described by a poR/tope
{x : Ax ! b} with a totally unimodularr ( m-matrix A and an integral vectob. In particular,
such a system satis#es the IDP and is box-TDI. e integer decomposition property was shown by
Baum and Tro$el(1978. We argue that the system is box-TDI. !e constraint matrix describing
the intersection ofP with {x : ¢! x ! d}forc,d $ Q™ is again totally unimodularYeino$ and
Dantzig196§. Any totally unimodular system is TDI (see, e.gSchrijver1986 Section 22.1)), and
therefore the systemix ! b,c! x! dis TDI. We conclude that the systerd ! b is box-TDI. If,

as in Qel Pia et al2017, the parameter is considered as part of the input size as well, then there
is a trivial (strongly) polynomial separation oracle that simply checks all inequalities of the system
Ax ! b. For all combinatorial applications given ifbgl Pia et al2017, the parameter is actually
polynomially bounded inm andm, so then this assumption is justi#ed.

6.2 Common source network congestion games

In @ common source network congestion game We are given a directed grapt = (V,A) and a
sources $ V. le strategy set of player i $ N is the set of all directed, t;-paths for some; $ V.



Ackermann et al (2008 already showed that one can compute a global optimum of RosenthalOs
potential function for these games. We outline how this case can be cast in our framework. le
strategies of playet can be described by a polytoge = {x : Ax = b;,0! x ! 1}, whereAis

the arc-incidence matrix of the network, andb is the vector with(b;); = 1, (b;);, = * 1 and zero
otherwise? e aggregation polytope is thenPy = {# : A# = Y5 b;,0! #! n}. Any feasible

load pro#le minimizing RosenthalOs potential can be decomposed into a feasible strategy pro#le,
using a similar argument as inAckermann et al200§. Further, the describing system 8f; is

totally unimodular and thus box-TDI.

6.3 Symmetric matroid intersection congestion games

In symmetric matroid intersection congestion games the (Symmetric) strategy set of all players is
given by the common bases of two matroil¥s; = (E, I 1) andM , = (E, | 2) over acommon element
setE. le polytope P of the players corresponds to the common base polyt®pg, v, as de#ned

in (2). 'e describing system of P is box-TDI (see, e.g.$S¢hrijver2003 Corollary 41.12¢)). Further,
as noted in the preliminaries there is a separation oraclefdiand thusPy) which runs in time
polynomial in |E| and the complexity of the independence oracles férn, andM ,. However, it is

not precisely known for which cases of matroid intersection the integer decomposition property
holds.

Example 6.1 (r-Arborescences). LetD = (V, A) be a directed graph. An-arboresence in D is a
directed spanning tree rooted in $ V. le set of all r-arboresences can be seen as the set of
common bases of two matroids. !e #rst matroidM 1 is the graphic matroid on the undirected graph
D) = (v,A), whereA) is the set formed by replacing every directed arcArwith its undirected
version, i.e.A) = {{u,- } : (u,-) $ A}. le second matroid M ; is the partition matroid in which
independent sets are given by sets of arcs for which there is at most one incoming arc at every
node- # r (we assume there are no incoming arcsraitlus, the common base polytopePy , m ,
describes the arborescencesibaind we letP = Py, m ,.

We argue that there is a strongly polynomial time algorithm for computing a minimum of
RosenthalOs potential. First note that the describing systePy ofy , is box-TDI (seegchrijver
2003 Corollary 41.12e)). Als®@u ,, m , Satis#es the integer decomposition property, which follows
from EdmondsO Disjoint Arborescences !eorefadmond<2003. By Corollary5.3 we can compute
a minimum of RosenthalOs potential in time polynomiahinn, size3; b;) and the complexity of a
separation oracle foPy , m,. !e elements of the vector b are bounded byE|, by the de#nition of
the rank functions. Moreover, it is not hard to see that there exist independence oracles for both
M 1 andM ; that run in time polynomial inm. !ese oracles can be used for separation oracles
as described in the preliminaries. It is not hard to see that if both base matroid polytopes have a
polynomial time separation oracle, then the intersection of these polytopes has one too. lis shows
that there is an algorithm for computing an optimal feasible load pro#le in time polynomiatin
andm. Integer decomposition can also be done in time polynomiatiandm (see, e.g.Harks
et al.2013 leorem 5)).

Example 6.2 (Intersection of strongly base-orderable matroids). A matroidM = (E, | ) is strongly
base-orderable if for every pair of basBg B, $ B there exists a bijectio : By ' By such that
for every X %Bgi, we haveB; * X + ((X) $ B. As in the previous example, a box-TDI description
follows from (Schrijver2003 Corollary 41.12e). It is also known that the independent set polytope

5Technically, this polytope can also contain paths with a #nite number of disjoint cycles, but these can always be removed
in the end.



of the intersection of strongly base-orderable matroids has the integer decomposition property
(McDiarmid 1983 leorem 5.1).°

6.4 Non-symmetric matroid congestion games

In a non-symmetric matroid congestion ganie= (N, E, (S;):isn, (ce)esE, the strategy set of player
i is given by the baseB; of a matroidM ; = (E, | ;) for i $ N.” le incidence vectors of the bases
of B; can be described by the base matroid polytope

P, ={x:x(A)! r;(A),A%E, x(E) = r;(E), x &0}

as introduced in the preliminaries. !at is, for every player we have a polytope of the form
P; = {x : Ax ! b;,x & O} whereb; is the rank functionr; of the matroidM ;. In particular, it
follows that the aggregation polytope is given by

Py = {#:#(A) ! 3, ri(A), A %E, #(E) = 3, ri(E), # & O}.

le polytope Py has a box-TDI description, which follows frons¢hrijver2003 leorem 46.2).°

le integer decomposition property is also satis#ed (see, e.Gclirijver2003 Corollary 46.2c)).
Using similar arguments as for-arborescences, we can thus derive a strongly polynomial time
algorithm to compute a minimum of RosenthalOs potential.

We also derive a result that is of independent interest: We can give a combinatorial approach for
computing the symmetric di%erence decomposition (which is of a speci#c form) of non-symmetric
matroid congestion games. Our analysis also gives rise to a strongly polynomial time local search
algorithm that computes a global optimum of RosenthalOs potential function. lis local search
algorithm can be seen as a natural generalization of best-response dynamics. !e details regarding
these results will be given in the full version of the paper.

7 BOTTLENECK CONGESTION GAMES.

A bottleneck congestion gameT = (N, E, (S;)isn, (ce)esE) IS de#ned similar as a congestion game,
with the only di%erence that the objective of a player is to minimize theximum (rather than
the aggregated) congestion over all resources that she occupies. Formally, the cost ofighaiver
under strategy pro#le = (si, .. .,s,) iS given byC;(s) = MaXess, ce (xe).

Harks, Hoefer, Klimm, and Skopal{2013 give adual greedy algorithm to compute a strong
equilibrium, which uses atrategy packing oracle as a subroutine. !ey give e"cient packing
oracles for symmetric network congestion games, non-symmetric matroid congestion games, and
(a slight generalization of}-arborescences. In particular, this leads to polynomial time algorithms
for computing a strong equilibrium in these cases.

We adapt the algorithm inilarks et al 2013 to compute a load pro#le of a strong equilibrium
for bo$leneck polytopal congestion games satisfying the IDP and box-TDI property.

THEOREM 7.1 (AGGREGATION). LetT = (N, E, (S;)isn, (ce)esE) be a polytopal bottleneck congestion
game with aggregation polytope Py that satisfies the IDP and has a box-TDI description. Then there
is an algorithm for computing a load profile of a strong equilibrium in time polynomial in n, m,
sizg}; b;) and the complexity of a separation oracle of Py .

8iis also implies that the common base polytope has the integer decomposition property, since the integer decomposition
property is preserved if we restrict ourselves to a face of a polytope with the integer decomposition property.

’Our framework also captures thidependent set congestion games studied byDel Pia et al(2017. However, we mainly
focus on non-negative cost functions here (because of the ine"ciency measures) and then these games are trivial.

8To see this, we use the fact that the rank function is submodular and that the sum of submodular functions is again
submodular. We can then apply !eorem 46.2 irSchrijver2003.



ALGORITHM 1: Load pro#le-dual greedy algorithm.

Input :Bo$leneck congestion gamie= (N, E, (S;)isn, (ce)esE), load pro#le oracled
Output:Load pro#le of strong equilibrium of.
set N)=N,u, =nforalle $E,T=.,L=Eanda=O(T 1L, (te)esE);
whilee $L:u., >0%. do
choose &) $ argmax gy -,,, >ofce (ue)}
Ue) = Ue) * 1,
if O(T 1 L, (ue)ese) = NO then
Ue) = uUp +1;
L=L\e), T=T1{e}
end
a=O(T 1 L, (ue)esk)
end
return (ue)e$E;

We adapt the de#nition of the strategy packing oracletddirks et al.(2013 to load pro#les:
LOAD PROFILE ORACLE

Input: #nite set of resource€ = T 1 L with upper bounds(u.).sz and n collections
S1,...,S, %2F (given implicitly by a certain combinatorial property)

Output: vEs, if there exists a feasible load pro#fesuch thatf, = u. foralle $ Tandf, ! u.
for all e $ L; no otherwise.

Our adaptation of the dual greedy algorithm irH@arks et al 2013 is given in Algorithm 1.
Although the ideas are similar to the ones inlérks et al 2013, our algorithm only works with
load pro#les; in particular, we do not have to explicitly compute decompositions of feasible load
pro#les in intermediate steps of the algorithm (which signi#cantly improves the running time).
Our algorithm works roughly as follows. We start with capacities @bn every resource. In
every step we pick a resourae $ L with maximum cost among all resources that are calledse,
and check whether there is a feasible load pro#le if we reduce the capacig) by one. If this is
not possible, we remove from L and adde) to the setT of so-calledtight resources. Note that
a'er the algorithm has terminated, all resources are in the get

Proor or THEOREM 7.1. It can be shown that Algorithml computes a load pro#le of a strong
equilibrium (details will be given in the full version of the paper). It is clear that Algorithihcan
be executed in time polynomial in, m and the complexity of a load pro#le oracle. We now give
an e"cient load pro#le oracle, based on a separation oracle’Qf From the fact thaPy has a
box-TDI description, it follows that the polytope

AR Yignbi}-{#He=uc:e$T}-{0! #. ! u.:e$L}

is integral. We can then use a separation oracle Far to #nd an integral vector in this polytope in
time polynomial inn, m, sizg}’; b;) and the complexity of the separation oracle. lis concludes
the proof. O

Once we have obtained the feasible load pro#le, we can use an integer decomposition algorithm
to #nd the corresponding strategies of the players. If the integer decomposition can be done within
the same time bounds as in leoreny .1, we obtain a (strongly) polynomial algorithm for computing
a strong equilibrium in a polytopal bo$leneck congestion game. In particular, this applies to all
applications mentioned in Sectioh



For matroid bo$leneck congestion games, we can also derive an upper bound on the strong price
of stability (SPOS). !e proof of the following result essentially relies on the fact that Algorithin
actually also calculates a global optimum of RosenthalOs potential in the case of matroid bo$leneck
congestion games.

COROLLARY 7.2 (STRONG PRICE OF STABILITY). Let I' = (N, E, (S;)isn, (ce)esE) be a matroid
bottleneck congestion game with cost functions in class D . Then SPOS(T') | ! (D).

Acknowledgements. We thank Carla Groenland, Bart de Keijzer and Daniel Dadush for helpful
discussions.
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