
A Group-Strategyproof Mechanism for Steiner Forests∗

Jochen Könemann† Stefano Leonardi‡ Guido Schäfer‡

Abstract

In this paper we design an approximately budget-
balanced and group-strategyproof cost-sharing mecha-
nism for the Steiner forest game. An instance of this
game consists of an undirected graph G = (V, E), non-
negative costs ce for all edges e ∈ E, and a set R ⊆ V ×V
of k terminal pairs. Each terminal pair (s, t) ∈ R is as-
sociated with an agent that wishes to establish a connec-
tion between nodes s and t in the underlying network. A
feasible solution is a forest F that contains an s, t-path
for each connection request (s, t) ∈ R.

Previously, Jain and Vazirani [4] gave a 2-
approximate budget-balanced and group-strategyproof
cost-sharing mechanism for the Steiner tree game — a
special case of the game considered here. Such a re-
sult for Steiner forest games has proved to be elusive
so far, in stark contrast to the well known primal-dual
(2−1/k)-approximate algorithms [1, 2] for the problem.

The cost-sharing method presented in this paper is
2-approximate budget-balanced and this is tight with
respect to the budget-balance factor.

Our algorithm is an original extension of known
primal-dual methods for Steiner forests [1]. An inter-
esting byproduct of the work in this paper is that our
Steiner forest algorithm is (2−1/k)-approximate despite
the fact that the forest computed by our method is usu-
ally costlier than those computed by known primal-dual
algorithms. In fact the dual solution computed by our
algorithm is infeasible but we can still prove that its to-
tal value is at most the cost of a minimum-cost Steiner
forest for the given instance.

1 Introduction

In this paper we consider the problem of designing
cost-sharing methods that are approximately budget-

∗Partially supported by the EU within the 6th Framework
Programme under contract 001907 (DELIS).

†Department of Combinatorics and Optimization, University
of Waterloo, 200 University Avenue West, Waterloo, ON N2L
3G1, Canada. Email: jochen@uwaterloo.ca. This work was
done while being on leave at the Dipartimento di Informatica
e Sistemistica at Università di Roma “La Sapienza”, Italy.

‡Dipartimento di Informatica e Sistemistica, Università di
Roma “La Sapienza”, Via Salaria 113, 00198 Roma, Italy. Email:
{leon,schaefer}@dis.uniroma1.it.

balanced and cross-monotonic.
Consider a set R of potential agents (or customers,

players) that want to receive a common service, e.g.,
being connected to a network infrastructure. A cost-
sharing method ξ is an algorithm that, given any subset
Q ⊆ R of agents, computes a solution to service Q
and for each j ∈ Q determines a non-negative cost-
share ξQ(j). The task is to devise a cost-sharing
method ξ that is α-approximate budget-balanced and
cross-monotonic:

α-Approximate Budget-Balance: The sum of the
cost-shares recovers at least the total cost c(Q) of
the computed solution. Moreover, the sum of the
cost-shares is at most α ≥ 1 times the cost optQ of
an optimum solution to service Q. That is,

c(Q) ≤
∑

j∈Q

ξQ(j) ≤ α · optQ.

Cross-Monotonicity: The cost-share of each individ-
ual agent never decreases as the set of agents
shrinks, i.e.,

∀Q′ ⊆ Q, ∀j ∈ Q′, ξQ′ (j) ≥ ξQ(j).

A cost-sharing method is budget-balanced if α =
1. Obtaining a budget-balanced cost-sharing method
is computationally intractable if the underlying prob-
lem is NP-hard or if we additionally require cross-
monotonicity (see for instance [3]).

Subsequently, we call a cost-sharing method that
is α-approximate budget-balanced and cross-monotonic
an α-approximate cross-monotonic cost-sharing method
for short.

In this paper we consider the problem of devising an
approximate cross-monotonic cost-sharing method for
the Steiner forest problem. In this problem, we are given
an undirected graph G = (V, E), a non-negative cost
function c : E → R

+ on the edges of G, and a set of k >
0 terminal pairs R = {(s1, t1), . . . , (sk, tk)} ⊆ V × V .
Each terminal pair (sj , tj), 1 ≤ j ≤ k, is associated
with an autonomous agent that wants to establish a
connection between nodes sj and tj . A feasible solution
for terminal set R is a forest F ⊆ E such that nodes sj

and tj are in the same tree of F for all 1 ≤ j ≤ k. The

objective is to find a feasible solution of smallest total
cost.

The reason as to why we are interested in the design
of cross-monotonic cost-sharing methods is due to a
result of Moulin and Shenker [5]: Any (approximately)
budget-balanced cross-monotonic cost-sharing method
can be turned into an (approximately) budget-balanced
group-strategyproof mechanism, i.e., a mechanism that
encourages agents and coalitions of agents to reveal their
true utility for receiving the service. (A more detailed
description of the mechanism design problem that we
consider is given below.)

Related Work. Though the designing of (approx-
imate) cross-monotonic cost-sharing methods has re-
cently received a growing attention in the computer sci-
ence literature, such methods are known only for very
few combinatorial problems: Moulin and Shenker [5]
gave a cross-monotonic cost-sharing method for prob-
lems whose optimal cost function is a submodular
function of the set Q. However, this condition does
not hold for several network design problems such as
Steiner tree and facility location. Jain and Vazirani [4]
presented a cross-monotonic cost-sharing method for
the minimum spanning tree game and therefore a 2-
approximate cross-monotonic cost-sharing method for
the Steiner tree game. Pàl and Tardos [6] developed
a 3-approximate cross-monotonic cost-sharing method
for the facility location problem and a 15-approximate
cross-monotonic cost-sharing method for the single-
source rent-or-buy network design problem.

In most of the methods that were proposed so far
to obtain (approximate) cross-monotonic cost-sharing
methods, the cost-shares are closely related to a feasi-
ble dual solution generated by the algorithm and there-
fore approximate budget-balance is an immediate con-
sequence of the approximation guarantee achieved by
the algorithm.

On the other hand, combinatorial problems that
are well-behaved with respect to their approximabil-
ity may prove hard when looking for approximate
cross-monotonic cost-sharing methods. In a recent pa-
per [3], Immorlica, Mahdian, and Mirrokni provide
lower bounds on the budget-balance factor α of cross-
monotonic cost-sharing methods for several problems.
Among other results they prove (maybe most surpris-
ingly) lower bounds of Ω(n) and Ω(n1/3) for the budget-
balance factor of the set cover and the vertex cover prob-
lems, respectively. Observe that these lower bounds are
achieved by using cross-monotonicity only.

Van Zwam [7] recently proved that for the Steiner
tree game there does not exist an α-approximate cross-
monotonic cost sharing method with α < 2. This
implies that the 2-approximate cost-sharing method for

Steiner trees of Jain and Vazirani [4] is tight with respect
to the budget-balance factor.

Our Contribution. While the 2-approximation
achieved by primal-dual algorithms for the Steiner
tree problem is matched by a 2-approximate cross-
monotonic cost-sharing method [4], a similar result for
the Steiner forest problem has proved to be elusive so
far. This contrasts the optimization version of the prob-
lem where primal-dual (2 − 1/k)-approximation algo-
rithms for both problems exist [1, 2].

In this paper we present a cross-monotonic cost-
sharing method for the Steiner forest problem that is 2-
approximate budget-balanced. The result of van Zwam
[7] on Steiner trees shows that our cost-sharing method
is tight with respect to the budget-balance factor.

Our algorithm is an original extension of the classi-
cal methods for Steiner forests [1, 2]. The Steiner forests
produced by our algorithm are generally more expensive
than those computed by the algorithms in [1, 2], since
a terminal pair (sj , tj) will continue to contribute to
construct the forest even after sj and tj are connected.

An interesting byproduct of the work in this pa-
per is that our Steiner forest algorithm is (2 − 1/k)-
approximate despite the fact that the forest computed
by our method is usually costlier than those computed
by known primal-dual algorithms in [1, 2]. In fact the
dual solution computed by our algorithm is infeasible
but we can still prove that its total value is at most
the cost of a minimum-cost Steiner forest for the given
instance. This raises the dazzling question of the exis-
tence of better primal-dual algorithms for Steiner trees
and forests.

Mechanism Design Problem. The mechanism
design problem that we consider can be described as
follows. Consider a service provider whose set of
potential agents (or customers) is R. Each agent j in
R has a utility uj which corresponds to the maximum
prize j is willing to pay for the service. Moreover, each
agent j makes a bid bj for receiving the service. A cost-
sharing mechanism is an algorithm that, based on the
bids {bj}j∈R, (i) determines a set Q ⊆ R of agents that
receive the service, (ii) computes a solution to service
the agents in Q, and (iii) for each j ∈ Q fixes a prize xj

that j has to pay for receiving the service.
We define the benefit of an agent j to be uj − xj if

j ∈ Q, and zero otherwise. We assume that each agent
is selfish and therefore may lie about the prize she is
willing to pay so as to maximize her benefit. The task
is to design a cost-sharing mechanism that encourages
agents to bid their true utility: No agent or group of
agents should be able to benefit from lying about their
utilities. A cost-sharing mechanism is strategyproof if
the dominant strategy of each agent is to bid her utility;

it is said to be group-strategyproof if the same holds even
if agents collude.

Moulin and Shenker [5] showed that, given a cross-
monotonic cost-sharing method ξ for the underlying
problem, the following cost-sharing mechanism is group-
strategyproof: Initially, let Q = R. If for each agent
j ∈ Q the cost share ξQ(j) is less than or equal to
her bid bj , stop. Otherwise, remove from Q all agents
whose cost shares are larger than their bids, and repeat.
Jain and Vazirani [4] later extended this framework to
approximately budget-balanced cross-monotonic cost-
sharing methods.

Organization of the Paper. Our algorithm is
based on a primal-dual algorithm for Steiner forests.
We introduce the key ideas underlying this algorithm in
the following section. Subsequently, we state our cross-
monotonic algorithm for the Steiner forest problem
in Section 3 and we analyze it in Sections 4 and 5.
We comment on the approximation guarantee of our
algorithm in Section 6.

2 A primal-dual Steiner forest algorithm

We review the algorithm of Agrawal, Klein, and Ravi [1].
Subsequently, we use AKR to refer to this algorithm. AKR
is a primal-dual algorithm. This means that the algo-
rithm constructs both a feasible primal and a feasible
dual solution for a linear programming formulation of
the Steiner forest problem and its dual, respectively.
A standard integer programming formulation for the
Steiner forest problem has a binary variable xe for all
edges e ∈ E. Variable xe has value 1 if edge e is part
of the resulting forest. We let U contain exactly those
subsets U of V that separate at least one terminal pair
in R. In other words, U ∈ U iff there is (s, t) ∈ R with
|{s, t} ∩ U | = 1.

For a subset U of the nodes we also let δ(U)
denote the set of those edges that have exactly one
endpoint in U . We then obtain the following integer
linear programming formulation for the Steiner forest
problem:

min
∑

e∈E

ce · xe(IP)

s.t.
∑

e∈δ(U)

xe ≥ 1 ∀U ∈ U

x integer

The linear program dual of the LP-relaxation (LP) of
(IP) has a variable yU for all node sets U ∈ U . There
is a constraint for each edge e ∈ E that limits the total
dual assigned to sets U ∈ U that contain exactly one

endpoint of e to be at most ce.

max
∑

U∈U

yU(D)

s.t.
∑

U∈U :e∈δ(U)

yU ≤ ce ∀e ∈ E(2.1)

y ≥ 0

Algorithm AKR constructs a primal solution for (LP) and
a dual solution for (D). The algorithm has two goals:

1. Compute a feasible solution for the given Steiner
forest instance. The algorithm reduces the degree
of infeasibility as it progresses.

2. Create a dual feasible packing of sets of largest
possible total value. The algorithm raises dual
variables of certain subsets of nodes at all times.
The final dual solution is going to be maximal in
the sense that no single set can be raised without
violating a constraint of type (2.1).

We think of an execution of algorithm AKR as a
process over time and let xt and yt be the primal
incidence vector and feasible dual solution at time t.
We also use F t to denote the forest corresponding to
xt. Initially, we let x0

e = 0 for all e ∈ E and y0
U = 0

for U ∈ U . In the following we say that an edge e ∈ E
is tight if the corresponding constraint (2.1) holds with
equality.

Assume that the forest F t at time t is infeasible.
We use F̄ t to denote the subgraph of G that is induced
by the tight edges for dual yt. A connected component
U of F̄ t is active iff U separates at least one terminal
pair, i.e., iff U ∈ U . Let At be the set of all active
connected components of F̄ t at time t. AKR raises the
dual variables for all sets in At uniformly at all times
t ≥ 0.

Suppose now that two active connected components
U1 and U2 collide at time t in the execution of AKR. In
other words, there are terminals u1 ∈ U1 and u2 ∈ U2

such that a path between u1 and u2 becomes tight as a
consequence of increasing yU1

and yU2
. If this happens,

we add the path to F t and continue. U1 and U2 are part
of the same connected component of F̄ t′ for t′ > t.

Let T be a tree of the final forest F constructed by
AKR. We define the age age(T) of T to be the point of
time at which T was formed, i.e., the first time t such
that T ⊆ F t. The following is the main theorem of [1]:

Theorem 2.1. Suppose that algorithm AKR outputs a
forest F consisting of trees T1, . . . , Tl and a feasible dual
solution {yU}U∈U . We then have

c(F) ≤ 2 ·
∑

U∈U

yU − 2 ·
l

∑

i=1

age(Ti) ≤

(

2 −
1

k

)

· optR,

where optR is the minimum-cost of a Steiner forest for
the given input instance with terminal set R.

3 A cross-monotonic algorithm for Steiner

forests

In this section we use the ideas presented in the last
section to develop a cross-monotonic algorithm for the
Steiner forest problem. We refer to this algorithm by
CSF throughout the remainder of this paper.

Define the time of death d(s, t) for each terminal
pair (s, t) ∈ R as

(3.2) d(s, t) =
1

2
· c(s, t),

where c(s, t) denotes the cost of the minimum-cost s, t-
path in G. We assume for ease of presentation that
each vertex v ∈ V has at most one terminal on it.
This assumption is without loss of generality since we
can replace each vertex in V by a sufficient number of
copies and link these copies by 0-cost edges. We extend
the death time notion to individual nodes and define
d(r) = d(s, t) for terminals r, s, t ∈ R iff r ∈ {s, t}.

Recall from the last section that AKR raises only
node-sets in U and, as a consequence, yt is a feasible
dual solution for (D) at all times t ≥ 0. Algorithm CSF

on the other hand will also raise subsets of V that do
not separate terminal pairs.

Using the notation introduced in Section 2 we
obtain CSF by modifying the definition of At. We say
that a connected component U of F̄ t is active at time
t if it contains at least one terminal r ∈ U with death
time at least t, i.e., U is active iff there exists r ∈ U with
d(r) ≥ t. CSF grows all active connected components in
At uniformly at all times t ≥ 0.

What is the intuition behind this? Consider a
terminal pair (s, t) ∈ R and imagine running the
primal-dual Steiner forest algorithm AKR on the instance
consisting of this terminal pair only. In this case, AKR
grows two moats corresponding to s and t, respectively,
at all times t ≤ d(s, t). At time d(s, t) the moats of
s and t meet and a path connecting the terminals is
added. In CSF a terminal pair (s, t) is active for the
time it would take s and t to connect in the absence
of any other terminals. The death time of s and t is
independent of other terminal pairs that are present.
This independence is the crucial property leading to
cross-monotonicity.

Consider an arbitrary terminal pair (s, t) ∈ R.
Observe that our choice of the death time d(s, t) in
(3.2) implies that s and t end up in the same connected
component of the final forest F and thus CSF constructs
a feasible solution for the given Steiner forest instance.

We now detail the cost-share computation. For a

terminal r ∈ R and for t ≤ d(r) we let U t(r) be the
connected component in F̄ t that contains r. We also
call U t(r) the moat around r at time t. Let at(r) be the
number of terminals in U t(r) whose death time is at
least t. We then define the cost-share of terminal node
r ∈ R as

(3.3) ξR(r) = 2 ·

∫ d(r)

t=0

1

at(r)
dt

and we let ξR(s, t) = ξR(s) + ξR(t) for all (s, t) ∈ R.
The proof of the following theorem is the subject of

Sections 4 and 5.

Theorem 3.1. Algorithm CSF is a cross-monotonic
cost-sharing method for the Steiner forest game that is
2-approximate budget-balanced.

We let the final forest produced by CSF(R) be de-
noted by F and we use {yU}U⊆V for the dual computed
by our method.

4 Analysis: Proving cross-monotonicity

In order to prove cross-monotonicity of CSF we consider
an arbitrary terminal pair (s, t) ∈ R and let R0 =
R \ {(s, t)}. In this section we study the effect of the
removal of (s, t) on the cost-shares of all other terminal
pairs (s′, t′) ∈ R0.

Let us first introduce some simplifying notation.
Assume that CSF(R) terminates at time t∗ with forest
F . Similarly, CSF(R0) finishes at time t∗0 with a forest
F0. Moreover, for all times t we let Ct and Ct

0 be the sets
of connected components of F̄ t and of F̄ t

0 , respectively.
The next lemma shows that Ct

0 is a refinement of Ct.

Lemma 4.1. For all times t ≤ t∗ and for all U0 ∈ Ct
0

there must be a set U ∈ Ct such that U0 ⊆ U .

Proof. The proof is by induction on the time t. It is
clear that the claim is true for t = 0 since C0 = C0

0 = V .
Consider a point in time 0 ≤ t < t∗ and assume

the claim is true at time t. CSF(R0) grows active sets
in Ct

0 and these are the only sets that can potentially
violate the claim at any time t + ǫ for ǫ > 0. Let
U0 ∈ Ct

0 be an active set at time t in CSF(R0), i.e.,
there exists a terminal r ∈ U0 with d(r) ≥ t. From the
induction hypothesis we know that there is a connected
component U of F t that contains U0. Then U must be
active in CSF(R) at time t and hence CSF(R) grows U
at time t. The claim follows.

This claim immediately implies cross-monotonicity.
Let ξ(r) and ξ0(r) be the cost-share of terminal r ∈ R0

in CSF(R) and in CSF(R0), respectively.

Corollary 4.1. Algorithm CSF is cross-monotonic,
i.e., for each r ∈ R0 we have

ξ0(r) ≥ ξ(r).

Proof. Let U t(r) and U t
0(r) be the moats containing

terminal r at time t in CSF(R) and CSF(R0), respectively.
Similarly, let at(r) and at

0(r) be the number of terminals
with death time at least t in U t(r) and U t

0(r). Lemma
4.1 implies that U t

0(r) ⊆ U t(r) and hence at
0(r) ≤ at(r)

for all t ≤ t∗ and for all r ∈ R0. Hence we obtain

ξ(r) = 2 ·

∫ d(r)

t=0

1

at(r)
dt ≤ 2 ·

∫ d(r)

t=0

1

at
0(r)

dt = ξ0(r)

for all r ∈ R0 and the corollary follows.

5 Analysis: Competitiveness and cost-recovery

Recall that we let {yU}U⊆V denote the dual solution
computed by CSF(R) and we let F be the corresponding
forest.

Lemma 5.1. Suppose that algorithm CSF outputs a for-
est F and a (possibly infeasible) dual solution {yU}U⊆V .
We then have

(5.4) c(F) ≤ 2 ·
∑

U⊆V

yU =
∑

(s,t)∈R

ξR(s, t).

Proof. The proof of Theorem 2.1 implies that c(F) ≤
2 ·

∑

U⊆V yU . Using Definition (3.3) it can then be
seen that the cost-share sum on the right-hand side
of (5.4) increases by 2ǫ whenever the total dual value
increases by ǫ for some ǫ > 0. Hence we must have
∑

(s,t)∈R ξR(s, t) = 2 ·
∑

U⊆V yU .

This does not mean that the cost c(F) of the forest
F produced by our cost-sharing method is at most twice
that of an optimum Steiner forest. In fact, {yU}U⊆V is
not a feasible solution for (D) since our algorithm raises
duals for active sets that are not in U . Surprisingly,
we can however show that the total dual

∑

U⊆V yU is
bounded by the cost optR of an optimum Steiner forest
for the given instance on terminal set R.

Lemma 5.2. Let y be the (infeasible) dual computed
by CSF(R) and let optR be the minimum-cost of any
feasible Steiner forest for the given instance. We have

∑

U⊆V

yU ≤ optR.

Lemma 5.1 and 5.2 imply the following corollary on
the approximate budget-balance of CSF.

Corollary 5.1. Let F be the Steiner forest computed
by CSF(R). We then have

c(F) ≤
∑

(s,t)∈R

ξR(s, t) ≤ 2 · optR.

We now prove Lemma 5.2.

5.1 A proof of Lemma 5.2 Recall the definition of
the death time d(s, t) of a terminal pair (s, t) ∈ R. In
the following, let

R = {(s1, t1), . . . , (sk, tk)}

such that
d(s1, t1) ≤ . . . ≤ d(sk, tk).

We define a total order on the set of terminal nodes
as follows. Let u ∈ {si, ti} and v ∈ {sj, tj} for
i, j ∈ {1, . . . , k} such that u 6= v. We then define u ≺ v
if i < j or if i = j and u = si.

Let U t be an active connected component in CSF(R)
at some time t ≥ 0. A terminal node v ∈ U t is
responsible for the growth of U t iff there does not exist
a terminal u ∈ U t different from v with v ≺ u. This
way, each active moat in CSF has a unique responsible
terminal node.

For a terminal node v ∈ R and a time t ≥ 0, let
rt(v) = 1 if v is responsible at time t, and 0 otherwise.
We then define the total responsibility time of a terminal
v ∈ R as

(5.5) r(v) =

∫ d(v)

t=0

rt(v) dt.

As before we let U t(v) be the connected component of
F̄ t containing terminal v ∈ R. We can show that a
terminal v ∈ R is responsible for a unique moat at all
times 0 ≤ t < r(v).

Claim 5.1. Let v ∈ R be a terminal and let r(v) be its
total responsibility time. Then, for any point of time
0 ≤ t < r(v), v is responsible for U t(v) in CSF(R).

Proof. Assume for the sake of contradiction that there is
a point of time t ∈ [0, r(v)) such that v is not responsible
for U t(v). Since U t(v) is active, we know that there
must be a terminal u ∈ U t(v) that is responsible. We
therefore must have v ≺ u and also d(v) ≤ d(u). Since
u and v are contained in the same active moat in CSF

after time t, this means that v cannot be responsible
after time t and hence r(v) ≤ t; a contradiction.

Definition (5.5) also implies that

∑

U⊆V

yU =
∑

u∈R

r(u)

t

s1

t2

t3

s2

s3

t1

Figure 1: A tree T spanning terminals R(T) =
{si, ti}1≤i≤3. The set of responsible terminal nodes
at time t is Rt(T) = {s1, s2, s3, t1, t3} (where we as-
sume that d(s1) > d(t2)). The corresponding moats in
U t(T) = {U t(v)}v∈Rt(T) are pairwise disjoint and each
moat loads at least one edge of T .

and hence it suffices to bound the sum on the right-hand
side in order to prove Lemma 5.2.

Let F ∗ be a minimum-cost Steiner forest for the
given instance with terminal set R. Consider a tree
T in F ∗ and suppose that T connects the terminals
R(T) = {v1, . . . , vp}; see Figure 1. The idea is to bound
the total growth of the moats of terminals in R(T) by
the cost c(T) of the tree T spanning R(T).

We let Rt(T) be the set of terminal nodes in R(T)
that are responsible at time t, i.e.,

Rt(T) = {v ∈ R(T) : rt(v) = 1}.

The following claim shows that at any time t the moats
in

U t(T) = {U t(v)}v∈Rt(T)

are pairwise disjoint.

Claim 5.2. Consider a point of time t and two terminal
nodes v, u ∈ Rt(T), v 6= u. The two moats U t(v) and
U t(u) must be disjoint.

Proof. Assume for the sake of contradiction that U t(v)
and U t(u) are not disjoint. Since both U t(v) and U t(u)
are connected components of F̄ t, it must therefore be
the case that U t(v) = U t(u). Claim 5.1 implies that
both v and u are responsible for this moat and hence
we must have v = u. This contradicts our choice of u
and v.

Let w ∈ R(T) be the terminal node with highest
responsibility time. It is tempting to believe that w is

the node with largest death time among nodes in R(T)
and that at time t = r(w) all nodes in R(T) are in the
same connected component U t(w) of F̄ t. However, this
need not necessarily be true; see Figure 2.

Lemma 5.3. If δ(U t(w)) ∩ T 6= ∅ for all 0 ≤ t < r(w)
then we must have

∑

v∈R(T) r(v) ≤ c(T).

Proof. Consider any point of time t ≥ 0 where there
are at least two terminals in R(T) that are responsible,
i.e., |Rt(T)| > 1. By Claim 5.2 we have that the moats
in U t(T) are pairwise disjoint. On the other hand, the
nodes in Rt(T) are connected by T and hence, each of
the moats in U t(T) loads a distinct part of the edges of
T ; see Figure 1.

Consider now a time t where |Rt(T)| = 1. It must
be the case that w is the only remaining responsible
terminal among the nodes in R(T), i.e., Rt(T) = {w}.
By assumption, U t(w) loads at least one edge of T . This
concludes the proof of the lemma.

In the following, let w̄ be the mate of w, i.e.,
(w, w̄) ∈ R(T) and d(w) = d(w, w̄). From now on we
will assume that there is a time t0 ∈ [0, r(w)) such that
δ(U t0(w)) ∩ T = ∅ and hence T ⊆ E(U t0(w)), where
E(U t0(w)) denotes the subset of those edges in E that
have both endpoints in U t0(w).

We also must have |Rt(T)| = 1 for all t ∈ [t0, r(w))
since all nodes of R(T) are in the same connected
component of F̄ t. Furthermore, since w is responsible
until time r(w) we must have Rt(T) = {w} for all
t ∈ [t0, r(w)) and thus u ≺ w and u ≺ w̄ for all
u ∈ R(T) \ {w, w̄}.

Let Pw be the unique w, w̄-path in T . We define
It(T) as the set of responsible terminal pairs in Rt(T) \
{w, w̄} that inflict dual load on path Pw in CSF(R) at
time t, i.e.,

It(T) = {v ∈ Rt(T) \ {w, w̄} : δ(U t(v)) ∩ Pw 6= ∅}.

Claim 5.3. Consider a point in time t and a terminal
v ∈ It(T). Then U t(v) does not contain either w or w̄.

Proof. By definition of It(T), we know that v 6∈ {w, w̄}.
We also know that v ≺ w and v ≺ w̄. The claim follows
as v is responsible for the growth of U t(v) and hence
{w, w̄} ∩ U t(v) = ∅.

For a time t and a node v ∈ It(T), let pt
w(v) be the

number of intersections of Pw and U t(v) at time t:

(5.6) pt
w(v) = |δ(U t(v)) ∩ Pw|.

We use slw to denote the cost of that part of Pw that
does not feel any dual load from any of the terminals

2L 2ǫ 1 2 1 2ǫ 2L

s3 t3 s2 s1 t1 t2 t4 s4

Figure 2: Let L be sufficiently large such that t3 and t4 are responsible terminals during the entire execution of
CSF. The optimal solution contains the tree T spanning terminals {s1, s2, t1, t2}. We have r(s2) = r(t2) = ǫ and
r(s1) = r(t1) = 1

2 . Moreover, d(s2) = d(t2) = 2 and d(s1) = d(t1) = 1.

in R(T). Let lw and lw̄ be the total load on Pw coming
from terminals w and w̄, respectively. We can then
express the cost of Pw as

(5.7) c(Pw) = lw + lw̄ + slw +

∫ t0

0

∑

v∈It(T)

pt
w(v) dt.

We obtain the following lemma.

Lemma 5.4. If there is a t0 ∈ [0, r(w)) with δ(U t0(w))∩
T = ∅ then we must have

∑

v∈R(T) r(v) ≤ c(T).

Proof. Similar to the proof of Lemma 5.3, consider
a time t < r(w) where Rt(T) contains more than
one terminal. The corresponding moats in U t(T) are
pairwise disjoint by Claim 5.2 and the nodes in Rt(T)
are connected by T . Hence, each of the moats in U t(T)
loads a distinct part of T .

Moreover, using the definition of pt
w(v) in (5.6), for

all t ∈ [0, t0) and v ∈ It(T) moat U t(v) loads at least
pt

w(v) edges of T .
Recall that slw is the cost of the segments of

Pw that do not feel any load from terminals in R(T).
Furthermore, w loads edges of T until time t0 and hence
we must have

c(T) ≥ slw +

∫ t0

0

∑

v∈It(T)

(pt
w(v) − 1) dt(5.8)

+ t0 +
∑

v∈R(T)\{w}

r(v)

The death time of node w is at most half of the cost of
Pw. Using (5.7) we therefore obtain

r(w) ≤
lw + lw̄

2
+

slw

2
+

1

2
·

∫ t0

0

∑

v∈It(T)

pt
w(v) dt

≤ t0 + slw +

∫ t0

0

∑

v∈It(T)

(pt
w(v) − 1) dt,(5.9)

where the second inequality uses the fact that
max{lw, lw̄} ≤ t0 and that by Claim 5.3, pt

w(v) ≥ 2
for all v ∈ It(T). Combining (5.8) and (5.9) yields the
lemma.

We can now sum over all trees T in the forest F ∗.
Lemmas 5.3 and 5.4 imply that

∑

T∈F∗

∑

v∈R(T)

r(v) ≤
∑

T∈F∗

c(T) = optR.

This finishes the proof of Lemma 5.2.

6 Algorithmic consequences

In the previous section we have shown that the dual
solution {yU}U⊆V computed by our algorithm CSF,
although being possibly infeasible, yields a lower bound
on the optimum cost optR:

optR ≥
∑

U⊆V

yU .

Following the proof of Theorem 2.1 of Agrawal, Klein,
and Ravi [1], we can use this fact and prove that our
algorithm achieves the same approximation guarantee
as the known primal-dual algorithms [1, 2]. This is sur-
prising, since the forest constructed by our algorithm is
usually costlier than those computed by the algorithms
in [1, 2].

Let T be a tree in the final forest F constructed by
CSF. We define the age age(T) of T to be the point
of time at which the final moat that contains T stops
growing, i.e., age(T) = max{r(v) : v ∈ R(T)}.

Theorem 6.1. Suppose that algorithm CSF outputs a
forest F consisting of trees T1, . . . , Tl and a (possibly
infeasible) dual solution {yU}U⊆V . We then have

c(F) ≤ 2 ·
∑

U⊆V

yU − 2 ·
l

∑

i=1

age(Ti) ≤

(

2 −
1

k

)

· optR,

where optR is the minimum-cost of a Steiner forest for
the given input instance with terminal set R.

Since CSF also raises dual variables for node-sets
that do not separate any terminal pair, one could hope
that CSF always constructs a better lower bound than
those obtained from the feasible dual solution of the
algorithms in [1, 2].

In fact, depending on the underlying instance, CSF
may yield a significantly stronger lower bound than the

1

s1 s2 sk−1 sk t1t2tk−1tk

Figure 3: Chain with k terminal pairs R = {(si, ti)}1≤i≤k and unit edge costs.

one obtained from AKR. As an example, consider the
instance given in Figure 3. The optimal cost optR to
connect all terminal pairs in R is 2k−1. The total dual
raised during the execution of AKR equals 2k · 1

2 = k,
while the total dual of the solution constructed by CSF

is (2k − 1) · 1
2 + 1

2c(s1, t1) = 2k− 1 = optR. That is, for
this particular instance, the lower bound of CSF proves
optimality of the computed solution. Observe that this
example also shows that the bound stated in Lemma 5.2
is tight.

On the other hand, it is an easy exercise to construct
example instances on which the lower bounds of CSF and
AKR are equally close to the optimum, or on which the
lower bound of AKR is better than to the one of CSF.

An interesting observation is that CSF may even
produce a solution whose total dual is strictly larger
than the objective value of an optimal solution to the
standard LP-relaxation (LP) on which the algorithms
in [1, 2] are based. To see this, consider an even-length
cycle C = (v0, . . . , vn−1) on n nodes with unit edge costs
and define n − 1 terminal pairs R = {(v0, vi)}1≤i≤n−1.
The total dual constructed by AKR is

∑

U∈U yU = n/2.
Note that this is an optimal solution for the dual (D) of
the standard LP-relaxation, since there exists a half-
integral solution for (LP) having the same cost: set
xe = 1

2 for each edge e of the cycle. The total dual
constructed by CSF is

∑

U⊆V

yU =
1

2
· (n − 1) +

1

2
·
n

2
=

3n

4
−

1

2
.

The latter term is strictly larger than n/2 if n > 2.

A special case: Rooted Steiner tree games.

The rooted Steiner tree game is a special case of the
Steiner forest game. In the Steiner tree game, we are
given a subset R′ ⊆ V of terminal nodes that want to be
connected to a designated root node r; that is, agents
correspond to nodes and the root node in particular is
not part of the agents-set. A feasible solution is a tree
that spans R′ ∪ {r}.

Jain and Vazirani [4] gave a 2-approximate cross-
monotonic cost-sharing method for the Steiner tree
game. Their method is based on a budget balanced
cross-monotonic cost-sharing method for the minimum
spanning tree game with a pre-specified root.

We can use algorithm CSF to obtain a 2-
approximate budget-balanced cost-sharing mechanism
ξST for the Steiner tree game: Define the set of ter-
minal pairs as R = {(r, v)}v∈R′ and let algorithm CSF

run on this instance. Recall that the root node r is
not part of the agent-set in the Steiner tree game.
We therefore define the cost-share of a terminal node
v ∈ R′ as ξST

R′ (v) = ξR(r, v). By Corollary 4.1 and
Corollary 5.1, ξST is a 2-approximate budget-balanced
cross-monotonic cost-sharing method for the Steiner
tree game.

References

[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide:
An approximation algorithm for the generalized Steiner
problem in networks. SIAM Journal on Computing,
24(3):445–456, 1995.

[2] M. X. Goemans and D. P. Williamson. A general ap-
proximation technique for constrained forest problems.
SIAM Journal on Computing, 24:296–317, 1995.

[3] N. Immorlica, M. Mahdian, and V. S. Mirrokni. Lim-
itations of cross-monotonic cost sharing schemes. In
Proceedings of the Sixteenth Annual ACM-SIAM Sym-

posium on Discrete Algorithms. ACM Press, 2005. to
appear.

[4] K. Jain and V. V. Vazirani. Applications of approxi-
mation algorithms to cooperative games. In Proceed-

ings of the Thirty-Third Annual ACM Symposium on

Theory of Computing, pages 364–372, 2001.
[5] H. Moulin and S. Shenker. Strategyproof sharing of

submodular costs: budget balance versus efficiency.
http://www.aciri.org/shenker/cost.ps, 1997.

[6] M. Pál and É. Tardos. Group strategyproof mecha-
nisms via primal-dual algorithms. In Proceedings of

the Forty-Fourth Annual IEEE Symposium on Foun-

dations of Computer Science, pages 584–593, 2003.
[7] S. van Zwam. A lower bound on the cost recovery of

the Steiner tree game with cross-monotonic cost shares.
Technical Report 18-04, Dipartimento di Informatica e
Sistemistica, Università di Roma “La Sapienza”, 2004.

