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Introdution
Combinatorial optimization is a �eld of applied mathematis and theoretial omputersiene. A major topi in ombinatorial optimization are linear optimization problems.Said simply, a linear optimization problem requires the optimization of a linear fun-tion over a disrete set of solutions. An intensively studied and well{known problemin ombinatorial optimization is the weighted mathing problem: it requires the om-putation of a mathing having maximum or minimum weight. A mathing M in anundireted graph G is a set of edges no two of whih share an endpoint. The edges ofG are assoiated with weights and the total weight of a mathing M is the sum of allthe weights of the edges in M . M may further be restrited to being perfet, whihonstitutes the weighted perfet mathing problem; a mathing M is perfet, if everyvertex in G has exatly one inident edge in M .Many variants and extensions of the weighted mathing problem exist. As an exampleof a variant, G might be restrited to being bipartite; this is alled the bipartite weightedmathing problem. An example of an extension, on the other hand, is the b{mathingproblem, where eah vertex may have up to b inident mathing edges.There are (at least) three types of appliations that motivate the investigation ofweighted mathing problems. (1) Diret appliations of the weighted mathing prob-lem exist. (2) Many other problems an be redued to the weighted mathing problem.(3) Several algorithms (repeatedly) solve the weighted mathing problem in order toprogress. We will give examples of eah of the three appliation types stated. Someof these are widely known. Additionally, we wish to present two new appliations (oftype (2) and (3)) that were enountered during the writing of the thesis and thus havebeen, for us, a major soure of motivation.A lassi example of an appliation of type (1) is to optimize, i.e. in this ase to mini-mize, the time spent by a plotter pen in pen{up motion, i.e. moving from one point toanother without drawing. Reingold and Tarjan [RT81℄ showed this to be a weightedperfet mathing problem. We briey summarize their reasoning. Assume we wish toplot a onneted �gure, and assume further that the time spent by the plotter movingfrom one point to another is proportional to the Eulidean distane. We lassify thestarting and rossing points of the �gure (i.e. the points where a line starts or severallines ross) to be either odd or even. A point is odd when an odd number of linesemerge, otherwise it is even. A fundamental theorem in graph theory is that thereexists always an even number of odd points. Moreover, Euler proved that a �gurean be traed (starting and ending in the same point) with no pen{up motion i� it isonneted and no odd points exist. Thus, we need to �nd a new set of lines suh thateah odd point beomes even and, moreover, the total time of pen{up motion along1



2 Introdutionthese lines is minimized. We thus de�ne a omplete graph G whose verties orrespondto the odd points of the �gure and whose edge weights orrespond to the Eulideandistane of these points. Minimizing the time of pen{up motion then means �nding aminimum{weight perfet mathing in G.An example of type (2), whih we would like to present as a motivating appliation forthe weighted mathing problem, is the so{alled dominane problem. Its appliationstems from the �eld of omputational linguistis. A dominane problem is given by aolletion of vertex disjoint rooted trees and a set of dominane wishes. A dominanewish is a direted edge from a leaf of some tree to the root of some other tree | theleaf wishes to dominate the root. The task is to assemble the trees into a forest suhthat every dominane wish is satis�ed, i.e. eah direted edge redues to an anestor{predeessor relationship. Althaus et al. [ADK+00℄ reently showed that deiding thesatis�ability of a dominane problem an be redued to a weighted mathing problem.As an example of type (3), we onsider a fundamental ommuniation problem knownas gossiping: n proessing units are required to interhange their data with eah other.The underlying ommuniation network is modeled by a graph G. A proessing unit(i.e. vertex) is permitted to ommuniate with only one of its neighbours (i.e. adjaentverties) at a time. The task of stating an optimal gossiping shedule, suh that inthe end every proessing unit knows the data of all other proessing units, is NP{hard.Beier and Sibeyn [BS00℄ use a mathing heuristi to ompute a good, sub{optimal gos-siping shedule. The heuristi an be regarded as working in rounds. In eah round,weights are assigned (on the basis of di�erent riteria) to the onnetions (i.e. edges)of the ommuniation network. Then, a maximum{weight mathing is omputed withrespet to these weights. The pairs of mathed proessing units ommuniate witheah other. Another well{known example of this type is Christo�des' approximationalgorithm for the traveling salesman problem (see [Chr76℄). The problem is de�ned bya omplete graph G onsisting of n verties (whih represent ities), where the edgeweights orrespond to the Eulidean distanes. The task is to �nd a tour of minimumlength. Christo�des' algorithm omputes a tour whose length is at most 3/2 as longas the length of an optimum tour; it is still the urrently best known approximationalgorithm for the traveling salesman problem. In a �rst step, the algorithm onstrutsa minimum spanning tree T of G, and afterwards a minimum{weight perfet mathingM on the odd degree verties of T is omputed. The graph T [M then redues to atour with the desired property.Various other examples of the above{mentioned appliation types exist and an befound, for example, in Ball, Bodin and Dial [BBD83℄, Derigs and Metz [DM92℄, Bell[Bel94℄ and Ahuja, Magnanti and Orlin [AMO93℄.Mathing problems have been the subjet of intensive researh over several deades.The earliest result in mathing theory we ame aross, widely known as K�onig's The-orem, dates bak to 1916 (see [K�on16℄). One of the ornerstones in mathing theoryis due to Edmonds [Edm65b, Edm65a℄. In 1965, he invented the famous blossom{shrinking algorithm, whih enables a solution for the weighted mathing problem tobe omputed in polynomial{time. A straightforward implementation, as originallyproposed by Edmonds himself, requires time O(n2m), where n and m denote thenumber of verties and edges in G, respetively. Sine then, the theoretial running{time of the blossom{shrinking approah has been suessively improved. Both Lawler[Law76℄ and Gabow [Gab74℄ improved the asymptoti running{time to O(n3). Later,



Introdution 3Galil, Miali and Gabow [GMG86℄ ahieved O(nm logn) and �nally Gabow [Gab90℄stated that Edmonds' blossom{shrinking algorithm an be implemented to run in timeO(n(m+n logn)). Somewhat better asymptoti time bounds an be ahieved for integeredge weights using saling algorithms (see Gabow and Tarjan [GT91℄).The urrently most eÆient odes implement variants of Edmonds' blossom{shrinkingalgorithm and are based on either the O(n2m) or O(n3) approah. For the time being,the best known implementation, named Blossom IV, is due to Cook and Rohe [CR97℄.Their implementation is based on earlier work by Applegate and Cook [App93℄. Theydo not laim a theoretial time bound, but, as we shall see, it annot be better than
(n3). Blossom IV is known to be highly eÆient in pratie; the data strutures ituses are simple.The algorithms suggested by Galil, Miali and Gabow [GMG86℄ and by Gabow [Gab90℄mainly ahieve a better asymptoti time bound by using sophistiated data strutures.For example, the algorithm of Galil, Miali and Gabow requires a data struture on-atenable priority queue, in whih the priorities of ertain subgroups of verties an beuniformly hanged by a single operation. Up to now, it has been an open question (andone expliitly posed in [App93℄ and [CR97℄), whether or not the use of sophistiateddata strutures will help in pratie. We will answer this question in the aÆrmative:the implementation we shall present in this thesis is based on the ideas of Galil, Mialiand Gabow and turned out to be ompetitive | if not even superior | to Blossom IV.The struture of the thesis is as follows. In Chapter 1, we will develop all details ofthe blossom{shrinking algorithm. We will start with the de�nition of some variants ofthe weighted mathing problem and introdue important onepts, suh as augmentingpaths, that are ruial to almost all mathing algorithms. The blossom{shrinking ap-proah will �rst be onsidered for the ardinality mathing ase. Linear programmingformulations for both the weighted mathing problem and the weighted perfet math-ing problem will then be investigated. Duality theory will lead us towards a primal{dualmethod for the weighted mathing problem based on Edmonds' blossom{shrinking ap-proah. Finally, we will onlude the hapter with a brief survey of the four di�erentrealizations mentioned above.In Chapter 2, we will illustrate the ideas underlying our implementation. Most ofthese are based on or have been developed from the ideas put forward by Galil, Mialiand Gabow [GMG86℄. We will outline how the blossom{shrinking approah an beimplemented using priority queues. The diÆulty of handling varying priorities withinthese priority queues will be overome by taking advantage of the fat that these valueshange uniformly. Moreover, we will demonstrate in detail the need for onatenablepriority queues.In Chapter 3 we will desribe our implementation and disuss some experimental re-sults. We implemented two versions of the algorithm: a single searh tree approah anda multiple searh tree approah. First, the results from Chapter 2 will be inorporatedinto a single searh tree algorithm. Then, all neessary extensions and modi�ations forthe multiple searh tree approah will be presented. The eÆieny of both algorithmsis onsiderably improved by using a heuristi to reate a better initial solution. We willdisuss two heuristis: a greedy heuristi and a frational mathing heuristi. Finally,some running{time experiments will reveal the eÆieny of our algorithms in pratie.





Chapter 1Mathing Theory
In this hapter we will establish essential onepts that are fundamental for later dis-ussion. We begin with the de�nition of the mathing problem and outline some of itsvariants. Some useful notations suh as the onept of augmenting paths will followand lead to a �rst generi algorithm solving mathing problems. Starting with theardinality mathing problem, we will present the main ideas of Edmonds' well{knownblossom{shrinking approah. Results from the �eld of ombinatorial optimization willguide us towards an extension of the blossom{shrinking approah for weighted mathingproblems.1.1 The Mathing Problem and its VariantsLet G = (V;E) be an undireted graph, where V and E denote the set of verties andedges, respetively. The number of verties and edges are referred to by n = jV j andm = jEj. Sine G is undireted, we will denote an edge e between two verties u and vas an unordered pair fu; vg, or uv for short. G is bipartite when a partition V = A _[Bof the verties of G exists and eah edge uv 2 E has exatly one vertex in A and onein B.An ordered sequene p = (e1; e2; : : : ; ek) of edges, with ei = uiui+1 2 E, 1 � i � k, isalled a path from u1 to uk+1 in G. Alternatively, we will represent p by the sequenep = (u0; u1; : : : ; uk) of verties traversed. A path p is alled simple, when all vertieson p are distint. Let C be a path starting and ending with the same vertex. C isthen alled a yle. Moreover, C is said to be a simple yle, when no other yle isontained in C.A mathing M of G is a subset of edges suh that no two edges of M share a ommonvertex (see Figure 1.1 for an example). All edges inM are said to be mathed and edgesin the di�erene E nM are unmathed. Analogously, a vertex u is said to be mathed ifthere exists an inident mathed edge uv 2 M ; otherwise u is unmathed or free. Theadjaent vertex v of u with respet to a mathed edge e = uv is the mate of u. M is aperfet mathing when all verties of G are mathed and hene jM j = n=2.The mathing problem is to �nd a mathing in a graph G that meets ertain require-5



6 Chapter 1. Mathing Theory
a b

g
 h d efFigure 1.1: Let G be the graph depited above. M = fag; h; dfg is a mathing of G.p = (e; f; d) is an example of an alternating path. p0 = (b; h; ; d; f; e) is an augmenting path.M 0 =M �p0 = fag; bh; d; feg is a mathing in G with jM 0j = jM j+1. M 0 is perfet and henea maximum{ardinality mathing of G.ments. We will distinguish between two kinds of mathing problems: the unweightedand the weighted mathing problem. In the weighted mathing problem a weight fun-tion w : E 7�! R on the edges of G is additionally given. The distintion is furtherre�ned on the basis of whether or not G is bipartite. Altogether we lassify four variantsof the mathing problem, whih are de�ned below.Maximum{Cardinality Bipartite Mathing Let G = (A _[B;E) be a bipartitegraph. The maximum{ardinality bipartite mathing problem is to �nd a mathing Min G of maximum ardinality, i.e. jM j � jM 0j for any other mathing M 0 of G.Maximum{Cardinality Mathing Consider a general graph G = (V;E). In themaximum{ardinality mathing problem a mathing M of maximum ardinality has tobe determined.In both ardinality ases, M need not neessarily be perfet. However, every perfetmathing of G forms a maximum{ardinality mathing.Maximum{Weight Bipartite Mathing Let G = (A _[B;E;w) be a bipartitegraph with weight funtion w. Finding a mathing M with total weight w(M) =Pe2M w(e) and w(M) � w(M 0) for all other mathings M 0 of G onstitutes themaximum{weight bipartite mathing problem.In the maximum{weight bipartite perfet mathing problem M is further restrited tobeing perfet. This problem is also known as the maximum{weight assignment problem.Maximum{Weight Mathing The most general ase of all mathing problems isthe maximum{weight mathing problem. Given a general graph G = (V;E;w) with



1.2 Mathing Conepts 7weight funtion w, the task is to �nd a mathing M having maximum weight w(M)among all possible mathings of G.As above, one might wish to obtain a perfet mathing of maximum weight. Thisonstitutes the maximum{weight perfet mathing problem.Let G = (V;E;w) be an instane of a weighted mathing problem. One might wishto obtain a mathing of minimum instead of maximum weight in G. However, eahminimum{weight mathing problem an be redued to an appropriate maximum{weightmathing problem by negating the signs of all weights. That is, a maximum{weightmathing M of G0 = (V;E;�w) will be a mimimum{weight mathing in G.Many other variants and extensions of the mathing problem exist; for example f{fators, b{mathings, T{joins, et. However, in the ontext of this thesis, we will onlyfous on the four variants de�ned above. For extensive soures onerning all aspetsof mathing problems, see, for example, Lov�asz and Plummer [LP86℄ and Pulleyblank[Pul95℄.1.2 Mathing ConeptsTwo onepts are ruial to all mathing algorithms: alternating paths and augmentingpaths. The importane of both will beome lear shortly. Throughout this setion letG = (V;E) be a graph that might or might not be bipartite. All results apply to bothases unless stated otherwise.De�nition 1.2.1 (Alternating Path) Let p = (e1; e2; : : : ; ek) be a simple path fromu to v and M a mathing in G. p is an alternating path with respet to M , when theedges along p are alternately in M and not in M .An alternating path p = (e1; : : : ; ek) with respet to M , where both endpoints u andv are free, an be used to augment the urrent mathing M . To see this, onsider thesymmetri di�erene M 0 of M and p: M 0 =M � p = (M n p) [ (p nM): M 0 equals Mexept that all mathing edges with respet to M on p are unmathed in M 0 and allnon{mathing edges with respet to M on p are mathed in M 0. It an easily be seenthat M 0 itself forms a mathing.1 Moreover, jM 0j = jM j + 1 and thus M has indeedbeen augmented. We will say M has been augmented by p to M 0 and p is alled anaugmenting path. See Figure 1.1 for an example.De�nition 1.2.2 (Augmenting Path) An alternating path p = (e1; : : : ; ek) withrespet to a mathing M is alled augmenting when both endpoints of p are free.The disussion above gives rise to the idea that we an ompute a maximum{ardinalitymathing by repeatedly seeking an augmenting path p to a urrent mathing M . Whenp exists, M is augmented by p and we proeed with the augmented mathing M � p.1Eah vertex that is mathed in M is also mathed in M 0. Only u and v are additionally mathedin M 0. But u and v were free in M and thus M 0 is a mathing.



8 Chapter 1. Mathing TheoryOtherwise, M is laimed to be maximum.The following lemma states that the latter onlusion does in fat hold. It is due toBerge [Ber57℄.Lemma 1.2.1 M is a mathing of maximum ardinality i� there does not exist anaugmenting path with respet to M in G.Proof:Clearly, if there exists an augmenting path p with respet to M , then M 0 =M � p is amathing having ardinality jM 0j = jM j + 1. Thus, M is not a maximum{ardinalitymathing.Assume that M is not a maximum{ardinality mathing, i.e. there exists a mathingM 0 with jM 0j > jM j. We show that an augmenting path p with respet to M mustexist.Consider the graph eG ontaining the edges M �M 0 only. Eah vertex in eG has eitherdegree zero, one or two. Therefore, eG onsists of isolated verties, paths and yles.Sine M and M 0 are mathings, the edges on every path and yle are alternately inM and in M 0. All yles must be of even length having as many edges in M as inM 0. Sine jM 0j > jM j, there must be at least one path, say p, in eG having more edgesout of M 0 than of M . The �rst and last edge of p must be in M 0 and hene p is anaugmenting path with respet to M . �Using Lemma 1.2.1 we state a �rst generi algorithm to ompute a maximum{ardinality mathing:Algorithm 1.2.1 Generi algorithm for maximum{ardinality mathing problems.let M be any mathingwhile there exists an augmenting path p with respet to Mreplae M by the augmented mathing M � pObserve that Algorithm 1.2.1 an be re�ned to searh for an augmenting path fromeah free vertex exatly one.p qWe show that if no augmenting path starting in a free vertex r with respet to a mathing Mexists, then there will never exist an augmenting path starting in r with respet to any othermathingM 0 obtained fromM by a series of augmentations: M 0 = ((M�p0)�p1)�: : : . Supposep0 is an augmenting path starting in r with respet to a mathing M 0 and no augmenting pathstarting in r with respet to M exists. Let e = uv denote the �rst edge in p0 with e 2 M 0 bute 62 M . One endpoint, say u, is reahable from r by an alternating path with respet toM . Thenon{existene of any augmenting path from r with respet to M implies, that no alternatingpath from u with respet to M starting with a mathed edge to any other free vertex exists.However, this is a ontradition, sine e an in this ase never be mathed.x yIn the rest of this setion, a searh strategy for �nding an augmenting path in a bipartitegraph G will be onsidered losely. The diÆulties arising for the general ase are thenindiated; they will be solved in Setion 1.3.



1.2 Mathing Conepts 9
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(b)Figure 1.2: Let G = (A _[B;E) be the graph given in (a). Edges in M are drawn bold. Apossible alternating tree T rooted at the free vertex  is depited in (b). In the next step, Tan either be enlarged by taking the edges di and ie to T , or one of the two augmenting pathsp = (f; b; g; ) and p0 = (j; d; h; ) will be found.Let G = (A _[B;E) be a bipartite graph and M an arbitrary mathing. The searhstarts from a free vertex r of G and terminates either when an augmenting path p toanother free vertex has been found, or there does not exist an augmenting path startingin r.A tree T is grown from r suh that eah path from a vertex u in T to the root ris alternating with respet to M . The verties of T are labeled either even or odd,stating that the alternating path to the root is of even or odd length. T is alled thealternating tree. Mathed verties that do not belong to T are said to be unlabeled. Allfree verties are initially labeled even. For short, we denote an even, odd or unlabeledvertex v by v+; v� or v?, respetively. In ases where a vertex label is, for example,either unlabeled or labeled even we use notions like vf?j+g et.Initially, T onsists of the even vertex r+ only. The alternating tree is grown from evenverties u+ 2 T .Let v? 62 T be adjaent to any vertex u+ 2 T . T is extended by taking the unmathededge uv and also the mathing edge of v to T , i.e. the edge vw, where w? 62 T is themate of v. Here, v and w get labeled odd and even, respetively.When an even vertex v+ 62 T is adjaent to any vertex u+ 2 T , an augmenting pathp = (v; u; : : : ; r) with respet to M has been found.If at some stage the tree annot be grown and no adjaent free vertex exists, the searhterminates due to the non{existene of an augmenting path beginning in r.A possible example senario for an alternating tree T in a bipartite graph an be seenin Figure 1.2.Let us try to apply the desribed searh to the general graph G illustrated in Fig-ure 1.3(a). Clearly, the path p = (g; ; d; e; f; b; a; r) is augmenting. However, when an
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(a) a gr b(b)Figure 1.3: Let G and M be as given in (a). C = (b; ; d; e; f; b) is an odd length yle. Byde�nition, B = fb; ; d; e; fg forms a blossom. b is the base of B. For every vertex u 2 B an evenlength alternating path to the base exists. For example, p = (; d; e; f; b) is the orrespondingpath for . The graph G0 = (V 0; E0) obtained from G by shrinking the blossom B is shown in(b). It is V 0 = fr; a; b; gg and E0 = fra; ab; gbg.alternating tree is grown from r, p ould be missed when  is labeled odd. It is due tothe existene of odd length yles that augmenting paths are missed. Sine odd lengthyles annot our in a bipartite graph it beomes also perspiuous why the urrentsearh strategy operates orretly in the bipartite ase only.Edmonds was the �rst to irumvent this problem; he did so by using the onept ofblossoms, whih will be the subjet of the next setion.1.3 Edmonds' Blossom{Shrinking ApproahIn 1965, Edmonds extended the searh desribed in the preeding setion to the generalase (see [Edm65b℄). The resulting algorithm is widely known as the blossom{shrinkingapproah and will be the subjet of this setion.We �rst establish a general basis by introduing the blossom onept and the idea ofshrinking. Thereafter, a di�erent interpretation of those onepts, whih will be moreappropriate for the weighted mathing ase, is shown to be equivalent. Based on thatalternative interpretation, the searh for an augmenting path in a general graph isrevised at the end of this setion.Let G = (V;E) be a general graph. The following two notations will be helpful. Forany subset S � V we denote the edges of G having both endpoints in S by (S):(S) = fuv 2 E : u 2 S and v 2 Sg:Conversely, we de�ne Æ(S) as the set of all edges having exatly one endpoint in S:Æ(S) = fuv 2 E : u 2 S and v 62 Sg:



1.3 Edmonds' Blossom{Shrinking Approah 11Note that Æ(fvg) denotes all edges inident to a vertex v. In that ase, we will writeÆ(v) for short.As mentioned above, it is due to the existene of an odd length yle that our urrentsearh might miss an augmenting path. Assume C denotes suh an odd length yleand, moreover, let C ontain a maximum number of mathing edges. This onept iswhat we all a blossom.De�nition 1.3.1 (Blossom) Let M be a mathing in G and B � V an odd ardi-nality subset of verties. B is a blossom, when (B) ontains a simple yle C thattraverses all verties of B, and, moreover, a maximum number of edges along C aremathed, i.e. jM \ Cj = bjBj=2.Figure 1.3(a) shows an example of a blossom. The only vertex in a blossom B that iseither free, or whose mathing edge is not ontained in (B), is alled the base of B. Bis free, when its base is free; otherwise, B is mathed.Our interest in the blossom onept stems from the following fat. Consider a blossomB with base b. For any arbitrary vertex u of B an even length alternating path p fromu to the base b must exist. Moreover, the �rst edge of p is a mathing edge and p liesexlusively in B, i.e. e 2 (B) for eah edge e in p. Edmonds observed that one anbene�t from that property by shrinking the blossom B into a single vertex, for exampleinto b. Informally, this means that all verties of B are ollapsed into b and all edges in(B) beome non{existent. Let G0 denote the graph obtained from G by shrinking theblossom B (see Figure 1.3(b)). Formally, G0 = (V 0; E0) an be de�ned as follows.V 0 = (V n B) [ fbgand E0 = (V n B) [ fub : uv 2 Æ(B) and u 62 Bg:Let M 0 denote the mathing in G0 that orresponds to M , i.e. M 0 = M n (B). Theintention behind shrinking is that any augmenting path p0 with respet to M 0 in G0 anbe lifted (as desribed in the proof below) to an augmenting path p with respet to Min G.Lemma 1.3.1 Let G0 be a graph obtained from G by shrinking a blossom B as de-sribed above. If an augmenting path p0 with respet to M 0 in G0 exists, then therealso exists an augmenting path p with respet to M in G.Proof:Let p0 be an augmenting path in G0. We onsider only the ase where p0 traverses b,sine otherwise p0 redues to an augmenting path in G. We an break p0 at b into p1and p2: p0 = (p1; b; p2). Let p2 be the path that starts with the non{mathing edge bv.When b is an endpoint of p0 and hene must be free, p1 is empty. Otherwise, p1 endswith the mathed edge ub. Due to the onstrution of G0, there must be a vertex w 2 Bsuh that wv is an edge in G. Moreover, we know there must exist a possibly emptyeven length alternating path in (B) from w to b. Let pB denote that path in reversedorder, i.e. leading from b to w in G. The augmenting path p in G then onsists simplyof the onatenation p1, pB and p2, where the �rst edge bv of p2 is replaed by wv. �



12 Chapter 1. Mathing TheoryWe will soon re�ne the searh strategy of Setion 1.2 suh that it will work for generalgraphs. But �rst, we wish to argue that eah graph G(i) obtained from G by a seriesof shrinkings an be viewed as a nested family of odd ardinality subsets of V . Let usintrodue that notion next:N (V ) is a nested family of odd ardinality subsets of V , when(1) eah element S of N (V ) is a subset of V having odd ardinality, and(2) for two elements Si; Sj 2 N (V ) with Si 6= Sj, either Si � Sj, or Sj � Si, orSj \ Si = ; holds.Assume G(i) is obtained from G as given below.G = G(0) shrink B0�������! G(1) shrink B1�������! : : : shrink Bi�1�������! G(i)Let V (i) denote the set of verties in G(i). Eah vertex v 2 V (i) orresponds to an oddardinality set S(i)v � V whih an be de�ned reursively. We have S(0)v = fvg and fori > 0: S(i)v = 8><>:S(i�1)v when v 62 Bi�1,[u2Bi�1 S(i�1)u otherwise.Note that uniting an odd number of odd ardinality sets will result in an odd ardi-nality set. Therefore, eah S(i)v is indeed of odd ardinality. Moreover, observe that amaximum number bjS(i)v j=2 of edges in (S(i)v ) are mathed; this an easily be shownby indution on i.From the de�nition of S(i)v it follows thatN (V ) = i[j=0 [v2V (j) S(j)v !is a nested family of odd ardinality subsets of V .N (V ) provides suÆient strutural information about the nesting of blossoms. Thenesting of blossoms will be of major importane in the weighted mathing ase lateron. Therefore, we rede�ne | or better, reinterpret | the onept of blossoms andintrodue some additional terms based on the view we are about to develop.Eah element B 2 N (V ) is alled a blossom of G.2 Moreover, we distinguish betweentrivial and non{trivial blossoms. A trivial blossom B = fvg orresponds to the vertexv in G. All non{singleton sets B 2 N (V ) are non{trivial blossoms; they ontain otherblossoms whih we all subblossoms: Bi is a subblossom of B if Bi � B.A maximum superset B 2 N (V ), i.e. B 6� S for all sets S 2 N (V ), is what we alla surfae blossom. Obviously, surfae blossoms are not ontained in other blossoms.Notie, that eah vertex in G(i) orresponds to a surfae blossom in N (V ).2We wish to emphasize that B does not form a blossom in the sense of De�nition 1.3.1: the simpleyle C ontaining all verties of B does not neessarily have to exist. But it is assured, however, thatan even length path from eah vertex v 2 B to the base vertex exists.
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Figure 1.4: Example of a graph G after a series of shrinkings. There are four non{trivialblossoms: B1 = fa; b; g, B2 = fB1; d; e; f; gg, B3 = fh; i; jg and B4 = fl;m; n; o; pg. The nestedfamily of odd ardinality subsets of V equals N (V ) = ffag; fbg; : : : ; frg;B1;B2;B3;B4g. B1 isan immediate subblossom of B2; the trivial blossom fag is a subblossom, but not an immediatesubblossom of B2. The base of B2 and B1 is . Current surfae blossoms are B2;B3; fkg;B4; fqgand frg, of whih the �rst �ve form a new free blossom with base h.All edges e in G are lassi�ed as either dead or alive. An edge e is dead, when it lies ina blossom B, i.e. e 2 (B); all other edges are alive. Thus, after a series of shrinkingsthe urrent graph G is viewed as being partitioned into surfae blossoms whih areonneted by alive edges only. Therefore, G will also be alled the surfae graph.Let p = (e1; e2; : : : ; ek) be an ordered sequene of alive edges of G. We say p is a(surfae) path from B1 to Bk+1 in G, when ei 2 Æ(Bi) \ Æ(Bi+1) for 1 � i � k. pis simple, when additionally all blossoms Bi, 1 � i � k + 1, on p are distint. Thede�nitions for alternating and augmenting paths extend to surfae paths in the obviousway. A (surfae) yle C = (e1; e2; : : : ; ek) in G is a path from a blossom B1 to itself.C is simple, when no other yle is ontained in C.Suppose C = (e1; e2; : : : ; e2k+1) is a simple surfae yle of odd length in G. LetB1;B2; : : : ;B2k+1 denote the odd number of surfae blossoms that lie on C. Moreover,let C ontain k mathing edges with respet to a mathing M in G. Then, a newblossom B = 2k+1[i=1 Bihas been found. We an shrink B by adding it to N (V ). Consequently, all blossomsBi, 1 � i � 2k + 1, stop being surfae blossoms and beome subblossoms of B. B is anew surfae blossom of G. The de�ning blossoms Bi, 1 � i � 2k+1, of B will be alledimmediate subblossoms of B. Figure 1.4 shows an example senario.



14 Chapter 1. Mathing TheoryAlgorithm 1.3.1 Generi algorithm to searh for an augmenting path p from a freevertex r. Let G be the underlying graph and M a mathing in G suh that r is free.let r be the only even vertex of Twhile there does not exist an alive edge e = uv with u+ 62 T and v+ 2 T fif an alive edge uv with u+ 2 T and v? 62 T exists flet b be the base of Bv and w denote the mate of b, with w 2 Bwmake Bv an odd and Bw an even labeled blossom of Tadd the edges uv and bw to Tgelse if an alive edge uv with u+ 2 T and v+ 2 T exists fdetermine the lowest ommon anestor Bla of Bu and Bv in Tlet p1 = (e1; : : : ; e2j) be the alternating path from Bla to Bu in T , andlet p2 = (e2j+2; : : : ; e2k+1) be the alternating path from Bv to Bla in Tall surfae blossoms on C = (p1; e2j+1 = uv; p2) de�ne a new blossom Bshrink B by making all surfae blossoms on C to subblossoms of BB gets labeled even and all edges in (B) are onsidered to be deadgelse terminate, T is abandoned sine no augmenting path for r existsgthere must exist an even length alternating surfae path p00 from Bv to Br in Tp0 = (e; p00) is an augmenting surfae path from Bu to Brraise p0 to an augmenting path p in the original graph G using Lemma 1.3.1By now we are well prepared to revise our searh for an augmenting path. At the endwe give a generi algorithm that seeks an augmenting path in a general graph G. Thealgorithm is based on the nested view of G developed above and will be fundamentalfor the weighted mathing problem.Let M be a mathing in G and r a free vertex with respet to M . As in the bipartitease, an alternating tree T is grown from r. However, T forms a tree with respet tothe surfae blossoms of G only, and the edges used by the searh are restrited to beingalive. For the sake of oniseness, we denote the surfae blossom to a vertex u of G byBu. Moreover, we stipulate that eah vertex u retains the label of its surfae blossomBu, and u is said to be in T , when Bu is ontained in T .Shortly, it will beome apparent that non{trivial blossoms an our only as even treeblossoms in the unweighted mathing ase. However, in the weighted mathing aselater on, non{trivial blossoms will also our outside of T and an be even or odd treeblossoms. Therefore, we do some preparatory work by assuming non{trivial blossomsto be of any kind.Initially, T onsists of the even labeled vertex r+ only. The searh assumes the followinglabeling for all surfae blossoms outside of T : eah free surfae blossom is labeled evenand eah mathed surfae blossom is unlabeled. Four ases have to be distinguished.Let uv be an alive edge with u+ 2 T and v? 62 T . The base b of Bv must be mathed,sine Bv is unlabeled. Let w denote the mate of b in Bw. T is extended by making Bv



1.3 Edmonds' Blossom{Shrinking Approah 15Algorithm 1.3.2 Generi algorithm to ompute a maximum{ardinality mathing ina general graph G.let M be an arbitrary mathing in Glabel all free verties even and unlabel all mathed vertiesfor eah vertex r in G fif r is mathed ontinue with another vertexgrow an alternating tree T rooted in r as desribed in Algorithm 1.3.1if an augmenting path p with respet to M in G has been found freplae M by the augmented mathing M � punlabel all verties ontained in Tdelete all non{trivial surfae blossoms of Tdestroy Tgelse T has been abandonedontinue with another vertexgM is a maximum{ardinality mathingan odd and Bw an even labeled tree blossom and taking uv and bw to T . This is whatwe will all a grow step heneforth.Let us assume there exists an alive edge uv with u+ 2 T and v+ 2 T . We determinethe lowest ommon anestor surfae blossom Bla of Bu and Bv. That is, Bla is the�rst blossom that is both on the surfae tree path from Bu to Br and on the surfaetree path from Bv to Br. Notie that from the way we built T , Bla must be labeledeven. Let p1 = (e1; : : : ; e2j) denote the even length surfae path from Bla to Bu andp2 = (e2j+2; : : : ; e2k+1) the even length surfae path from Bv to Bla in T . Obviously,C = (p1; e2j+1 = uv; p2) is an odd length surfae yle and moreover, a maximumnumber k of edges on that yle are mathed, i.e. we have deteted a blossom B. B isde�ned as the union of all surfae blossoms Bi on C, with 1 � i � 2k + 1. Sine forevery vertex v of B an even length alternating path to the base of B (this will atuallybe the base of Bla) exists, and therefore also an even length alternating path fromv to the root r of T , B gets labeled even.3 All blossoms Bi, 1 � i � 2k + 1, beomesubblossoms of B and eah edge in (B) is no longer used by the searh. That ompletesthe desription of a so{alled shrink step.When an alive edge uv with u+ 2 T and v+ 62 T is enountered, an augmenting surfaepath p0 = (vu; p00) from Bv to Br is diretly available. Here, p00 denotes the even lengthalternating surfae path from Bu to Br in T . p0 an be lifted to an augmenting path pin the original graph G by repeatedly applying Lemma 1.3.1.Last, when none of the above ases applies T is abandoned, sine no augmenting pathstarting in r exists. T retains its identity, i.e. all surfae blossoms in T stay in T andretain their label. T will never be looked at again.When an alternating tree T is abandoned, there are no edges from any vertex u+ 2 T3Atually, that is the justi�ation for the label of a vertex being determined by its surfae blossom.



16 Chapter 1. Mathing Theoryto any other vertex vf?j+g 62 T . Moreover, eah edge uv onneting two even vertiesu+ 2 T and v+ 2 T is dead, i.e. lies in a surfae blossom B+ 2 T . Eah odd surfaeblossom B�i 2 T (whih is trivial in the unweighted mathing ase) is mathed by analive edge ij 2M with an even surfae blossom B+j 2 T , and B+r 2 T is the only surfaeblossom that is free in T .The omplete searh for an augmenting path in a general graph G is summarized inAlgorithm 1.3.1.Combining the idea of Algorithm 1.2.1 with the searh just desribed yields a generialgorithm for omputing a maximum{ardinality mathing in a general graph G asgiven in Algorithm 1.3.2.p qIn the rest of this setion, we will prove optimality of M�, the mathing obtained by Algo-rithm 1.3.2, and thus establish orretness. The results to ome are interesting from a theo-retial point of view. However, the optimality riteria for the weighted mathing ase will beof another kind and only Algorithm 1.3.1 will be used. Therefore, the reader may also skipdiretly to the next setion.Di�erent optimality riteria have evolved over several deades. Two of them will be onsideredmore losely. The �rst is due to Edmonds [Edm65b℄ and is based on the notion of an odd setover. The seond is known as the Tutte{Berge Formula.Assume M� leaves t verties unmathed. The ardinality of M is thus b(n � t)=2, where ndenotes the number of verties in G. For eah free vertex ri, 1 � i � t, an alternating tree Ti,whih has been abandoned by the searh, is rooted in Bri . As we outlined above, eah vertexu� 2 Ti, 1 � i � t, is mathed with a surfae blossom B+ 2 Ti and only the root blossom Briis free. Remember that all edges uv onneting two even verties must lie in the same blossomB+ 2 Ti for some 1 � i � t. All unlabeled verties u? are mathed with a vertex v? and foreah tree Ti, there exists no edge uv with u? and v+ 2 Ti.Let C(V ) be a family of pairwise disjoint odd ardinality subsets of V . C(V ) is alled an oddset over of G when for every edge e 2 E: e 2 Æ(v) for a singleton set fvg 2 C(V ), or otherwisee 2 (S) for a non{singleton set S 2 C(V ).The apaity ap(S) of a set S 2 C(V ) is de�ned asap(S) = (1 when S is a singleton set,bjSj=2 otherwise.As an easily be veri�ed, the total apaity ap(C(V )) = PS2C(V ) ap(S) of an odd set overgives an upper bound for the ardinality of any mathing in G, i.e. jM j � ap(C(V )).4Edmonds onstruted an odd set over C(V ) of G having apaity equal to the ardinality ofM� and thus proved M� to be maximum.C(V ) = fv� 2 Ti : 1 � i � kg [ fB+ 2 Ti : 1 � i � k, and B is non{trivialg:When U 6= ;, we hoose some û 2 U and add fûg to C(V ). Additionally, U n û is added toC(V ), when jU j > 2.54Let M be a mathing in G. Eah edge e 2 M must be overed by some set S 2 C(V ) and thenumber of mathing edges overed by some S 2 C(V ) is learly bounded above by ap(S).5Let us see why C(V ) does indeed form an odd set over. Eah odd vertex v� 2 Ti, 1 � i � t,



1.3 Edmonds' Blossom{Shrinking Approah 17Eah odd vertex v overs exatly 1 = ap(v) mathing edge of M�. We argued above thatthe number of mathed edges in an even surfae blossom B equals bjBj=2 = ap(B). Finally,û overs exatly 1 = ap(û) mathing edge. If jU j > 2, all other b(jU j � 1)=2 = ap(U n û)mathing edges are overed by U n û. Thus, we have jM�j = ap(C(V )) as desired. We an nowstate the optimality riteria whih is due to Edmonds [Edm65b℄.Lemma 1.3.2 Let G = (V;E) be a graph and M a mathing in G. Moreover, let C(V ) be anodd set over of G having apaity ap(C(V )). Then, M is a maximum{ardinality mathingand C(V ) is an odd set over having minimum apaity, i� jM j = ap(C(V )).Another interesting possibility to obtain an upper bound on the ardinality of a mathing Min G is as follows.Let A � V be an arbitrary subset of verties of G. Removing eah vertex u 2 A and all itsinident edges from G, results in a new graph denoted by G n A. Let C1; C2; : : : ; Ck be theonneted omponents in G n A having an odd number of verties. Eah Ci ontains eithera free vertex, or there exists a mathing edge uv 2 M with u 2 Ci and v 2 A. Sine M isa mathing, the endpoints in A of those edges must be distint. Therefore, at most jAj suhmathing edges exist. Consequently, we an onlude that at least k�jAj verties must be freewith respet to M . To put it di�erently, no more than n � (k � jAj) verties an be mathedby M .Let o(G) denote the number of onneted omponents in G having an odd number of verties.The ardinality of a mathing M is thus bounded by jM j � b(n� o(G nA) + jAj)=2, for anyA � V .Again, we show optimality of M�. Choose A = fv� 2 Ti : 1 � i � kg. Obviously, o(G n A)must be jAj + t, sine that is the total number of even surfae blossoms in all abandonedtrees Ti, 1 � i � k. Thus, the bound stated above beomes tight, i.e. jM�j = b(n � t)=2 =b(n � o(G n A) + jAj)=2, and M� is maximum. The following optimality riterion for amaximum{ardinality mathing has just been proved. It is due to Berge [Ber58℄.Lemma 1.3.3 Let G = (V;E) be a graph having n verties and M a mathing in G. M is amaximum{ardinality mathing, i� a set A � V exists with jM j = b(n� o(G nA) + jAj)=2.The disussion above and Lemma 1.3.3 immediately imply the following orollary whih statesa ondition for the existene of a perfet mathing. It was originally proved by Tutte [Tut47℄.Corollary 1.3.1 A graph G = (V;E) has a perfet mathing i� for every set A � V of vertieso(G nA) � jAj.As an aside, observe that Algorithm 1.3.2 will �nd a perfet mathing, if there exists any. Butit an even prove the non{existene of a perfet mathing using Corrollary 1.3.1. To see this,onsider any abandoned tree Ti. Let A denote the set of odd verties in Ti. Sine the number ofeven labeled surfae blossoms in Ti equals jAj+1, it is o(G nA) = jAj+1 > jAj and we havethus proved that no perfet mathing exists. In onlusion, we an state that Algorithm 1.3.2an solve maximum{ardinality perfet mathing problems as well.x yovers all its inident edges. All edges lying in an even labeled surfae blossom B+ 2 Ti are overed byB 2 C(V ). Edges onneting two verties of U are overed by û or lie in (U n û) and are hene overedby U n û. Finally, no other edges exist as stated before.



18 Chapter 1. Mathing Theory1.4 LP Formulations for Weighted Mathing ProblemsIn the preeding setions, important mathing onepts suh as augmenting paths havebeen introdued. Further, we aquired a generi algorithm that an solve both variantsof the maximum{ardinality mathing problem. The stated results serve as a goodbasis for the weighted ase onsidered in this and the subsequent setions.Fundamental �ndings in the area of ombinatorial optimization will guide us to a generialgorithm for the weighted mathing problem. We assume familiarity with terms suhas linear programming formulations, relaxation, duality theory (weak and strong du-ality, omplementary slakness) as well as the onepts behind primal{dual methods.For extensive soures onerning these subjets, see Bertsimas and Tsitsiklis [BT97℄,Papadimitriou and Steiglitz [PS82℄ and Chv�atal [Chv83℄.We start with the disussion of linear programming formulations for the weightedmathing problem.1.4.1 LP Formulation for the Weighted Mathing ProblemLet G = (V;E;w) be an instane of the maximum{weight mathing problem. Themaximum{weight mathing problem an be formulated as a zero{one integer linearprogramming problem. An inidene vetor x is assoiated with the edges of G. Eahomponent xe is a deision variable having value 0 or 1. The relation between theinidene vetor x and a mathing M is as follows:xe = (0 if e does not belong to the mathing M ,1 if e does belong to the mathing M .An inidene vetor x orresponding to a given mathing M is alled the harateristivetor of M .Let S � E be a subset of edges and x an inidene vetor assoiated with the edges E ofG. x(S) is de�ned as the sum over all omponents xe with e 2 S, i.e. x(S) =Pe2S xe.We are now able to formulate the maximum{weight mathing problem as a zero{oneinteger linear program (iwm):(iwm) maximize wTxsubjet to x(Æ(u)) � 1 for all u 2 V , (1)xe 2 f0; 1g for all e 2 E. (2)(iwm)(1) assures that eah vertex has at most one inident edge that is mathed. Notethat eah optimal solution x of (iwm) orresponds to a maximum{weight mathing M .And onversely, every harateristi vetor x to a maximum{weight mathing M is anoptimal solution to (iwm). Therefore, (iwm) does in fat formulate the maximum{weight mathing problem.A standard tehnique in ombinatorial optimization is to relax the zero{one onstraint(iwm)(2) whih yields the linear programing relaxation (wm').



1.4 LP Formulations for Weighted Mathing Problems 19(wm') maximize wTxsubjet to x(Æ(u)) � 1 for all u 2 V , (1)xe � 0 for all e 2 E. (2)Unfortunately, (wm') does not have zero{one solutions only.6 To see this, onsider agraph G = (V;E) having three verties V = fa; b; g that lie on a odd length yle,i.e. E = fab; b; ag. Assume further that we = 1 for all edges e 2 E. Then, x̂e = 1=2 foreah edge e of G is an optimal solution to (wm') having objetive value 3=2. However,x̂ is not a solution to (iwm) (the objetive value of an optimal solution to (iwm) is 1).Consequently, the two formulations (iwm) and (wm') are not equal, or to put it dif-ferently, (wm') is said to be not as strong as (iwm). A measure for the strength ofa linear programming relaxation is the loseness of its feasible set to the onvex hullde�ned by the feasible inidene vetors of the original integer program.In general, the feasible set F (lp) to a linear programming formulation (lp) onsists ofall feasible inidene vetors to (lp). For example,F (wm') = fx : x satis�es (wm')(1) and (wm')(2)g:The onvex hull P(lp) of a feasible set F (lp) an be seen as a polyhedron spanned byF (lp).7For an integer linear programming formulation (ilp) and its relaxation (lp') the re-lation P(ilp) � P(lp') always holds, whereas one annot expet that the opposite doestoo. The relation between P(iwm) and P(wm') is a perfet example.Theorem 1.4.1 Two linear programming formulations (lp) and (lp') are equallystrong, i� P(lp) = P(lp').The question is, whether there exists a linear programming formulation similar to (wm')that is moreover as strong as (iwm).Let O denote the set of all non{singleton odd ardinality subsets of V :O = fB � V : jBj is odd and jBj � 3g:Consider the linear programming formulation (wm) below.6However, the two linear programing formulations (wm') and (iwm) have been proved to be equiv-alent for the bipartite weighted mathing problem. The proof is due to Birkho� [Bir46℄.7The onvex hull P of a �nite set S = fx1; x2; : : : ; xkg 2 Rn is de�ned as the set of all onvexombinations of S:P = fx =Pki=1 �ixi : Pki=1 �i = 1, xi 2 S and �i � 0, 1 � i � kg:More preisely, we would have to distinguish between a polyhedron P(lp) whih is de�ned by (i.e. isequal to) its feasible set F (lp) and a polyhedron P(lp) whih is de�ned by the onvex hull of its feasibleset F (lp) (e.g. in ases where (lp) is an integer linear program). However, we do not wish to go into thedetails of polyhedral ombinatoris at this point. Instead, for a more extensive disussion onerningthese aspets, the interested reader is referred to Cook et al. [CCPS98℄ and Bertsimas and Tsitsiklis[BT97℄.



20 Chapter 1. Mathing Theory(wm) maximize wTxsubjet to x(Æ(u)) � 1 for all u 2 V , (1)x((B)) � bjBj=2 for all B 2 O, (2)xe � 0 for all e 2 E. (3)(wm) equals (wm') exept that a new series of onstraints (wm)(2) has been added.(wm)(2) states, that the number of mathed edges in (B), where B � V is a non{singleton odd ardinality set, is bounded above by bjBj=2. Note that (wm)(2) oinideswith one's intuition. It an easily be observed that eah harateristi vetor x to agiven mathing M must satisfy (wm)(1){(3) and therefore: P(iwm) � P(wm).What onsequenes does the additional onstraint (wm)(2) entail? As before, let usregard the graph G onsisting of an odd yle only. Setting xe = 1=2 for all edges of Gis not a feasible solution to (wm), sine x((fa; b; g)) = 3=2 � 1.The idea arises that (wm) is a stronger formulation than (wm'). And indeed, as thefollowing lemma shows, the linear programming formulation (wm) is not only strongerthan (wm'), but as strong as (iwm).Lemma 1.4.1 Let P(iwm) and P(wm) represent the polyhedron of (iwm) and (wm),respetively. Then P(iwm) = P(wm).Lemma 1.4.1 is one of the ornerstones of the weighted mathing theory. It is due toEdmonds. Generally, one an prove Lemma 1.4.1 either diretly, or by an algorithmiproof.We will do so by the latter method, i.e. we develop an algorithm that omputes amathingM and moreover, the harateristi vetor x to M will be an optimal solutionto (wm). Further details are deferred to Setion 1.6. Similar algorithmi proofs an befound in Pulleyblank [Pul95℄ and Cook et al. [CCPS98℄.The diret proof is omplex and not given here. Details an be found in the originalwork of Edmonds [Edm65a℄. Cook et al. [CCPS98, Chapter 6℄ and Lov�asz and Plummer[LP86℄ are also exellent soures.1.4.2 LP Formulation for the Weighted Perfet Mathing ProblemThe linear programming formulation for the maximum{weight perfet mathing prob-lem slightly di�ers from (wm) and will be skethed next. In Setion 1.5 we will seethat under ertain onditions, eah maximum{weight perfet mathing problem an beredued to the maximum{weight mathing problem and ontrariwise. Taking that fatinto onsideration, one may wonder if it is worth the e�ort to inspet the weightedperfet mathing ase separately. However, the di�erenes between those two problemsregarding linear programming formulation aspets are interesting to see and, more-over, both problems an be inorporated into one generi algorithm easily as, will beexploited in Setion 1.6.Again, we start with the integer linear program. Sine every vertex has to be mathed



1.4 LP Formulations for Weighted Mathing Problems 21in the maximum{weight perfet mathing problem, the primal ondition (iwm)(1)beomes an equality onstraint:(iwpm) maximize wTxsubjet to x(Æ(u)) = 1 for all u 2 V , (1)xe 2 f0; 1g for all e 2 E. (2)In the perfet ase, too, the linear programming relaxation of (iwpm) is not as strongas (iwpm) itself. But as in the non{perfet ase, adding a new series of onstraintshelps. The orresponding linear program is (wpm).(wpm) maximize wTxsubjet to x(Æ(u)) = 1 for all u 2 V , (1)x((B)) � bjBj=2 for all B 2 O, (2)xe � 0 for all e 2 E. (3)At this point one observes that the formulation of (wm) is a generalization of (wpm),sine P(wpm) is a fae of P(wm). The following lemma states that (iwpm) is as strongas (wpm).Lemma 1.4.2 Let P(iwpm) and P(wpm) represent the polyhedron of (iwpm) and(wpm), respetively. Then P(iwpm) = P(wpm).As for Lemma 1.4.1, the generi algorithm in Setion 1.6 will prove orretness of thestated lemma. For alternative proofs all referenes given for Lemma 1.4.1 apply.1.4.3 An Alternative LP Formulation for the Weighted PerfetMathing ProblemIn Setion 1.6 we will develop a primal{dual method that omputes an optimal solutionto the linear programming formulations given above. The details of that method dependon those �xed formulations. However, an alternative linear programming formulationfor the maximum{weight perfet mathing problem exists and will be the subjet ofthis setion. The pros and ons of that alternative formulation with respet to theresulting primal{dual method will be disussed in detail in Setion 1.6.5.In both ases, i.e. the perfet and non{perfet weighted mathing problem, we added aseries of onstraints to the relaxation of the integer linear program in order to obtain alinear program that is as strong as its integer linear program. Those onstraints havebeen of the form: x((B)) � bjBj=2 for all B 2 O: (1.1)However, for the weighted perfet mathing problem, the same e�et an be ahievedby a di�erent type of onstraint:x(Æ(B)) � 1 for all B 2 O: (1.2)



22 Chapter 1. Mathing Theory(1.2) means that at least one edge that leaves a non{singleton odd ardinality set B,i.e. is part of Æ(B), must be mathed.The alternative formulation for the maximum{weight perfet mathing problem is givenin (wpm*).(wpm*) maximize wTxsubjet to x(Æ(u)) = 1 for all u 2 V , (1)x(Æ(B)) � 1 for all B 2 O, (2)xe � 0 for all e 2 E. (3)As mentioned above, it an be shown that (wpm*) is as strong as (iwpm). Thus,(wpm*) is indeed an alternative to (wpm).1.5 RedutionsWe intend to use this setion to show that eah instane of the maximum{weightmathing problem an be redued to an instane of the maximum{weight perfet mat-hing problem. Moreover, assuming the availability of a tehnique to disover thenon{existene of a perfet mathing, the ontrary an be ahieved as well.We will desribe these redutions by means of a transformation � suh that(i1) for eah instane G = (V;E;w) of the maximum{weight mathing problem, amaximum{weight perfet mathing M 0 in G0 = �(G) an be translated to amaximum{weight mathing M in G, and(i2) under the assumption that a perfet mathing exists for an arbitrary in-stane G0 = (V 0; E0; w0) of the maximum{weight perfet mathing problem,a maximum{weight mathing M in G = ��1(G0) orresponds to a maximum{weight perfet mathing M 0 in G0.First, � will be onstruted suiting (i1) and after that the inverse transformation ��1satisfying (i2) will be given.1.5.1 Reduing theWeighted Mathing Problem to the Weighted Per-fet Mathing ProblemLet G = (V;E;w) be an instane of the maximum{weight mathing problem. We givea transformation �(G) = G0, where G0 = (V 0; E0; w0), and then proeed to show thatG0 satis�es (i1).Assume, eG = (eV ; eE; ew) is a opy of G. For eah vertex u, edge e and weight we of G,we denote the orresponding vertex, edge and weight in eG by eu, ee and ewee, respetively.Consider the graph G0 that onsists of G and eG. Moreover, let G0 have additional zero{ost edges from eah vertex u of G to eu of eG. More preisely, G0 is given as V 0 = V _[ eV



1.5 Redutions 23and E0 = E _[ eE [ fueu : u 2 V and eu 2 eV g:The weight funtion w0 of G0 is de�ned as:w0e0 = 8><>:we0 when e0 2 E,ewe0 when e0 2 eE,0 when e0 = ueu with u 2 V and eu 2 eV .Lemma 1.5.1 Let G0 = �(G) as given above. Eah maximum{weight perfet mat-hing M 0 in G0 then orresponds to a maximum{weight mathing M in G.Proof:Let M 0 be a maximum{weight perfet mathing in G0. The di�ereneM 0 n fueu : u 2 V and eu 2 eV g =M _[ fMdeomposes into M � E and fM � eE. Sine M 0 is of maximum weight, M must be amaximum{weight mathing in G.Conversely, let M be a maximum{weight mathing in G and fM the orrespondingmathing in eG. ThenM 0 =M [ fM [ fueu 2 E0 : u free in G and eu free in eGgis a perfet mathing in G0 with weight w0(M 0) = 2w(M). �The stated lemma is often used to redue the proof of Lemma 1.4.1 to the proof ofLemma 1.4.2.1.5.2 Reduing the Weighted Perfet Mathing Problem to theWeighted Mathing ProblemConsider an instane G0 = (V 0; E0; w0) of the maximum{weight perfet mathing prob-lem. We will onstrut a transformation ��1 that gives us an instane ��1(G0) = G,with G = (V;E;w), of the maximum{weight mathing problem satisfying (i2). How-ever, we wish to emphasize that the redution to be stated is orret only when a perfetmathing does indeed exist in G0.In the disussion that follows, we assume that all edge weights of G0 are non{negative.We may make this assumption, sine the weighted perfet mathing problem is nota�eted when all edge weights are modi�ed by adding a onstant  = maxfjwej : e 2 Eg.De�ne G = (V;E;w) with V = V 0 and E = E0. The edge weights in G will be setsuh that eah maximum{weight mathing M in G is perfet. This an be ahieved byadding a positive value L to the original edge weights of G0: we = w0e + L.Choosing L suh that the total weight w(fM ) of eah perfet mathing fM in G is largerthan the total weight of any non{perfet mathingM in G yields the desired result. Letn = jV j denote the number of verties of G; n is assumed to be even, sine otherwise no



24 Chapter 1. Mathing Theoryperfet mathing exists in G0. Moreover, let C = max fw0e : e 2 E0g be the maximumedge weight in G0. By the de�nition of w, we have C + L � we � L. The totalweight w(fM ) of eah perfet mathing fM is thus bounded below by jfM j L = (n=2) L.Conversely, the total weight w(M) of a non{perfet mathing M annot be more thanjM j (C + L). Hene, hoosing L suh that the relation(n=2) L > jM j (C + L) (1.3)holds, assures that eah maximum{weight mathingM in G will be perfet. The right{hand side of (1.3) maximizes for jM j = (n=2) � 1, sine that is the largest ardinalityof a non{perfet mathing possible. Therefore, hoosing L := (n=2) C > ((n=2)� 1) Chas the desired e�et.Lemma 1.5.2 LetG = ��1(G0) as given above and assume a perfet mathing exists inG0. Eah maximum{weight mathing M in G then orresponds to a maximum{weightperfet mathing M 0 in G0.Proof:Let M be a maximum{weight mathing in G. From the onstrution above, it immedi-ately follows that M must be perfet. The total weight of a maximum{weight perfetmathing in G0 is thus w0(M) = w(M)� jM j L = w(M)� (n=2) L.Conversely, let M 0 be a maximum{weight perfet mathing in G0 having total weightw0(M 0). M 0 is then a perfet mathing in G of weight w(M 0) = w0(M 0) + jM j L =w0(M 0) + (n=2) L. Due to the onstrution of G, no non{perfet mathing an havetotal weight larger than or equal to w(M 0). Thus, M 0 is a maximum{weight mathingin G. �Eah maximum{weight perfet mathing problem an thus be solved by an algorithmfor the maximum{weight mathing problem using Lemma 1.5.2 and a further tehniqueto disover the non{existene of a perfet mathing in G (for example Corrollary 1.3.1).Mehlhorn and N�aher [MN99℄ use a similar onstrution to fore a maximum{weightbipartite mathing algorithm to �nd a maximum{weight mathing along all maximum{ardinality bipartite mathings.1.6 Primal{Dual MethodIn Setion 1.4.1 a linear programing formulation for the maximum{weight mathingproblem was introdued. Based on that formulation, we will use duality theory toobtain a �rst high{level primal{dual method to ompute a maximum{weight mathingto a given instane. A primal{dual method based on the maximum{weight perfetmathing problem formulation of Setion 1.4.2 will then be outlined.Edmonds' blossom{shrinking approah will be extended in Setion 1.6.3 suh that itbeomes a onrete derivation of those primal{dual methods. The resulting generialgorithm establishes orretness of Lemma 1.4.1 and Lemma 1.4.2 and will serve asthe fundamental approah for our implementations.



1.6 Primal{Dual Method 25We will omplete this setion by showing a useful property of the dual solution tothe maximum{weight mathing and maximum{weight perfet mathing problem and,moreover, disuss the pros and ons of a similar algorithm for the maximum{weightperfet mathing problem using the alternative formulation of Setion 1.4.3.1.6.1 Primal{Dual Method for the Maximum{Weight MathingProblemWe repeat the linear programing formulation of the maximum{weight mathing problemonsidered in Setion 1.4.1:(wm) maximize wTxsubjet to x(Æ(u)) � 1 for all u 2 V , (1)x((B)) � bjBj=2 for all B 2 O, (2)xe � 0 for all e 2 E. (3)We will use duality theory in order to derive a primal{dual method that omputesan optimal solution to (wm). The main idea is to ompute a mathing M whoseharateristi vetor x is a feasible and moreover optimal solution to (wm). We willassure optimality of x by a feasible solution to the dual linear program of (wm) thatsatis�es all omplementary slakness onditions with x.The dual linear program (wm) to (wm) is given next. Eah vertex u and eah non{singleton odd ardinality set B has an assoiated dual variable yu and zB, respetively.(wm) minimize Xu2V yu + XB2O bjBj=2 zBsubjet to yu � 0 for all u 2 V , (1)zB � 0 for all B 2 O, (2)yu + yv + XB2Ouv2(B) zB � wuv for all uv 2 E. (3)We will all yu and zB the dual value, or alternatively the potential of vertex u andblossom B. (wm)(3) states that the potentials of the endpoints of an edge e = uv plusthe sum of all potentials of non{trivial odd ardinality sets ontaining that edge mustbe greater or equal to the weight of e.To simplify further notations, we introdue the notion of the redued ost of an edge e.De�nition 1.6.1 (Redued Cost) Let (y; z) be a solution to the dual linear program(wm). The redued ost �uv of an edge e = uv with respet to (y; z) is de�ned as:�uv = yu + yv � wuv + XB2Ouv2(B) zB:An edge e = uv is alled tight, when its redued ost �uv equals zero. Note that(wm)(3) an be replaed by �uv � 0 for all edges uv of E. Thus, (wm)(3) assures thatthe redued ost of eah edge is non{negative.



26 Chapter 1. Mathing TheoryLet us dedue the omplementary slakness onditions for (wm) and (wm). Given aprimal feasible solution x to (wm) and a dual feasible solution (y; z) to (wm), then xand (y; z) are optimal i� the omplementary slakness onditions (s)(1){(3) hold.(s) xuv > 0 =) �uv = 0 for all edges uv 2 E, (1)yu > 0 =) x(Æ(u)) = 1 for all nodes u 2 V , (2)zB > 0 =) x((B)) = bjBj=2 for all B 2 O. (3)What do the above onstraints mean? We now proeed to give an interpretation.(s)(1) requires that mathed edges must be tight. Beause of (s)(2), free vertiesmust have potential zero. Finally, due to (s)(3), when a non{singleton odd ardinalityset B has potential di�erent from zero, then a maximum number of edges in B mustbe mathed, i.e. (B) ontains bjBj=2 mathed edges. We will also say B must be full.Observe that eah non{trivial blossom is a non{singleton odd ardinality set that isfull.Assume now that the following four invariants hold for x and (y; z):(i1) x is a feasible solution to (wm),(i2) (y; z) is a feasible solution to (wm),(i3) (s)(1) holds, and(i4) (s)(3) holds.Maintaining (i1) to (i4) we will alter the solutions x and (y; z) suh that the violationsof (s)(2) are suessively redued. Eventually, (s)(2) will hold too and we will thushave obtained optimal solutions x and (y; z) to (wm) and (wm).Let r be a vertex that violates (s)(2), i.e. r is free and yr > 0. Our purpose is eitherto math r (and thus alter the primal solution x), or to adjust the dual solution (y; z)suh that the potential of r equals zero. Having ahieved either of those, r will nolonger violate (s)(2). The following strategy realizes the outlined idea.First, we try to math r. However, notie that by (s)(1) tight edges are quali�ed tobe mathing edges only. The attempt to math r using all urrent tight edges mightfail. In this ase, a so{alled dual adjustment by some Æ > 0 is performed. That is, thedual solution (y; z) gets adjusted to (y0; z0) suh that(i5) the objetive value of (wm) stritly dereases,(i6) the invariants (i1) to (i4) remain true for (y0; z0),(i7) in general, new tight edges exist with respet to (y0; z0), and(i8) the potential of r stritly dereases.(i5) assures that the dual solution onverges with its optimum.8 When new tight edgesresult from the dual adjustment, the attempt to math r is ontinued. Note that (i7)will hold in general only, i.e. not every dual adjustment will produe new tight edges.98Atually, if (i5) did not hold, the termination ould not even be guaranteed for real weights (seeAr�aoz and Edmonds [AE85℄).9The reason for this will beome lear shortly. For the time being, the reader is asked to aept thatwe annot guarantee eah dual adjustment to produe new tight edges, sine we must preserve (i6).



1.6 Primal{Dual Method 27Eventually, after a series of dual adjustments either suÆiently many tight edges willexist suh that r an be mathed, or the potential of r will drop to zero (due to (i8)).We summarize the disussed primal{dual method in Algorithm 1.6.1.Algorithm 1.6.1 Generi primal{dual method for the maximum{weight mathingproblem.let x and (y; z) satisfy (i1) to (i4)while there exists a free vertex r with yr > 0 frepeat ftry to math r using tight edges onlyif r is not mathed yetperform dual adjustment by Æ > 0 suh that (i5) to (i8) holdg until yr = 0 or r is mathedgThe only missing details that have to be �lled in are how to �nd the initial feasiblesolutions x and (y; z) that satisfy (i1) to (i4), how to math free verties using tightedges and how to perform a dual adjustment satisfying (i5) to (i8). We will ome bakto these details in Setion 1.6.3.1.6.2 Di�erenes in Weighted Perfet Mathing CaseSome minor hanges in the primal{dual method ensue for the maximum{weight perfetmathing problem. (wpm) introdued in Setion 1.4.2 is used as the linear programingformulation for the maximum{weight perfet mathing problem.(wpm) maximize wTxsubjet to x(Æ(u)) = 1 for all u 2 V , (1)x((B)) � bjBj=2 for all B 2 O, (2)xe � 0 for all e 2 E. (3)(wpm) equals (wm) exept that (wpm)(1) is an equality onstraint. Consequently,the non{negativity onstraints for all verties in (wm) do not our in the dual linearprogram (wpm) of (wpm).(wpm) minimize Xu2V yu + XB2O bjBj=2 zBsubjet to zB � 0 for all B 2 O, (1)yu + yv + XB2Ouv2(B) zB � wuv for all uv 2 E. (2)Thus, the omplementary slakness onditions for a primal solution x of (wpm) and adual solution (y; z) of (wpm) are omprised of (s)(1) and (s)(3) only. We repeatthem as (ps)(1) and (ps)(2) below:



28 Chapter 1. Mathing Theory(ps) xuv > 0 =) �uv = 0 for all edges uv 2 E, (1)zB > 0 =) x((B)) = bjBj=2 for all B 2 O. (2)The desription and arguments given for the non{perfet ase no longer make sensenow. In the perfet ase, we therefore maintain primal and dual solutions x and (y; z)that satisfy the invariants (j1) to (j4).(j1) x satis�es all onditions of (wpm) exept (wpm)(1),(j2) (y; z) is a feasible solution to (wpm),(j3) (ps)(1) holds, and(j4) (ps)(2) holds.Gradually, the violations of (wpm)(1) are dereased suh that in the end, x beomes aprimal feasible solution and thus is optimal, or one disovers that the objetive value of(wpm) is unbounded and therefore, no perfet mathing exists (by weak duality). Asbefore, tight edges are used to math a free vertex r. If the urrent tight edges do notsuÆe to math r, a dual adjustment by Æ > 0 is performed. Æ must be hosen suhthat(j5) the objetive value of (wpm) stritly dereases,(j6) the invariants (j1) to (j4) remain true for the adjusted dual solution (y0; z0),(j7) in general, new tight edges exist with respet to (y0; z0).The objetive value of (wpm) is unbounded, when Æ an be made arbitrarily large,i.e. Æ =1. The modi�ed generi algorithm redues to:Algorithm 1.6.2 Generi primal{dual method for the maximum{weight perfet mat-hing problem.let x and (y; z) satisfy (j1) to (j4)while there exists a free vertex r frepeat ftry to math r using tight edges onlyif r is not mathed yet fhoose Æ > 0 suh that (j5) to (j7) holdif Æ =1 terminate, sine no perfet mathing existselse perform dual adjustment by Ægg until r is mathedg1.6.3 The Blossom{Shrinking Approah RevisitedBased on the primal{dual methods disussed in the preeding setions we will extendEdmonds' blossom{shrinking approah (see Setion 1.3) suh that it an solve instanesof the weighted mathing problem (non{perfet and perfet). We will �rst fous on the



1.6 Primal{Dual Method 29maximum{weight mathing problem and outline the di�erenes for the perfet mathingase thereafter.The following three details are still open and will be �lled in next:1. onstruting the initial solutions x and (y; z) to (wm) and (wm) that satisfy (i1)to (i4),2. mathing a free vertex r with non{zero potential using tight edges only, and3. performing a dual adjustment by Æ > 0 and assuring the validity of (i5) to (i8).Throughout this setion, let G = (V;E;w) be an instane of the maximum{weightmathing problem. x will denote the harateristi vetor to a mathing M of G. Wewill often not distinguish between a mathing M and its harateristi vetor x, anduse one notion for the other.Finding Initial SolutionsClearly, the empty mathing M = ;, i.e. xe = 0 for eah edge e 2 E, is a feasiblesolution to (wm). For eah vertex u the potential is set to yu = max fwe=2 : e 2 Æ(u)g.The approah will use the potentials zB of blossoms only. That is, the potential zB ofeah non{singleton odd ardinality set is regarded as being set to zB = 0. Exeptionsare the potentials that are assoiated with a non{trivial blossom B; these an have valuezB > 0. Initially, no non{trivial blossoms exist. We thus obtain a feasible solution (y; z)to the dual linear program (wm).Moreover, note that x and (y; z) satisfy both onditions (s)(1) and (s)(3). Insummary, we an state that x and (y; z) meet the invariants (i1) to (i4).Di�erent possibilities to obtain better initial solutions will be the subjet of Setion 3.5.For now, assume we start with the solutions x and (y; z) above.Reduing the Violations of (s)(2)Consider a free vertex r with non{zero potential yr > 0. First, we will desribe theattempt to math r using tight edges only. The dual adjustment step, whih is trig-gered when the searh does not sueed due to insuÆiently many tight edges, will beonsidered more losely afterwards.Mathing a free vertex r using tight edges. From the disussion in Setion 1.3one immediately observes that the task of mathing r redues to a searh for an aug-menting path starting with r. Therefore, we grow an alternating tree T rooted at ras desribed in Algorithm 1.3.1. However, in the weighted mathing ase it is ruialthat only tight edges are used by the searh in order to preserve (s)(1). All details ofAlgorithm 1.3.1 apply.In the ase where a blossom B is shrunk, B is full, and, therefore, its potential zBbeomes aessible for future dual adjustments, as will be explained below.



30 Chapter 1. Mathing TheoryWhen an augmenting path p onsisting of tight edges has been found, the urrentmathing M is augmented by p to M 0. As a result, r will be mathed thereafter andthe new harateristi vetor x0 ofM 0 no longer violates (s)(2), as desired. All surfaeblossoms in T get unlabeled and T is destroyed. However, note the following di�erene.In the unweighted mathing ase, all non{trivial surfae blossoms have been deletedwhen T was destroyed (see also Algorithm 1.3.2). For the weighted mathing ase thesituation is di�erent. It is ruial that non{trivial surfae blossoms with zB > 0 retaintheir identity; deleting them would hange the dual solution. As a onsequene, non{trivial blossoms an our outside of an alternating tree or as even or odd labeled treeblossoms.When T is abandoned by the searh this is due to the non{existene of further tightedges uv inident to any vertex u+ 2 T . In suh ases, a dual adjustment is initiated asdesribed below. New tight edges might exist thereafter and the searh resumes withT .Performing a dual adjustment. Consider a situation where the searh for an aug-menting path from r fails beause there are no more tight edges inident to any vertexu+ 2 T .We want to alter the potentials (y; z) of the verties and non{singleton odd ardinalitysets suh that (i5) to (i8) are met. One way to ahieve this is by adjusting (y; z) to(y0; z0) as stated below. The value of Æ > 0 will be determined shortly.y0v = yv � Æ for all v+ 2 T ;y0v = yv + Æ for all v� 2 T ;y0v = yv for all vf?j+g 62 T ;z0B = zB + 2Æ for all B+ 2 T ;z0B = zB � 2Æ for all B� 2 T ;z0B = zB for all Bf?j+g 62 T :Note that the adjustment has to be interpreted as follows. The potentials of all vertiesin T are adjusted | inluding those that are ontained in a non{trivial blossom. Onthe other hand, a potential zB of a non{singleton odd ardinality set B is only adjustedwhen B is a non{trivial surfae blossom of G.We demonstrate that all onditions stated above are met when a dual adjustment byan appropriate value Æ is performed.First, we laim that the objetive value of (wm) stritly dereases by Æ. Sine Æ > 0,that will imply the orretness of (i5). We onsider the rate of hange �f = f 0 � f inthe objetive value of (wm), where f and f 0 denote the objetive value before and afterthe dual adjustment, respetively. The rate of hange that is ontributed to �f by atrivial blossom u or non{trivial blossom B is denoted by �fu and �fB. An odd labeledtrivial surfae blossom v� 2 T obviously ontributes �fv� = Æ to �f . Analogously,�fv+ = �Æ for an even labeled trivial surfae blossom v+ 2 T . Let B� be an odd



1.6 Primal{Dual Method 31labeled non{trivial surfae blossom of T . Then,�fB� = jBjÆ + bjBj=2 (�2Æ) = jBjÆ � (jBj � 1)Æ = Æ:Analogously, for an even labeled non{trivial surfae blossom B+ 2 T we have:�fB+ = jBj(�Æ) + bjBj=2 (2Æ) = �jBjÆ + (jBj � 1)Æ = �Æ:We an onlude the argument now by observing that T always ontains more eventhan odd surfae blossoms (trivial or non{trivial). More preisely, let n+ denote thenumber of even surfae blossoms in T . Correspondingly, let n� be the total number ofodd surfae blossoms in T . Sine eah even surfae blossom exept the root is mathedwith an odd surfae blossom in T , we have: n+ = n� + 1. The total rate of hange inthe objetive value is therefore �f = n+(�Æ) + n�Æ = �Æ.Let us prove that invariant (i6) holds. We start with the feasibility onditions (i1) and(i2). x stays feasible if it was so before the dual adjustment, sine x is not altered atall.Ensuring that the adjusted dual solution (y0; z0) is dual feasible entails some restritionson the value of Æ. First, Æ annot be larger than the smallest potential of an evenlabeled vertex u+ 2 T . Seond, the potential of all non{trivial blossoms must staynon{negative, and therefore Æ is bounded above by the minimal value zB=2 of an oddnon{trivial surfae blossom B� 2 T . Finally, the redued ost of all edges must benon{negative after the dual adjustment. This point demands loser inspetion.We only onsider edges e = uv with at least one endpoint in T ; the redued osts ofedges having none of its endpoints in T do not hange. Let �uv denote the redued ostof e before the dual adjustment and assume further that e does not lie in a blossom B,i.e. e 62 (B) for a blossom B. We distinguish �ve ases.Case 1: u+ 2 TCase 1a: u+ 2 T and v+ 2 Tboth endpoints of e are dereased by Æ. Sine the new reduedost �uv � 2Æ is restrited to being non{negative, we obtain anupper bound of Æ � �uv=2.Case 1b: u+ 2 T and vf?j+g 62 Tthe redued ost �uv of e will hange by �Æ, resulting in anotherbound: Æ � �uvCase 2: u+ 2 T and v� 2 Tsine u is dereased and v inreased by Æ, the redued ost �uv of e will nothange.Case 3: u� 2 TCase 3a: u� 2 T and v� 2 Tthe potential of eah endpoint u and v is inreased by Æ. Thenew redued ost �uv + 2Æ of e is, obviously, non{negative.Case 3b: u� 2 T and vf?j+g 62 Tthe redued ost �uv inreases to �uv + Æ and will hene stayfeasible.
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B� u+r+ e0 e(a) d�p?

B+j
b�q?

r+ u+ee0 (b)Figure 1.5: Let B be an odd blossom in the alternating tree T as depited in (a). Immediatesubblossoms of B are d;Bj ; b; q and p. Bj is the only non{trivial subblossom of B. When B isexpanded (see (b)), all immediate subblossoms along the even length path from d to b beomepart of T and are labeled appropriately. p and q are unlabeled and leave T .Consider the ase now where e = uv 2 (B) is embedded in a blossom B. Its reduedost �uv will not hange, sine the potentials of the endpoints u and v are both dereasedor inreased by Æ, whereas the potential of B is inreased or dereased by 2Æ, respetively.Atually, this is the motivation for only hanging the potential of non{trivial surfaeblossoms.We onlude by noting that we have obtained the following bounds for the value of Æin order to stay dual feasible. Æ = minfÆ1; Æ2; Æ3; Æ4gwhere Æ1 = minu2V fyu : u+ 2 Tg;Æ2 = minuv2E f�uv : u+ 2 T; vf?j+g 62 Tg;Æ3 = minuv2E f�uv=2 : u+ 2 T; v+ 2 Tg;Æ4 = minB2O fzB=2 : B� 2 Tg:The onvention of de�ning the minimum of an empty set to be 1 is adopted here aswell.Finally, from the disussion above one an immediately aÆrm the validity of (s)(1)and (s)(3). This onludes the veri�ation of (i6).The only invariants not having been aÆrmed yet are (i7) and (i8). Let Æ be hosenas stated above. Eah vertex u, edge e or non{trivial blossom B that is responsible forone of the bounds Æi, with 1 � i � 4, is alled the responsible vertex, edge or blossom,respetively.



1.6 Primal{Dual Method 33Algorithm 1.6.3 Generi algorithm of the blossom{shrinking approah to ompute amaximum{weight mathing (perfet or non{perfet) in a general graph G.let M be the empty mathingset yu = max fwe=2 : e 2 Eg for eah vertex u in Glabel eah vertex u in G evenfor eah vertex r in G fif r is mathed ontinue with another vertexlet Br be the only blossom of Trepeat fif non{perfet mathing ase and a vertex u+ in T with yu = 0 exists flet p0 denote the alternating surfae path from Bu to Brlift p0 to an alternating path p from u to r using Lemma 1.3.1replae M by M � pgelse if an alive edge uv with u+ in T and �uv = 0 exists fase v? 62 T : grow stepase v+ 2 T : shrink stepase v+ 62 T : augment stepgelse if there exists an odd blossom B� 2 T with zB = 0expand step for Belse fdetermine Æ aordinglyif Æ =1 and perfet mathing aseterminate, no perfet mathing existsperform dual adjustment by Ægg until r is mathedgConsider the ase Æ = Æ1. The potential yu of the responsible vertex u+ 2 T will bedereased to zero by the dual adjustment. Sine u is even, an even (possibly zero)length alternating path p from u to r exists. p starts with a mathing edge and endswith a non{mathing edge. We an math r by replaing M by M � p. Note that uwill thereafter be free. However, this is legal sine the potential of u equals zero. Thus,the number of violations of (s)(2) has indeed dereased by one.Assume now that Æ = Æi for i = 2; 3. Let e = uv be the responsible edge to Æi.Obviously, e will beome tight and an thus be used either to extend T (Æ = Æ2) or toshrink a new blossom (Æ = Æ3).Finally, let Æ = Æ4 and B� 2 T be the responsible blossom. Then, zB of B will drop tozero after the dual adjustment and thus annot partiipate in another dual adjustment.The ation to be taken is to expand B, whih is somehow the opposite to shrinking ablossom. B gets expanded by raising all its immediate subblossoms to the surfae. SineB is an odd blossom of T , there must be a mathing tree edge e and a non{mathing



34 Chapter 1. Mathing Theorytree edge e0 inident to B. Let b and d denote the endpoint of e and e0 that is ontainedin B. There must exists an even length alternating path p from Bd to Bb, the immediatesubblossoms of B ontaining d and b, lying exlusively in (B). Moreover, all edges inp are tight. We add p and thus all immediate subblossoms lying on p to T and labelthem aording to their even or odd length distane to the root blossom Br of T . Allother immediate subblossoms of B not lying on p get unlabeled and leave the tree T .In Figure 1.5 an example is given of a so{alled expand step.Obviously, (i7) holds whenever Æ = Æi, with i = 2; 3. Moreover, note that Æ = Æ1 willhappen at most one per searh and the ourrenes of Æ = Æ4 during a searh arebounded by O(n).10 Finally, when the potentials are adjusted in the way stated above,(i8) ertainly holds.Let us briey onsider the di�erenes for the maximum{weight perfet mathing ase.The initial solutions onstruted above will ertainly validate (j1) to (j4). Moreover,the details to math a free vertex using only tight edges stay the same. Moreover, thestated dual adjustment will assure invariants (j5) to (j7). The only di�erene is thatthe potentials of even tree verties are no longer restrited to being non{negative. Asa onsequene, Æ is not bounded above by Æ1. Therefore, hoosingÆ = minfÆ2; Æ3; Æ4gyields the desired result for the maximum{weight perfet mathing problem. Note thatÆ = 1 might in fat happen in the perfet ase, whereas this is prevented by theexistene of Æ1 in the non{perfet ase.Finally, we summarize Edmonds' blossom{shrinking approah to �nd a maximum{weight mathing (perfet or non{perfet) in a general graph by the generi algorithmdepited in Algorithm 1.6.3.1.6.4 Half{Integrality of the Dual SolutionWe will use this setion to prove an important property of the dual solution onstrutedby the approah desribed in the preeding setion.Lemma 1.6.1 Let (y; z) be an optimal solution to (wm), where all edge weights areintegral. Then (y; z) is half{integral, or more preisely:yu � 0 (mod 12) for all u 2 V , and (1)zB � 0 (mod 1) for all B 2 O. (2)Proof:Assume the algorithm starts with the initial solution (y; z) as desribed above, i.e. yu =max fwe=2 : e 2 Eg for eah vertex u and zB = 0 for all non{singleton odd ardinalitysets B. When we is integral for eah edge e, (1) and (2) hold.10Observe that one a blossom beomes an even tree blossom, it will stay even labeled and in T forthe rest of the searh.



1.6 Primal{Dual Method 35Let (y; z) be a dual solution satisfying (1) and (2). Consider a dual adjustment byÆ > 0 and let (y0; z0) be the resulting dual solution. (1) and (2) will remain true for(y0; z0) when Æ an be proved to be half{integral. Æ is obviously half{integral whenÆ = Æ1 or Æ = Æ4 (atually, Æ is integral i� Æ = Æ4). The redued ost �uv of an edgeuv is guaranteed to be half{integral by de�nition and (1) and (2). Thus Æ = Æ2 ishalf{integral. Finally, onsider the ase Æ = Æ3. We will show that the redued ost�uv of an edge uv with u+ 2 T and v+ 2 T must be integral. To see this, note that alledges e = ûv̂ in T are tight and all edge weights are integral. Thus, for these edges wehave: yû + yv̂ + XB2Oûv̂2(B) zB = wûv̂whih implies that yû + yv̂ � 0 (mod 1) must hold for any two verties û and v̂ inT . Thus we an infer that the redued ost �uv of the edge uv is integral, and thisonludes the proof. �One an immediately aÆrm the following orollary for the maximum{weight perfetmathing ase.Corollary 1.6.1 Let (y; z) be an optimal solution to (wpm), where all edge weightsare integral. Then (y; z) is half{integral.1.6.5 Using the Alternative LP Formulation | Algorithmi Conse-quenesAs was mentioned above, the details of the primal{dual method we have developeddepend on the underlying linear programming formulation. Using the alternative linearprogramming formulation (wpm*) introdued in Setion 1.4.3 one may hope to obtaina di�erent approah for the maximum{weight perfet mathing problem | whih ouldbe implemented more eÆiently.The di�erenes of a primal{dual method based on the linear programming formulation(wpm*) are the subjet of this setion.(wpm*) maximize wTxsubjet to x(Æ(u)) = 1 for all u 2 V , (1)x(Æ(B)) � 1 for all B 2 O, (2)xe � 0 for all e 2 E. (3)The dual linear program (wpm*) to (wpm*) is given below.(wpm*) minimize Xu2V yu + XB2O zBsubjet to zB � 0 for all B 2 O. (1)yu + yv + XB2Ouv2Æ(B) zB � wuv for all uv 2 E, (2)



36 Chapter 1. Mathing TheoryNote that the redued ost �uv of an edge uv with respet to a dual solution (y; z) isnow de�ned di�erently: �uv = yu + yv � wuv + XB2Ouv2Æ(B) zBThe omplementary slakness onditions are thus:(ps*) xuv > 0 =) �uv = 0 for all edges uv 2 E, (1)zB > 0 =) x(Æ(B)) = 1 for all B 2 O. (2)All details of the primal{dual method for the weighted perfet mathing ase apply.However, the dual adjustment is performed di�erently in order to assure (j5) to (j7).The potentials are adjusted for surfae blossoms (trivial or non{trivial) only.y0v = yv � Æ for all v+ 2 T ;y0v = yv + Æ for all v� 2 T ;y0v = yv for all vf?j+g 62 T ;z0B = zB � Æ for all B+ 2 T ;z0B = zB + Æ for all B� 2 T ;z0B = zB for all Bf?j+g 62 T :It seems one an implement the dual adjustment stated above more eÆiently sineonly surfae blossoms have to be onsidered. However, the rux of using the linearprogramming formulation (wpm*) is the omputation of the redued ost of an edge.During the ourse of Algorithm 1.6.3 the redued ost �uv of alive edges uv will haveto be omputed frequently. Using the approah disussed in the preeding setion,this an be ahieved by taking the potentials of u and v and the edge weight wuv intoonsideration.11 In the approah just skethed, one would additionally have to takeinto onsideration all potentials zB of blossoms B with uv 2 Æ(B).1.7 Survey of Di�erent RealizationsOver the last four deades various polynomial{time realizations of the blossom{shrinking approah disussed in Setion 1.6.3 have evolved. The �rst was suggestedby Edmonds himself as early as 1965. Its theoretial running{time was bounded byO(n2m). Permanent improvements regarding the theoretial running{time have beenahieved suessively using di�erent strategies and data strutures. The urrent bestand optimal approah for general edge weights has a running{time of O(n(m+n logn))and is due to Gabow [Gab90℄. We wish to use this setion to portray the main ideasbehind four di�erent polynomial{time realizations of the blossom{shrinking approah.One an view the blossom{shrinking approah as working in phases. A phase terminateswhen an additional violation has been eliminated, i.e. a violation of (s)(2) in the11Remember that alive edges are not ontained in any blossom and hene PB2Ouv2(B) zB = 0:



1.7 Survey of Different Realizations 37maximum{weight mathing and a violation of (wpm)(1) in the maximum{weight per-fet mathing ase. Sine at most n violations exist, where n denotes the number ofverties in G, we have O(n) phases. Next, we will argue that the number of dualadjustments per phase is bounded by O(n). Therefore, observe that Æ = Æ1 ours atmost one in a phase. When Æ = Æi, with i = 2; 3, at least one (formerly non{evenlabeled) vertex beomes an even tree vertex. When a vertex has beome an even treevertex it will stay even and reside in the tree until the end of the phase. Thus Æ = Æi,i = 2; 3, ours O(n) times. Finally, whenever Æ = Æ4, a blossom gets expanded. Sine ablossom annot ontain more than n verties this will also happen at most O(n) times.A non{trivial part of the algorithm is to maintain the surfae graph G. We sketh theidea of using a union{�nd data struture that additionally supports a split operation.Eah vertex knows its surfae blossom, e.g. by a pointer, and eah surfae blossommaintains a list of all its verties. Identifying the surfae blossom of a vertex thus takestime O(1). Two blossom Bi and Bj are united by size. That is, w.l.o.g. let jBij > jBj j.The pointer of eah vertex in Bj is set to Bi, the list of Bj is appended to Bi and Bjis destroyed. Bi then represents the new blossom. Split operations, too, are done bysize. The list of a surfae blossom Bi is split into two lists Bi and Bj. Again, the largerblossom, say Bi, is reused and eah pointer of a vertex in the smaller blossom is setto Bj. By always resetting the pointers of the smaller blossom, we an assure thateah �xed vertex ontributes no more than O(log n) time to a series of n union or splitoperations. Note, however, that the laimed time bound only holds for a series of splitfollowed by a series of union operations, or vie versa; and not for an arbitrary orderof intermixed union and split operations. But sine a vertex an partiipate in a seriesof at most O(n) split (expand steps) followed by a series of O(n) union (shrink steps)operations, a total time of O(n logn) per phase results. This will be suÆient for allfour realizations presented next.The realizations di�er in the way they �nd tight edges, determine the value of Æ andperform a dual adjustment.1.7.1 An O(n2m) ApproahA simple realization needs time O(m) to �nd tight edges and to determine the valueof Æ (eah edge is inspeted one). Performing a dual adjustment an be ahievedby expliitly updating the potential of eah vertex and non{trivial surfae blossomwhih takes time O(n). The total running{time is thus O(n2(n +m)) = O(n2m) orO(n4), sine m is bounded above by n2. This approah is essentially the one whih wassuggested �rst by Edmonds [Edm65a℄.1.7.2 An O(n3) ApproahThe only parts that need more than O(n) time per dual adjustment in the aboverealization are the identi�ation of tight edges and the determination of Æ, or, to bemore preise, the determination of Æ2 and Æ3.12 As we shall see, either an be ahieved12Obviously, the determination of Æ1 and Æ4 an easily be ahieved in time O(n).



38 Chapter 1. Mathing Theoryin time O(n). The resulting O(n3) approah is due to Lawler [Law76℄.We say an alive edge e inident to a surfae blossom B (trivial or non{trivial) is a bestedge of B when its redued ost is minimal, i.e.�e = min f�uv : uv 2 Æ(B) and uv is aliveg:When several suh edges exist for B, the best edge of B refers to an arbitrary one ofthese.To handle Æ2, eah vertex uf?j+g 62 T stores its best edge uv from u to an even labeledtree vertex v+ 2 T . Moreover, u stores the redued ost �uv of its best edge. Sine oddverties might leave T and get unlabeled (due to an expand step), the same data mustbe available for eah odd tree vertex u� 2 T . Finding tight edges and determining Æ2an then be ahieved in time O(n) by inspeting eah best edge of uf?j+g 62 T verties.A dual adjustment is performed by updating the redued ost of all best edges ofuf?j+g 62 T verties whih takes at most O(n) time.Eah surfae blossom B+k 2 T stores for eah adjaent surfae blossom B+j 2 T , withBk 6= Bj, the best edge ekj = uv with u 2 Bk and v 2 Bj. Moreover, Bk knows theredued ost �ek of the best edge ek of all best edges ekj. Finding tight edges is ahievedby inspeting all best edges of the blossom whose best edge has redued ost zero. Thetime needed to do so is bounded by O(n). By exploring the redued ost �ek of thebest edge ek to eah blossom B+k 2 T , Æ3 an be determined in time O(n). Adjustingthe redued ost �ek of eah blossom B+k 2 T needs time O(n).p qIt remains to be shown, however, that the information assoiated with the maintenane of Æ2and Æ3 an be kept orret without using time more than O(n2) per phase. Whenever a vertexbeomes an even tree vertex, its edges are sanned and the information for Æ2 and Æ3 is updated.When a new blossom Bk is formed by s immediate subblossoms, it takes time O(sn) to set upthe data for Bk.13 The total ost T (n) per phase to maintain Æ3 an then be omputed by thefollowing reursion: T (n) = O(sn) + T (n� s). By indution it follows that T (n) equals O(n2).Sine eah edge is sanned at most twie in a phase (one from eah endpoint) this ontributestime O(m) per phase. Altogether, the approah needs time O(n(n2 +m)) = O(n3).x yFinally, observe that the idea of maintaining the best (alive) edge to eah pair of evensurfae blossoms gives a lower bound of 
(n2) per phase.1.7.3 An O(nm logn) ApproahAnother realization, whih improves the theoretial running{time to O(nm logn), isdue to Galil, Miali and Gabow [GMG86℄. This approah is superior to the O(n3)13We give details to derive the laimed time bound. Let B�i , 1 � i � bs=2, denote the immediateodd subblossoms of Bk. Eah Bi, 1 � i � bs=2 is made even. All edges of the verties ontained inBi, 1 � i � bs=2, are sanned to update the information for Æ2 and to determine the best edges eijof Bi to other even tree blossoms B+j 2 T . Thereafter, the best edges ekj and the redued ost of thebest edge ek of all best edges of Bk an be determined in time O(sn). We have to update the best edgeinformation of eah blossom B+j 2 T adjaent to the new blossom Bk. This will need time O(sn). Tosee this, onsider a �xed blossom B+j 2 T that is adjaent to Bk. Deleting all best edges eji to an evensubblossom B+i 2 T of Bk takes time O(s). Updating the best edge ejk to Bj takes time O(1). Sinethe number of adjaent blossoms is bounded by n the total time of O(sn) results.



1.7 Survey of Different Realizations 39approah for sparse graphs. More or less the same ideas as in the O(n3) approah arereused. However, priority queues will help to ahieve an O(m log n) time bound perphase. We will not go into detail here but postpone the disussion to Chapter 2. Onlya few di�erenes are outlined.For example, Æ3 will be maintained by a priority queue. At �rst glane the usage ofpriority queues does not seem to work, due to the frequent hanges of the priorities aftera dual adjustment. Taking advantage of the fat that all priorities hange uniformlywill help to irumvent this problem in an eÆient way.Another major di�erene to the O(n3) approah is that we abandon the goal of onlykeeping trak of the alive edges between even tree blossoms. Instead, a lazy deletionstrategy is used to maintain Æ3. That is, every alive edge that might be of interest forÆ3 is inserted into Æ3. As a onsequene, after a series of shrinkings, Æ3 might ontainedges that are no longer alive. These edges are deleted when they are enountered asthe minimal element of Æ3. Atually, this will be the only point where the running{timeof O(m+ n log n) per phase is exeeded.For the sake of ompleteness we state the theoretial running{time for �nding tightedges, for determining Æ and for performing a dual adjustment. Finding a new tightedge will orrespond to a delete min operation on a priority queue and thus takes, atmost, time O(log n). The same will hold for the determination of Æ. To perform adual adjustment, however, will only take time O(1) and is thus an immense speed{upompared to the O(n3) approah.1.7.4 An O(n(m+ n logn)) ApproahIn 1990, Gabow [Gab90℄ presented a data struture that an be used to realize a phaseof Edmonds' blossom{shrinking approah in theoretial running{time O(m + n logn).Gabow laimes this time bound to be optimal: sorting n numbers an be redued toa searh for an augmenting path in Edmonds' blossom{shrinking approah; originally,a similar argument was given by Fredman and Tarjan [FT87℄ to prove optimality ofDijkstra's algorithm. Sine eah edge may be onsidered one during a searh, a lowerbound of 
(m+ n logn) per phase results.The details of the approah are omplex and will not be given here. We attempt tosketh the idea, although this is diÆult without going into detail. As mentioned before,only the maintenane of Æ3 needs speial re�nement. Therefore, a kind of alternatingtree T is grown. Eah blossom forming edge uv (i.e. the edge uv with u+ 2 T andv+ 2 T ) is replaed by two (direted) bak edges ul and vl, where l denotes the lowestommon anestor of u and v in T . A shrink operation then orresponds to unitingall surfae blossoms along the yle C1 = (l; : : : ; u; l) and C2 = (l; : : : ; v; l). Thesebak edges are further partitioned into log n sets alled pakets. Roughly speaking, bydealing with the pakets' minima (in terms of redued ost) the desired time bound anbe ahieved.However, the underlying data strutures are omplex and we doubt that an implemen-tation would be eÆient in pratie.





Chapter 2O(nm logn) Approah
The demanding and ostly parts in Edmonds' blossom{shrinking approah are the per-forming of dual adjustments and the determination of the value of Æ (see Setion 1.6.3).In 1986, Galil, Miali, and Gabow [GMG86℄ presented a strategy that enables a phaseof Edmonds' blossom{shrinking approah to be realized in time O(m log n). The timebound is ahieved by using a sophistiated data struture, whih they all generalizedpriority queues. Generalized priority queues support all standard priority queue opera-tions. Additionally, the priorities of ertain subgroups of elements in the queue an beuniformly hanged by a single operation.The ideas we will develop in this hapter are similar to or have been developed fromthe ideas of Galil et al. However, our approah di�ers with regard to the maintenaneof the varying priorities. Galil et al. handle these hanges within the priority queuedata struture, whereas we will establish a series of formulae that enable us to omputethese priorities as needed.First, we shall illustrate how the blossom potentials and redued osts of edges anbe omputed after a series of dual adjustments. As a onsequene, the time requiredto perform a dual adjustment will be redued to O(1). Next, the onept of usingpriority queues to determine the value Æ and thus also the responsible vertex, edge orblossom will be onsidered more losely. Finally, an obvious but mistaken realizationwill motivate the appliation of onatenable priority queues.2.1 Varying Potentials and Redued CostsThe frequent modi�ations of the blossom potentials and, onsequently, the reduedost of edges aused by a dual adjustment make it diÆult to realize a phase in theblossom{shrinking approah eÆiently. However, the a onsiderable advantage is thatthese modi�ations our in a uniform manner. In the subsequent setions we willillustrate how to take advantage of that fat.

41



42 Chapter 2. O(nm log n) Approah2.1.1 Potential UpdateConsider a dual adjustment that is performed during the ourse of Algorithm 1.6.3 (de-sribed in Setion 1.6.3). Let T denote the urrent alternating tree. A dual adjustmentby Æ a�ets the potentials of all verties and non{trivial surfae blossoms as follows.The vertex potential hanges by �Æ for an even tree vertex u+ 2 T , by +Æ for an oddtree vertex u� 2 T and by 0 for an non{tree vertex uf?j+g 62 T . Correspondingly, thepotential of a non{trivial surfae blossom is adjusted by +2Æ for an even tree blossomB+ 2 T , by �2� for an odd tree blossom B� 2 T and by 0 for a non{tree blossomBf?j+g 62 T .Therefore, after a series Æ1; Æ2; : : : ; Æk of dual adjustments the so{alled atual potentialof a vertex or non{trivial surfae blossom an be omputed by taking its initial potential,its status and the value of � = Pki=1 Æi into onsideration. The status of a blossom(trivial or non{trivial) is given by its label and the property of either being a tree or anon{tree blossom.More preisely, as long as the status of a vertex u does not hange it is possible toobtain its atual potential eyu from its initial potential yu by the following formula:eyu = yu + ��:Similarly, on the assumption that the status of a non{trivial surfae blossom B isinvariant, the atual potential ezB an be omputed via its initial potential zB:ezB = zB � 2��:The oeÆient � depends on the urrent status of a blossom B (trivial or non{trivial)and will be alled the status indiator:� = 8><>: �1 when B+ 2 T ,1 when B� 2 T , and0 when Bf?j+g 62 T .However, the status of a blossom hanges during the ourse of the algorithm and theformulae given above are somewhat oversimpli�ed. We next re�ne these formulae suhthat arbitrary status hanges an be handled as well.Consider �rst of all a status hange for a vertex u. Let �1 and �2 denote the sum ofdual adjustments before and after the status hange and assume u hanges its statusindiator from � to �0. Then,eyu = yu + ��1 + �0�2 �=�1+�2= yu + (� � �0)�1 + �0�:That is, we need to orret the potential yu by +(� � �0)� at the point of time whenu hanges its status indiator from � to �0 (and thus � = �1).Analogously, let us onsider a status hange for a non{trivial surfae blossom B. It isezB = zB � 2��1 � 2�0�2 = zB � 2(� � �0)�1 � 2�0�



2.1 Varying Potentials and Redued Costs 43and therefore the potential zB is orreted by �2(� � �0)� when the urrent statusindiator � of B hanges to �0. Again, at this point � will equal �1.As will beome lear shortly, we annot a�ord to orret the potential of eah ver-tex ontained in a non{trivial surfae blossom separately. Observe, however, that theorretion value of a vertex potential and that of the non{trivial surfae blossom on-taining that vertex di�ers by a multipliative fator of �2. We an therefore simulatethe potential orretions by means of an o�set assigned to eah surfae blossom, asdesribed next.Eah surfae blossom B (trivial or non{trivial) has an o�set denoted by o�setB. Theatual potential of a vertex u is then omputed byeyu = yu + o�setB + ��; (2.1)where B orresponds to the surfae blossom ontaining u (trivial or non{trivial). A-ordingly, the atual potential of a non{trivial surfae blossom B an be obtained byezB = zB � 2o�setB � 2��: (2.2)A status hange for a surfae blossom B then redues to an update of its o�set value:o�setB = o�setB + (� � �0)�; (2.3)where � denotes the sum of dual adjustments up to the time of the status hange.During the ourse of the algorithm, the o�set of a surfae blossom B is adjusted asin (2.3) whenever its status hanges. The disussion of how to handle the o�sets in ashrink or an expand step is postponed to the next but one setion.2.1.2 Maintenane of Redued CostsFor eah vertex uf?j+g 62 T and u� 2 T we will need to keep trak of the best edge uvto an even labeled tree vertex and the redued ost �uv of that edge. We will do so byassigning a pair (�uv; uv) to eah suh vertex, where uv denotes an edge inident to u,with v+ 2 T , having redued ost �uv.In the ontext of this hapter it would be suÆient to handle only one suh pair pervertex. However, we will onsider a more general ase where eah vertex u is assoiatedwith a series (�uv1 ; uv1); (�uv2 ; uv2); : : : ; (�uvk ; uvk) of pairs. Eah pair (�uvi ; uvi) keepsan edge uvi inident to u, with v+i 2 T , and the redued ost �uvi of that edge.This extended view will turn out to be reasonable in Chapter 3 (Setion 3.4), wherevarious alternating trees are simultaneously grown and hene several edges and theirredued osts will be assoiated with any vertex, i.e. also with even labeled tree verties.In the subsequent setions, we will expliitly mention when the results apply to theextended view only.The redued osts of all edges assoiated with a vertex u may vary with dual adjust-ments. As for the blossom potentials, we will elaborate a formula whih enables theatual redued osts of these edges to be omputed.



44 Chapter 2. O(nm log n) ApproahFor a vertex u+ 2 T , u� 2 T or uf?j+g 62 T , a dual adjustment by Æ hanges the reduedosts of all edges assoiated with u uniformly by �2Æ, 0 or �Æ, aordingly. Therefore,as long as u does not hange its status, we an again ompute the atual redued oste�uvi of an edge uvi after a series of dual adjustments taking its initial redued ost, thestatus of u and the total dual adjustment value � into onsideration. The omputationformula an even be expressed by means of u's status indiator � as introdued in thepreeding setion: e�uvi = �uvi + (� � 1)�:Let us, one again, onsider the value by whih the redued ost �uvi has to be orreted,when u hanges its status indiator from � to �0. As before, �1 and �2 denote thesum of dual adjustments that have been performed before and after the status hange:e�uvi = �uvi + (� � 1)�1 + (�0 � 1)�2 = �uvi + (� � �0)�1 + (�0 � 1)�:Thus, we would have to inrease the redued ost �uvi of eah edge uvi by (� � �0)�whenever u hanges its status. Observe that the o�set of the surfae blossom B on-taining u is inreased by exatly this amount, and we an therefore attain the sameresult by omputing the atual redued ost with respet to that o�set also:e�uvi = �uvi + o�setB + (� � 1)�: (2.4)Thus, we postulate that the atual redued ost e�uvi of any edge uvi assoiated with uis omputed by Formula (2.4).One �nal remark must be made here. Imagine that at some point of time a new edgeuvk+1 having atual redued ost e�uvk+1 is to be added to u. The redued ost �uvk+1that is atually stored with the new pair (�uvk+1 ; uvk+1) of u must then equal�uvk+1 = e�uvk+1 � o�setB � (� � 1)�: (2.5)We will therefore all �uvk+1 the stored redued ost of the edge uvk+1, also.2.1.3 Managing the Blossom O�setsIn the preeding two setions several formulae have been developed to ompute boththe atual potential of a blossom and the atual redued ost of edges assoiated witha vertex. In either ase, the value of interest is obtained by taking the o�set of thesurfae blossom into onsideration. What remains to be shown is how one an handlethese o�sets when a shrink or an expand step ours.Managing the Blossom O�sets | Shrink StepLet B, with (immediate) subblossoms B1;B2; : : : ;B2k+1, denote the blossom to beformed. Eah odd labeled subblossom Bi is made even by adjusting its o�set as previ-ously desribed (see (2.3)). The o�sets o�setB1 ; o�setB2 ; : : : ; o�setB2k+1 may di�er invalue. However, we want to ahieve a situation where the atual potential and also the



2.1 Varying Potentials and Redued Costs 45atual redued osts assoiated with eah vertex u 2 Bi an be omputed with respetto the new surfae blossom o�set o�setB.The following strategy assures that the o�sets of all (immediate) subblossoms Bi, 1 �i � 2k + 1, are equally set to zero. The atual potential and redued osts assoiatedwith any vertex ontained in the new blossom B an thus be omputed with respet tothe o�set o�setB = 0.When a surfae blossom B0 (trivial or non{trivial) beomes an even tree blossom forthe �rst time during a phase, its o�set o�setB0 is set to zero. Thus, in order to preservethe validity of (2.1) and (2.2) for the omputation of the atual potential eyu of eahvertex u 2 B0 and of the atual potential ezB0 of B0 itself (when B0 is non{trivial only),the following adjustments have to be performed:yu = yu + o�setB0 , andzB0 = zB0 � 2o�setB0 :In the extended view mentioned in the preeding setion, even tree verties are alsoassoiated with a series of pairs. In this ase, the stored redued ost �uv of eah suhpair (�uv; uv) assoiated with u is subjet to orretion:�uv = �uv + o�setB0 :We wish to emphasize that the desribed updates are performed for every blossom thatbeomes an even tree blossom (an even tree blossom need not neessarily partiipatein a shrink step). We thus deided to all this strategy the provident strategy.Observe that the adjustments are performed at most one for a �xed vertex per phase.Thus, the time required for the potential adjustments is O(n) per phase. The orretionof the redued osts ontributes time O(mtadj) per phase, where tadj denotes the timeneeded by the operation to hange the stored redued ost.1 We will keep the pairsassoiated with a vertex in a priority queue (as will be explained in Setion 3.4) andthus tadj is bounded by O(log n). In summary, a total time bound of O(n +m logn)per phase results.p qWe wish to present another strategy, in whih the new o�set o�setB is determined by the o�setvalue o�set� of the (immediate) subblossom Bi that survives in the following proedure.We iterate over all (immediate) subblossoms of B. Initially, o�set� is set to the o�set of B1.In eah stage i, 1 � i � 2k, the atual potential of eah vertex ontained in a subblossomBj with j � i is omputed with regard to the o�set o�set�. Let i = Pij=1 jBj j denote thetotal number of these verties. We use i+1 to denote the number of verties ontained in thesubblossom Bi+1. When i � i+1, o�set� survives and all verties of Bi+1 lose; otherwiseo�setBi+1 survives and all verties of the Bj 's lose. o�set� is set to the survivor o�set and theother o�set is denoted by o�set l (the atual potentials of all loser verties are omputed withrespet to that o�set). The potentials yu of all loser verties u are adjusted suh that theiratual potentials are omputed orretly with respet to the o�set o�set�, i.e.yu = yu + o�set l � o�set�:1The total number of pairs stored for all verties will be bounded by O(m).



46 Chapter 2. O(nm log n) ApproahAs before, it is only in the extended view (where not only unlabeled and odd labeled vertiesbut also even tree verties are assoiated with a series of pairs) that the stored redued ost�uv of eah suh pair (�uv ; uv) needs to be adjusted:�uv = �uv + o�set l � o�set�:We do not adjust the potentials zBi of the non{trivial subblossoms Bi here, sine they in anyase require a speial treatment, as will be desribed below. We all this strategy the non{provident strategy, sine the neessary adjustments are performed on demand, i.e. when theorresponding vertex in fat partiipates in a shrink step.Let us proeed to the determination of the time needed by these adjustments. Sine we alwaysadjust the potentials and stored redued osts of losing verties only, the neessary adjustmentsfor a �xed vertex u will be performed at most O(logn) times per phase.2 The ost for updatingthe potential of u is O(1). Moreover, sine the number of edges assoiated with u will beno greater than its degree deg(u), the time required to adjust the stored redued osts isO(deg(u) tadj), where tadj denotes (as above) the time needed by the operation to hange thestored redued ost. We onlude that eah vertex u ontributes O((1 + deg(u) tadj) logn) timeper phase. As mentioned previously, tadj is bounded by O(logn). Thus, summing over allverties we obtain a total time bound of O((n + m logn) logn) = O(n logn + m(logn)2) perphase. That is, the theoretial time bound of O(m logn) per phase is exeeded. In pratie,however, the non{provident strategy turned out to be slightly more eÆient than the providentstrategy (as will be presented in Setion 3.6). It therefore seems to us that this strategy isworth being onsidered.3 Our multiple searh tree implementation (disussed in Setion 3.4)implements both the provident and the non{provident strategy.x yAfter the new blossom B has been formed, the atual potential ezBi of eah non{trivialsubblossom Bi is no longer a�eted by future dual adjustments. We therefore freeze thepotential of these blossoms by adopting the following onvention. For any non{trivialsubblossom Bi, we ensure that the potential zBi equals its atual potential ezBi . Thus,at the time of shrinking we set:zBi = zBi � 2o�setBi � 2��;and sine every subblossom of B has been made even before, the above equation reduesto zBi = zBi � 2o�setBi + 2�:The time needed to perform these potential freezings is proportional to the number ofnon{trivial subblossoms of B.2There are n verties and after eah adjustment for u, u will reside in a group of ardinality at leasttwie as large as before.3Moreover, note that all stored redued osts of a �xed vertex u are adjusted by the same amount.Therefore, the underlying priority queue data struture, whih organizes these redued osts, ould alsoimplement an operation, say hange all priorities, whih hanges all priorities in the queue by the sameamount in time O(deg(u)). For example, assume the priority queue is realized by a balaned binarytree (i.e. having height O(log(deg(u)))), where the items of the priority queue orrespond to the leavesof the tree. Then, traversing eah vertex (i.e. non{leaf verties too) of the tree and expliitly updatingthe stored priority of that vertex will take time proportional to deg(u). As a onsequene, the totaltime needed by the non{provident strategy would be redued to O((n+m) log n) per phase, as desired.



2.2 Determination of Æ | towards a Priority Queue Approah 47Managing the Blossom O�sets | Expand StepThe details for an expand step now ensue easily. Let B denote the odd surfae blossomthat is going to be expanded. As for the shrink step, the (immediate) subblossoms ofB are denoted by B1;B2; : : : ;B2k+1. The atual potential and the atual redued ostsassoiated with eah vertex ontained in B an be omputed by the formulae establishedabove; these values depend on the o�set o�setB of B, whih is therefore assigned to eahof the subblossom o�sets, i.e. o�setBi = o�setB. Moreover, eah subblossom beomesodd labeled and the potential zBi of all non{trivial subblossoms Bi undergo unfreezingwith respet to the new o�set:zBi = zBi + 2o�setBi � 2��whih equals zBi = zBi + 2o�setBi � 2�sine eah Bi is labeled odd. Obviously, the time required to unfreeze the blossompotentials is proportional to the number of non{trivial subblossoms of B. Afterwards,the neessary status hanges for some of the subblossoms Bi, for instane for thosethat leave T , an be handled by an o�set adjustment as disussed above (see Equation(2.3)).Summarizing, we have established a onvenient way to handle the varying blossompotentials as well as the redued osts of edges assoiated with a vertex. The valueof interest an be omputed on demand by the formulae developed. Here, making ano�set available to eah surfae blossom and keeping trak of the total amount � ofdual adjustments turned out to be the key ideas. The additional overhead produed bythe o�set maintenane has been proved to onsume O(m log n) time per phase. A dualadjustment by Æ redues to an inrease of � by Æ and an thus be performed in timeO(1).2.2 Determination of Æ | towards a Priority Queue Ap-proahWe next onsider more losely the idea of using priority queues to determine the valueof Æ, and show how all priorities stored in a priority queue an be adjusted in a uniformmanner.Reall that Æ is hosen as the minimum of the four values Æ1; Æ2; Æ3 and Æ4 (see Se-tion 1.6.3). In order to determine eah one of these we keep a orresponding priorityqueue delta1 , delta2 , delta3 and delta4 .4 The priorities in eah of the priority queueshange with eah dual adjustment and at �rst glane there seems to be little hope thatthis approah will turn out to be eÆient. However, an essential observation is that4We assume some familiarity with the priority queue data type. All standard operations, like insert,delete min, �nd min et, are assumed to take time no more than O(log n), where n denotes the numberof items stored in the priority queue. For a detailed disussion of these operations see, for example,Cormen et al. [CLR92℄.



48 Chapter 2. O(nm log n) Approahone an arrange the priority queues suh that all priorities derease uniformly by thedual adjustment value Æ. Consequently, the so{alled atual priority, denoted by ep,of any item in eah of the priority queues an be omputed from its stored priority p,i.e. the priority whih is stored with that item in the priority queue, and the total dualadjustment value � as de�ned above.More preisely, we ensure that a priority p stored in any of these four priority queuesorresponds to the atual priority ep = p��. As a onsequene, when a new item having(atual) priority ep has to be inserted into one of the priority queues, the priority p whihis stored with that item is set to ep + �, where � denotes the total dual adjustmentsperformed up to this point. We next disuss the semantis of the items ontained ineah of the priority queues.delta1 onsists of all items hp; ui with u+ 2 T . The atual priority p�� orrespondsto the atual potential eyu of u.Eah item hp; uvi in delta2 represents the best edge of a vertex vf?j+g 62 T to an evenlabeled tree vertex u+ 2 T . The atual redued ost e�uv of this edge equals the atualpriority p��.delta3 keeps trak of the edges uv onneting two even labeled tree verties u+ 2 Tand v+ 2 T . The edges inserted into delta3 are ensured to be alive; however, duringthe ourse of the algorithm some of the edges stored in delta3 might beome dead. Weuse a lazy{deletion strategy for these edges: dead edges are simply disarded when theyour as the minimal item of delta3 . Eah edge is represented by an item hp; uvi indelta3 . The atual priority p�� orresponds to one half of the atual redued ost ofuv, i.e. p�� = e�uv=2.The priority queue delta4 ontains for eah odd labeled non{trivial surfae blossomB� 2 T an item hp;Bi. The atual priority p � � of this item is equal to one half ofthe atual potential of B: p�� = ezB=2.p qWe briey argue that all atual priorities of delta1 , delta2 , delta3 and delta4 derease by thedual adjustment value Æ. The potentials of all verties u+ 2 T are dereased by Æ and thereforethe atual priorities of delta1 derease by Æ. Sine only the potential of the endpoint u+ 2 Tfor all edges uv stored in delta2 is dereased by Æ, eah atual priority of delta2 dereases byÆ. For eah edge uv stored in delta3 the potential of both endpoints is dereased by Æ. Theatual priority of eah edge is one half of the redued ost of that edge. Therefore, eah atualpriority dereases by Æ. Finally, the potential of eah non{trivial surfae blossom is redued by2Æ, and its atual potential in delta4 thus dereases by Æ.x yLet us suppose that the priority queues delta1 , delta2 , delta3 and delta4 are maintainedorretly. Eah value Æ1; Æ2; Æ3 and Æ4 an then be determined by a �nd min operationon delta1 , delta2 , delta3 and delta4 , respetively. Moreover, �nding the responsiblevertex, edge or blossom redues to a delete min operation on the priority queue fromwhih Æ results. Summarizing, both the determination of Æ and also of the responsiblevertex, edge or blossom an be ahieved in time O(log n).55A omment is in order at this point. delta3 might ontain up to m items and thus an upper boundof O(logm) results. At �rst sight, it seems that the stated time bound of O(log n) is exeeded; butnote that m � n2, and therefore O(logm) = O(log n).



2.3 A Misleading Strategy | Traps and Pitfalls 492.3 A Misleading Strategy | Traps and PitfallsHaving the outlined ideas in mind, it seems as if one ould immediately implementthe blossom{shrinking approah that guarantees the stated time bound of O(m logn)per phase. However, the realization desribed next will not fully omply with thestated time bound. The reasons for our deision to present a mistaken realization aresubstantiated by the following three arguments. First, we have been misled by thisrealization ourselves. Seond, it will serve as a basis that an easily be extended to aorret approah. And �nally, it will eventually provide us with an intuitive grasp suhthat we will aÆrm the need for onatenable priority queues.An alternating tree T is grown from a free vertex r as desribed in Algorithm 1.6.3.Initially eah vertex is a surfae blossom having o�set value 0, and the value of � isset to 0. The initial potential stored with eah vertex equals its atual potential. Atthe beginning of a phase, eah of the priority queues delta1 , delta2 , delta3 and delta4is made empty.For eah vertex uf?j+g 62 T or u� 2 T we keep trak of its best edge uv to an evenlabeled tree vertex and of the (stored) redued ost �uv of that edge by means of a pair(�uv; uv). Moreover, we adopt the onvention that a designated pair (1; ;) is assignedto u, when no suh edge has been enountered during the urrent phase.Whenever a vertex u beomes an even tree vertex, its atual potential eyu is omputedby (2.1) and a orresponding item heyu +�; ui is inserted into delta1 . We go throughall inident edges uv of u in order to keep delta2 and delta3 orret; this will ontributeO(m) time per phase, sine eah vertex that beomes an even tree vertex will stay evenand remain in T for the rest of the phase. When uv is dead or is a tree edge, it is simplydisarded. Otherwise, uv is alive and we an thus ompute its atual redued ost:e�uv = eyu + eyv � wuv;where eyv is obtained by Formula (2.1) and wuv denotes the weight of that edge.6 Theation to be taken depends on the status of the endpoint v:Case 1: vf?j+g 62 TWe onsider only the ase where uv is the new best edge of v, sine otherwisenothing has to be done.When (1; ;) is the pair stored with v, uv will be the new best edge to v andwe therefore replae that pair by (�uv; uv), where the stored redued ost�uv is omputed by Formula (2.5). A new item he�uv +�; uvi is inserted intodelta2 .Otherwise, let (�ûv; ûv) denote the pair stored with v. We an ompute theatual redued ost e�ûv of ûv by Equation (2.4). When e�uv < e�ûv, uv will6Reall that the redued ost �uv of an edge uv has been de�ned as repeated below, where in theurrent ontext the potentials refer to the atual potentials. Moreover, sine uv is alive the sum overall blossom potentials ontaining that edge must equal 0.�uv = yu + yv � wuv + XB2Ouv2(B) zB:



50 Chapter 2. O(nm log n) Approahbe the new best edge of v. The pair stored with v is replaed by (�uv; uv),where �uv refers to the stored redued ost (obtained by Equation (2.5)),and the item stored for v in delta2 is replaed by he�uv +�; uvi.Case 2: v+ 2 TThe item he�uv=2 +�; uvi is simply inserted into delta3 .Case 3: v� 2 TThe same desription as for vf?j+g 62 T applies, but no item is inserted orreplaed in delta2 .When a non{tree blossom B enters T , eah item in delta2 orresponding to a vertexu 2 B is deleted. Moreover, when B is non{trivial and beomes an odd tree blossom, weompute its atual potential ezB by (2.2) and insert the item hezB=2 +�;Bi into delta4 .When a vertex v� 2 T leaves T due to an expand step, we use the pair (�uv; uv) storedwith v in order to set up an item for delta2 ; if (1; ;) is assigned to v, we do nothing.The atual redued ost e�uv of uv is omputed as in (2.4), and the item he�uv +�; uviis inserted into delta2 .Determining Æ, performing a dual adjustment and �nding the responsible vertex, edgeor blossom are ahieved as previously desribed. All remaining details, e.g. shrinkingor expanding a blossom et., follow easily from the disussion above.p qOne �nal remark is in order at this point. Sine an unlabeled vertex might beome an odd treevertex and then leave T again due to an expand step, one may wonder why it is suÆient tomaintain for eah vertex v? 62 T and v� 2 T the best edge uv to a vertex u+ 2 T only. Note,however, that one the best edge uv of a vertex v? 62 T has been used for a grow step, v willstay in T for the rest of the phase | even if all blossoms ontaining v are expanded during thatphase.x ySo far, it seems that the running{time of O(m log n) per phase has been ahieved.Observe, however, that eah vertex entering or leaving T auses a deletion or insertionon delta2 . In the rest of this setion we will justify in detail the laim that it is due tothe expansion of blossoms that these insertions and deletions may be exeuted up toO(n2) times and thus exeed the laimed time bound.Readers who are not interested in these details are advised to skip to Setion 2.4.2.3.1 Maximum Height of a Blossom Treep qFirst, we need to introdue the onept of a so{alled blossom tree, whih represents the nestingof a blossom B.Let B be a blossom. Eah subblossom Bi � B orresponds to a node ui in the blossom tree BTBof B.7 The root node u of BTB stands for the blossom B itself. Consider a node ui in BTB thatorresponds to a subblossom Bi � B. The hildren of ui in BTB are the nodes ui1 ; ui2 ; : : : ; uik ,where eah uij , 1 � j � k, orresponds to an immediate subblossom Bj of Bi (see Figure 2.1for an example). From the onstrution of BTB it follows that the verties ontained in Borrespond to the leaves of BTB.7In order to avoid onfusion, we will use the term node when referring to verties in the blossomtree.
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B

(a)
BTB

(b)Figure 2.1: Let B be a blossom whose nesting struture is given in (a). The blossom treeBTB of B is formed as depited in (b). In BTB, the root node stands for B, eah internal(i.e. non{leaf) node represents a non{trivial subblossom of B and every leaf orresponds to avertex of B.The ardinality p of a blossom B is de�ned as the number of verties ontained in B. Further-more, a blossom is said to be of size s, when it ontains s immediate subblossoms.Lemma 2.3.1 Let B be a blossom of ardinality p and BTB the orresponding blossom tree.The height h of BTB is bounded by O(p).Proof:Let Lh denote the number of leaves in a blossom tree of height h. We have L0 = 1, sine ablossom tree of height zero represents a trivial blossom. A blossom tree of height one has atleast three leaves: L1 � 3.Generally speaking, a blossom tree of height h has Lh � Lh�1 + 2 leaves. The reursion aneasily be solved:Lh � Lh�1 + 2 � Lh�2 + 2 + 2 � : : : � L0 + 2 + : : :+ 2| {z }h times = 2h+ 1Sine the number of leaves in BTB orresponds to the ardinality p of B, we obtain:h � (p� 1)=2. �Lemma 2.3.1 implies that the height of a blossom tree BTB to a blossom B having maximumardinality may be O(n).In Setion 1.6.5, the disadvantage of omputing the redued ost of an edge using the alter-native linear programming formulation of the maximum{weight perfet mathing problem was



52 Chapter 2. O(nm log n) Approahoutlined.8 Using the terms introdued above, the time required to ompute the redued ostof an edge uv onneting the blossoms Bu and Bv is proportional to the height of the blossomtrees BTBu and BTBv . That is, by Lemma 2.3.1, it takes time O(pu + pv) in the worst ase toompute the redued ost of an edge uv, where pu and pv denote the ardinality of Bu and Bv,respetively.Applegate and Cook [App93℄ use the blossom tree to ompute the redued ost of an edge asfollows. For eah blossom tree of a surfae blossom B, they broadast the sum of all blossompotentials along the path from the root to eah leaf. Eah leaf in any blossom tree BTB thatorresponds to a vertex u of B then knows the sum �u = yu +Pu2Bi zBi . The redued ost ofan alive edge uv an then be omputed by �u + �v � wuv . However, broadasting the sum ofall potentials to eah leaf in the blossom tree takes time O(p) for a blossom having ardinalityp.In either ase, a lower bound of 
(n2) per phase results for the algorithm based on the alternativeformulation.x y2.3.2 Expanding a Blossom | Number of Status Changesp qConsider an odd tree blossom B� 2 T with ardinality p. When B is expanded, some subblos-soms of B may leave T and later beome odd tree blossoms. Following the strategy desribedabove, eah vertex of a blossom that leaves T is touhed, e.g. in order to insert an appropriateitem into delta2 . We are now interested in the number of these touhes per phase.More preisely, let e(p) denote the total number of status hanges aused by verties of B thatleave T during a phase. Obviously, a blossom B with maximum nesting struture will form themost disadvantageous ase. Or to put it di�erently, a blossom B whose blossom tree BTB haslargest height possible will ontribute most to e(p). Therefore, we onsider ee(p) whih equalse(p) in the worst ase only, i.e. e(p) � ee(p).ee(p) an easily be de�ned as a reursive funtion:ee(p) = (0 for p � 1, and(p� 2) + 1 + ee(p� 2) otherwise.The reursion is substantiated as follows. Obviously, blossoms having ardinality p = 1 are triv-ial and thus annot ontribute anything to ee(p). Otherwise, when a blossom B with ardinalityp > 1 is expanded, at least one vertex (namely the base) must stay in T . A large subblossom ofardinality p�2 and a single vertex get unlabeled and thus ontribute (p�2)+1 to ee(p). Later,the large (sub)blossom might beome an odd blossom of T and be expanded itself, produingost ee(p� 2).We are now interested in the number i of appliations of the reursion stated above suh thatee(p � 2i) = 0. Sine by de�nition ee(p) = 0 for p � 1, we have i = (p � 1)=2, whih is themaximum height of the blossom tree BTB. We thus have:ee(p) = p�12Xi=1 (p� 2i) + 1 = p� 12 �p+ 1��p� 12 + 1�� = p2 � 148Reall that, using the alternative linear programming formulation, the redued ost �uv of an edgeuv was de�ned di�erently: �uv = yu + yv �wuv + XB2Ouv2Æ(B) zB:



2.4 Conatenable Priority Queues 53At this point it beomes apparent that touhing eah vertex would inrease the running{timeto O(n2) per phase and hene destroy the laimed bound of O(m logn).x y2.4 Conatenable Priority QueuesThe problem indiated in the preeding setion is overome, however, using so{alledonatenable priority queues. A onatenable priority queue supports all the usualpriority queue operations plus the two additional operations spei�ed below. The itemsin a queue are regarded as forming a sequene.onat(pq1 ; pq2 ) onatenates the underlying sequenes of pq1 and pq2 .The resulting priority queue pq ontains all items of pq1 in their original orderfollowed by all items of pq2 in their original order.split at item(pq ; it) splits the sequene of pq at item it into pq1 and pq2 .All items preeding the item it (inlusively) in pq then belong to pq1 and all otheritems belong to pq2 .As we will show at the end of this setion, both operations an be ahieved in timeO(log n).Motivated by the fat that we annot a�ord to insert an item into delta2 for eah vertexseparately, one may think of inserting just one item for eah surfae blossom. Therefore,we assume that eah surfae blossom B maintains its own onatenable priority queue,whih we will denote by PB.The queue PB of a non{tree blossom Bf?j+g 62 T or an odd tree blossom B� 2 Tinorporates all pairs stored with the verties v 2 B. That is, every vertex v 2 B hasan item h�uv; uvi in PB. The priority �uv equals the stored redued ost of the bestedge uv onneting v to an even labeled tree vertex u+ 2 T . As before, the item inPB orresponding to v may be set to h1; ;i in order to indiate the non{availability ofsuh an edge for v.We also maintain a onatenable priority queue PB for eah even tree blossom B+ 2 T .Again, for eah vertex v 2 B we have a orresponding item in PB. However, the ontentsof these items is set arbitrarily.Eah non{tree blossom Bf?j+g 62 T sends its minimum item h�uv; uvi, representing thebest edge uv (along all best edges) of B, to delta2 ; however B does not send an itemto delta2 when the minimum item equals h1; ;i. More preisely, let hp; uvi denote theitem in delta2 that has been sent by B. The atual priority ep = p�� then equals theatual redued ost e�uv of the best edge uv of B (whih an be omputed by (2.4)).Whenever a non{tree blossom B beomes a tree blossom, its orresponding item isdeleted from delta2 . Conversely, when a tree blossom leaves T , a orresponding item isinserted into delta2 . Finally, when the minimum in a priority queue PB with Bf?j+g 62 Thanges, the orresponding item in delta2 is updated aordingly.When a new blossom B is formed by B1;B2; : : : ;B2k+1 the priority queuesPB1 ; PB2 ; : : : ; PB2k+1 are onatenated one after another and the resulting priority queuePB is assigned to B. Here, we keep trak of eah ti, 1 � i � 2k + 1, the last item in



54 Chapter 2. O(nm log n) ApproahBi. Later, when B is expanded, the priority queues to B1;B2; : : : ;B2k+1 an easily bereovered by splitting the priority queue of B at eah item ti, 1 � i � 2k + 1. Infat, we handle the onatenable priority queues for even tree blossoms only beause ofstrutural reasons.All other details apply as one would expet and as is desribed in Setion 2.3.Assuming that both operations onat and split at item take O(logn) time, the laimedtime bound of O(m log n) per phase is ahieved. In order to demonstrate this, reallthat there will be at most O(n) onat and split at item operations during a phase.Moreover, observe that only the maintenane of delta3 uses time O(m + n logn) perphase.p qIn the rest of this setion, a realization of the data type onatenable priority queue based on(a; b){trees will be briey outlined. We will onentrate mainly on the two additional operationsonat and split at item . For a more detailed disussion, see Aho et al. [AHU74, Setion 4.12℄and Mehlhorn [Meh84, Setion III.5.3℄.Many realizations of the priority queue data type use a balaned tree as the underlying datastruture, i.e. a tree T whose height is bounded by O(logn) where n denotes the number ofleaves in T .De�nition 2.4.1 ((a,b){Tree) Let T = (V;E) denote a tree rooted at r. The number ofoutgoing edges of a vertex u 2 V is denoted by outdeg(u). T is alled an (a; b){tree, withb � 2a� 1, i� the following holds:(1) for eah non{leaf vertex u 2 V , with u 6= r: outdeg(u) � a,(2) for eah non{leaf vertex u 2 V : outdeg(u) � b, and(3) all leaves reside on the same level.The next theorem states that eah (a; b){tree is balaned in the sense mentioned above.Theorem 2.4.1 Let T be an (a; b){tree of height h and let n denote the number of leaves inT . For the height h of T it is: logb n � h � 1 + loga(n=2):9All standard operations of the priority queue data type an be implemented for (a; b){treesas well. Eah suh operation will take time (at most) O(logn) (see the referenes mentionedabove).However, we want to emphasize a major di�erene to the ommon view of an (a; b){tree T thatrepresents a priority queue. Normally, the leaves are arranged in asending order (e.g. from leftto right) with respet to the priority of an item. However, the kind of onatenable priorityqueue we spei�ed above requires the leaves to be part of a sequene (independently of theirpriority).Operation: onat(pq1 ; pq2 )Let T1 and T2 be the two (a; b){trees of pq1 and pq2 having height h1 and h2, respetively.When h1 = h2, a new root vertex r is reated and T1 and T2 beome the left and right hild of r.9The right side an be understood by observing that the root r has outdeg(r) � 2 and every othernon{leaf vertex u has outdeg(u) � a and thus n � 2ah�1.



2.4 Conatenable Priority Queues 55Now assume h1 > h2; the other ase is treated analogously. Let v denote the rightmost vertexin T1 of height h1 � h2 and let f denote the parent of v. The root of T2 beomes the rightmosthild of f . If, afterwards, f has more than b hildren the tree is repaired as we suppose to beknown (f is split into two verties having d(b+ 1)=2e and b(b+ 1)=2 hildren et).Lemma 2.4.1 Let pq1 and pq2 denote two priority queues having n1 and n2 items. Aonat(pq1 ; pq2 ) operation an be performed in time O(j logn1 � logn2j).Operation: split at item(pq ; it)Consider the tree T that orresponds to the priority queue pq . Let v denote the leaf vertex in Tthat stores the item it and let p denote the path from v up to the root vertex of T . By deletingp, T deomposes into two forests; a forest Fl to the left whih onsists of all trees with leaves tothe left of v (inlusively) and a forest Fr to the right whih onsists of all trees with leaves tothe right of v (exlusively). Let Fl = (LTi; LTi�1; : : : ; LT1) be the ordered sequene (from leftto right) of all trees to the left and Fr = (RT1; RT2; : : : ; RTj) the ordered sequene (from leftto right) of all trees to the right. Iteratively onatenating all trees LTk, with k = 1; 2; : : : ; i,results in a tree T1 whih represents pq1 . Analogously, the tree T2 of pq2 an be onstrutedby onatenating all trees RTk in the order k = 1; 2; : : : ; j.Lemma 2.4.2 Let pq denote a priority queue ontaining n items. A split at item(pq ; it) op-eration for any item it of pq takes time O(logn).Proof:When p is deleted from T , there will be at most b� 1 trees of a �xed height h in Fl [ Fr. Theonly exeption are trees of height 0, of whih there an be b many. The onatenation of b treesof height h will result in a tree having height at most h+ 1. Therefore, at most b trees of anygiven height our during the onatenation proess desribed above.To onatenate two trees of the same height takes time O(1), and O(�h) when their heightsdi�er by �h. Therefore, the time spent onatenating all trees is O(bh + log�hmax), where�hmax denotes the maximum di�erene of any two trees that are onatenated. Sine �hmaxis bounded by O(logn), split at item takes O(logn) time. �x y





Chapter 3Implementation and Tests
One major objetive in the �eld of theoretial omputer siene is to obtain algorithmsthat are eÆient with respet to the theoretial running{time. However, not seldomthere is a big trade{o� between a theoretially eÆient algorithm and its tehnialfeasibility. The utilization of omplex data strutures that make the algorithm fast intheory often has a drasti impat on its eÆieny in pratie.In this hapter we will present an implementation of Edmonds' blossom{shrinking ap-proah based on the use of onatenable priority queues. At the time we started, itwas not foreseeable whether the implementation would be fast in pratie. Moreover,a highly eÆient algorithm for the maximum{weight perfet mathing problem wasavailable suh that there was little hope of improving upon it. The algorithm referredto is known as the Blossom IV algorithm and is implemented in C. It is due to Cookand Rohe [CR97℄ and is based on earlier work by Applegate and Cook [App93℄. Cookand Rohe do not laim a theoretial time bound, but it will be no better than 
(n3).Our implementation is innovative in the sense that there is no other algorithm usingpriority queues aessible at the moment. We used C++ as the programming languagesine the algorithm uses and is intended to beome part of the Library of EÆientData Strutures and Algorithms, alled LEDA for short, developed at the Max{PlankInstitute for Computer Siene in Saarbr�uken, Germany.1 We assume that the readeris familiar with some basi data types and onepts of LEDA; most of the data typesused in our implementation will be self{explanatory.We implemented two versions of Algorithm 1.6.3. A so{alled single searh tree ap-proah and a multiple searh tree approah. In the former, only one tree is grown ata time, whereas in the latter various searh trees are grown onurrently. Surprisingly,the di�erene between these two approahes with regard to their pratial eÆieny isimmense. Both algorithms guarantee a worst{ase running{time of O(nm logn).The hapter is organized as follows. In Setion 3.1 we will de�ne the interfae funtionsand outline their funtionality. Then, the data struture onat pq , whih realizes the1For an extensive referene desribing all issues onerning LEDA see the book by Mehlhorn andN�aher [MN99℄. LEDA is freely available for aademi researh and teahing at:http://www.mpi-sb.mpg.de/LEDA.57



58 Chapter 3. Implementation and Testsdata type onatenable priority queue disussed in Setion 2.4, is introdued. Sine wedo not want to go into the implementation details of this data struture, all operationsneeded will be spei�ed in Setion 3.2. After this, our implementation of the singlesearh tree algorithm will be presented. The ensuing di�erenes for the multiple searhtree algorithm are the subjet of Setion 3.4. The eÆieny of both algorithms isonsiderably improved by onstruting a better initial solution, as will be outlined inSetion 3.5 below. Finally, some running{time experiments will reveal the eÆieny ofour implementation in pratie.3.1 FuntionalityThe funtionlist<edge> MAX WEIGHT MATCHING(onst ugraph &G,onst edge array<NT> &w,bool hek, int heur)returns a maximum{weight mathing andlist<edge> MAX WEIGHT PERFECT MATCHING(onst ugraph &G,onst edge array<NT> &w,bool hek, int heur)a maximum{weight perfet mathing for the undireted graph G (type ugraph) withweight funtion w. Both funtions aept edge weights of any number type NT .2 Themathing is represented by the list of edges returned. When hek is set to true, theoptimality of the omputed mathing is heked internally. Depending on the value ofheur , the algorithm starts either with an empty mathing (heur = 0), a greedy mathing(heur = 1), or with a jump{start or frational mathing (heur = 2), as will be explainedin Setion 3.5.The interfae funtions are spei�ed in the header �le MWM.t. The user an swithbetween the single searh tree and the multiple searh tree approah by de�ning thetoken SST APPROACH.3hMWM.t: maximum{weight mathing algorithmi�template<lass NT>list<edge> MAX_WEIGHT_MATCHING(onst ugraph &G,onst edge_array<NT> &w,bool hek = true, int heur = 1) {edge_array<NT> w_mod(G);hsale edge weightsinode_array<NT> pot(G);node_array<int> b(G, -1);2We suppose, however, that the number type NT provides a division operation.3That is, in order to use the single searh tree approah, type #define SST APPROACH before the�le MWM.t is inluded.



3.1 Funtionality 59array<two_tuple<NT, int> > BT;total_t = used_time();#if defined(_SST_APPROACH)list<edge> M = MWM_SST(G, w_mod, pot, BT, b, heur, false);#elselist<edge> M = MWM_MST(G, w_mod, pot, BT, b, heur, false);#endiftotal_t = used_time(total_t);hek_t = used_time();if (hek) CHECK_MAX_WEIGHT_MATCHING(G, w_mod, M, pot, BT, b);hek_t = used_time(hek_t);return M;}We ompute a maximum{weight mathing with respet to a modi�ed weight funtionw mod whih equals w unless the number type NT is int , where w mod equals 4w.hsale edge weightsi�edge e;bool INT = LEDA_TYPE_ID(NT) == INT_TYPE_ID;forall_edges(e, G) w_mod[e℄ = (INT ? 4*w[e℄ : w[e℄);Thus, the dual solution and also the redued ost of eah edge will remain integralduring the ourse of the algorithm (see also Lemma 1.6.1).4When the SST APPROACH token has been de�ned, the funtionlist<edge> MWM SST(onst ugraph &G, onst edge array<NT> &w,node array<NT> &pot, array<two tuple<NT, int> > &BT,node array<int> &b, int heur, bool perfet)is alled. Its implementation will be the subjet of Setion 3.3. The implementationdetails of the funtionlist<edge> MWM MST(onst ugraph &G, onst edge array<NT> &w,node array<NT> &pot, array<two tuple<NT, int> > &BT,node array<int> &b, int heur, bool perfet)will be the subjet of Setion 3.4. Both funtions ompute a perfet mathing i� perfetis set to true. The total time needed (in CPU seonds) to ompute an optimal mathingis stored in a global variable total t (type oat ).The additional parameters pot , b and BT are used to prove optimality of the omputedmathing M . Their semantis is as follows. The potential of eah vertex is storedin the node array pot . BT represents the nested family of odd ardinality sets (seeSetion 1.3). Eah two tuple (zB; pB) in BT represents a non{trivial blossom B havingpotential zB and parent index pB. The parent index pB is set to �1 if B is a surfaeblossom. Otherwise, pB stores the index of the entry orresponding to the immediate4Apparently, the same purpose ould have been ahieved by a multipliation by two. However, theedge weights are multiplied by four so as to ensure that one{half the redued ost of any edge remainsintegral too.



60 Chapter 3. Implementation and Testssuperblossom of B.5 The index range of BT is [0; : : : ; k � 1℄, where k denotes thenumber of non{trivial blossoms. When Bi is a subblossom of B, the index of the entryorresponding to Bi is smaller than the one of B. The parent index for a vertex u isstored in the node array b.Using this data, the funtionvoid CHECK MAX WEIGHT MATCHING(onst ugraph &G,onst edge array<NT> &w,onst list<edge> &M,onst node array<NT> &pot,onst array<two tuple<NT, int> > &BT,onst node array<int> &b)an hek all optimality onditions given in Setion 1.6. The time (in CPU seonds)needed by the heker is kept in a global variable heker t (type oat). We will notdisuss the realization of that funtion and instead refer to Mehlhorn and N�aher [MN99℄.The interior of the funtion that omputes a maximum{weight perfet mathing lookssimilar.hMWM.t: maximum{weight perfet mathing algorithmi�template<lass NT>list<edge> MAX_WEIGHT_PERFECT_MATCHING(onst ugraph &G,onst edge_array<NT> &w,bool hek = true, int heur = 1) {edge_array<NT> w_mod(G);hsale edge weightsinode_array<NT> pot(G);node_array<int> b(G, -1);array<two_tuple<NT, int> > BT;total_t = used_time();#if defined(_SST_APPROACH)list<edge> M = MWM_SST(G, w_mod, pot, BT, b, heur, true);#elselist<edge> M = MWM_MST(G, w_mod, pot, BT, b, heur, true);#endiftotal_t = used_time(total_t);hek_t = used_time();CHECK_MAX_WEIGHT_PERFECT_MATCHING(G, w_mod, M, pot, BT, b);hek_t = used_time(hek_t);return M;}5The immediate superblossom onept is de�ned analogously to the immediate subblossom oneptgiven in Setion 1.3.



3.2 Conatenable Priority Queues ( onat pq ) 613.2 Conatenable Priority Queues ( onat pq )We implemented a data struture onat pq supporting all needed operations of datatype onatenable priority queue as introdued in Setion 2.4. The implementationis based on (a; b){trees; we hose a = 2 and b = 16. onat and split at item areessentially realized as disussed at the end of Setion 2.4. We do not intend to go intothe implementation details. Instead, the spei�ation of all operations needed in thesubsequent setions is given.In Setion 1.7 we outlined the idea of using a union{�nd data struture with split opera-tion to handle the surfae graph. The method we use in our implementation is di�erent.Sine a onatenable priority queue will be assigned to eah surfae blossom, we de-ided to extend the funtionality of onat pq suh that it also enables the maintenaneof the surfae graph. We use the underlying (a; b){trees to identify a setable objet(whih will be the surfae blossom) of a given item (whih will orrespond to a vertex).The way this is ahieved is as follows. Eah root of an (a; b){tree stores a pointer tothe objet representing that tree. Traversing from an item it towards the root, we anidentify the (a; b){tree objet ontaining the item it . Moreover, eah (a; b){tree objethas a generi pointer owner (a generi pointer is of type void�) whih is setable by theuser; see operation set owner . Consequently, the owner of any item it an be identi�ed(operation get owner ) in time O(log n), where n denotes the number of items in the(a; b){tree.1. De�nitionAn instane Q of the parameterized data type onat pq<P; I> is a olletion of items(type  pq item). Every item ontains a priority from a linearly ordered type P and aninformation from an arbitrary type I. We use hp; ii to denote a  pq item with priorityp and information i. The data struture requires a designated element in�nity of P ,with in�nity � p for all p 2 P and equality holds only if p = in�nity . An item hp; iiwith p = in�nity is irrelevant to Q. The number of items in Q is alled the size of Q.Q is empty when all its items are irrelevant, or when Q has size zero. A setable generipointer owner (type void�) is assoiated with Q.2. Creationonat pq<P; I> Q; reates an instane Q of type onat pq<P; I>based on the linear order de�ned by the globalompare funtion ompare(onst P&; onst P&)and initializes it with the empty priority queue.in�nity is set to the maximum value of type P .3. Operations pq item Q:init(P p; I i) initializes Q to the priority queue ontaining onlythe item hp; ii and returns that item.



62 Chapter 3. Implementation and TestsP Q:prio( pq item it) returns the priority of item it. Preondition: it isan item in Q.I Q:inf( pq item it) returns the information of item it. Preondition:it is an item in Q.void Q:onat(onat pq<P; I>& pq ; int dir = LEDA ::after )onatenates Q with pq . The items in Q preede(sueed) the items of pq , when dir = after (dir =before). pq is made empty, i.e. ontains no itemsthereafter.void Q:split at item( pq item it ; onat pq& pq1 ; onat pq& pq2 )splits Q at item it into pq1 and pq2 suh thatit is the last item of pq1 . In ase it = nil , pq2beomes Q and pq1 beomes empty. The instaneQ is empty thereafter, unless it is given as one ofthe arguments. pq item Q:�ndmin( ) returns an item with minimal priority (nil if Q isempty).P Q:del min( ) makes the item it = Q:�nd min() irrelevant toQ by setting its priority to in�nity . The formerpriority is returned.void Q:del item( pq item it) makes the item it irrelevant to Q. Preondition:it is an item in Q.bool Q:derease p( pq item it ; P x)makes x the new priority of item it. The fun-tion returns true i� the operation was suessful,i.e. Q:prio(it) was larger than x.bool Q:inrease p( pq item it ; P x)makes x the new priority of item it. The fun-tion returns true i� the operation was suessful,i.e. Q:prio(it) was smaller than x.int Q:size( ) returns the size of Q.bool Q:empty( ) returns true, if Q is empty, and false otherwise.void Q:reset( ) makes Q the empty priority queue by setting allpriorities to in�nity .void Q:lear( ) makes Q the empty priority queue by deleting allitems.void Q:set owner(GenPtr pt) sets owner of Q to the objet pointed to by thegeneri pointer pt (type void�).



3.3 Single Searh Tree Approah 634. Friend FuntionsGenPtr get owner( pq item it) returns the generi pointer owner of the instaneontaining item it .5. Iterationforall items(it;Q) f \the items of Q are suessively assigned to it" gforall(i;Q) f \the information parts of the items of Q are suessively assigned to i" g6. ImplementationAll aess operations take time O(1). onat and split at item take time O(logn), wheren is the (maximum) number of elements in the priority queue(s). Operations lear andreset take time O(n). All other operations take time (at most) O(log n).3.3 Single Searh Tree ApproahIn Chapter 1, we elaborated a generi algorithm (see Algorithm 1.6.3) of Edmonds'blossom{shrinking approah. Most of the details for its realization based on priorityqueues have been disussed in Chapter 2. In this setion, the results established areintegrated into a single searh tree implementation using priority queues.A major task in implementing the blossom{shrinking approah is onerned withthe representation of blossoms. We will �rst design a template lass blossom (typeblossom<NT>) that keeps all neessary information, and turn to the implementationof our algorithm afterwards.3.3.1 Data StruturesIn Chapter 2 we justi�ed extensively the need for eah surfae blossom to maintain itsown onatenable priority queue.Given the parameterized data type onat pq<P; I> as spei�ed in the last setion, thetemplate lass blossom an be de�ned as follows.hSST.t: data struturesi�template<lass NT> lass vertex;template<lass NT> lass blossom;hlass blossom: friend funtions | de�nitionitemplate<lass NT>lass blossom : publi virtual onat_pq<NT, vertex<NT>*> {hlass blossom: friend funtions | delarationipubli:hlass blossom: data membersi



64 Chapter 3. Implementation and Testshlass blossom: member funtionsiLEDA_MEMORY(blossom<NT>);};Class blossom inherits all properties of the data type onat pq<NT ; vertex<NT> � >.Additional data members and funtions will be de�ned below. The information partof eah item points to an objet of lass vertex . Essentially, the template lass vertexomprises all data assoiated with a vertex. For the single searh tree approah wehave:hSST.t: data struturesi+�template<lass NT> lass vertex {publi:NT pot;node my_node;node best_adj;vertex(NT d, node u) {pot = d;my_node = u;best_adj = nil;}LEDA_MEMORY(vertex<NT>);};Eah objet of type vertex<NT> stores its potential pot and its original vertex my node .The way we keep trak of the best edge for my node to an even tree vertex is by storingthis adjaent vertex in best adj .Data Members: A blossom is either even labeled, odd labeled or unlabeled. There-fore, a new type LABEL is de�ned.typedef enum {even, odd, unlabeled} LABEL;Moreover, eah blossom maintains its potential pot and its o�set o�set .hlass blossom: data membersi�LABEL label;NT pot;NT offset;The base and mate (if any) vertex of a blossom are stored in base andmate, respetively.Note that these two verties represent the endpoints of the mathing edge. In orderto organize the tree struture of the alternating tree, eah odd blossom keeps trak ofits disovery and predeessor vertex dis and pred . dis denotes the endpoint of thenon{mathing tree edge whih is ontained in the blossom and pred refers to the otherendpoint (see Figure 3.1). We wish to emphasize that these data will only be keptorretly for surfae blossoms.hlass blossom: data membersi+�node base, mate;node dis, pred;



3.3 Single Searh Tree Approah 65
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Figure 3.1: Consider the alternating tree T with root blossom B1 as depited above. LetBi denote the objet of type blossom<NT> representing the blossom Bi, 1 � i � 7. Forexample, the entries of B3 are set to base = v2, mate = u2 and dis = pred = nil andfor B4 we have base = u4, mate = v4, dis = v3 and pred = u3. The entries of all otherblossoms are set aordingly. Using this data, the (surfae) tree path from eah tree blos-som to the root blossom an be identi�ed easily. B1; : : : ;B7 de�ne a new blossom B. Let Bbe the objet orresponding to B. We have: B:shrink path = <u1; v1; u2; v2; : : : ; u7; v7> andB:subblossom p = <&B2 ;&B3 ; : : : ;&B7 ;&B1>.Additionally, eah non{trivial blossom stores its de�ning surfae yle as a list of vertiesin shrink path . All pointers of the immediate subblossom objets are olleted in a listsubblossom p.hlass blossom: data membersi+�list<node> shrink_path;list<blossom<NT>*> subblossom_p;We adopt the following order for the entries of these lists. Let C = (e1; e2; : : : ; e2k+1)denote the de�ning surfae yle of a blossom B. Eah edge ei = (ui; vi), 1 �i � 2k + 1, of C is regarded as being direted suh that vi�1 and ui, with v0 =v2k+1, are ontained in the same immediate subblossom Bi. Assume further thatB1 refers to the subblossom ontaining the base. Then, shrink path stores the listof verties <u1; v1; u2; v2; : : : u2k+1; v2k+1> and subblossom p onsists of the pointers<&B2;&B3; : : : ;&B2k+1;&B1>, where &Bi denotes the pointer to the blossom objetthat represents Bi. Refer to Figure 3.1 for an example.At the time of shrinking, the split item entry of eah (immediate) subblossom is set tothe last item of that blossom. This will enable restoration of the onatenable priorityqueues in an expand step later on.hlass blossom: data membersi+�_pq_item split_item;There are some additional data members that will be introdued in the ontext theyare �rst needed.



66 Chapter 3. Implementation and TestsMember Funtions: We outline only some of the member funtions; the remainingfuntions will be �lled in as needed. A funtion that returns the (stored) redued ostof the best edge (of all best edges inident to verties) of a blossom is implemented asfollows.hlass blossom: member funtionsi�onst NT min_prio() onst{ return (find_min() ? prio(find_min()) : INFINITY(NT)); }Here, INFINITY (NT ) simply returns the maximum value of type NT . The followingthree funtions return the appropriate entries stored in the information part of an itemit (type  pq item).hlass blossom: member funtionsi+�onst NT pot_of (_pq_item it) onst { return inf(it)->pot; }onst node node_of (_pq_item it) onst { return inf(it)->my_node; }onst node best_adj(_pq_item it) onst { return inf(it)->best_adj; }We must also provide a funtion to test whether or not a blossom is trivial: eah blossomontaining just one item is said to be trivial.hlass blossom: member funtionsi+�bool trivial() onst { return size() == 1; }Friend Funtions: Given the item it of a vertex, the following funtion will returna pointer to the blossom objet ontaining that vertex.hlass blossom: friend funtions | delarationi�friend blossom<NT>* blossom_of<NT>(_pq_item it);The funtion will also be used for testing whether or not two verties are ontained inthe same blossom.When a new blossom objet is reated, we all set owner (pt), where pt is the generipointer of the new blossom objet. Consequently, we an later ast the pointer returnedby get owner (it) to a pointer of type blossom<NT>�.hlass blossom: friend funtions | de�nitioni�template<lass NT> blossom<NT>* blossom_of(_pq_item it) {return (it ? (blossom<NT>*)(get_owner(it)) : nil);}Construtor: We are now in a position to de�ne the onstrutor of the lass blossom .As an optional argument, the base vertex b of the blossom to be reated an be given.hlass blossom: member funtionsi+�blossom(node b = nil) : onat_pq<NT, vertex<NT>*>() {set_owner(leda_ast(this));label = even;



3.3 Single Searh Tree Approah 67pot = offset = 0;base = b; mate = nil;dis = pred = nil;marker1 = marker2 = 0;item_in_T = item_in_O = nil;item_in_pq = nil;split_item = nil;}leda ast(this) simply asts the blossom pointer this to a generi pointer. The meaningof the missing data members marker1 , marker2 , item in T , item in O and item in pqwill beome lear shortly.We also de�ne a friend funtion that provides a more onvenient way of onstrutingand initializing a trivial blossom objet. The funtionhlass blossom: friend funtions | delarationi+�friend _pq_item new_blossom<>(NT d, node b, blossom<NT>* &B);reates a new blossom objet that onsists only of the vertex b having potential d. After-wards, B points to this new blossom objet and the  pq item of the item orrespondingto b is returned.hlass blossom: friend funtions | de�nitioni+�template<lass NT> _pq_item new_blossom(NT d, node b, blossom<NT>* &B) {B = new blossom<NT>(b);vertex<NT> *v = new vertex<NT>(d, b);return B->init(INFINITY(NT), v);}Note that we do not use the data member pot of the blossom lass to store the potentialof b | in fat, that data member is only used to maintain the potential of a non{trivial blossom. The priority of the item orresponding to b is set to INFINITY (NT )indiating that urrently no best edge is available.3.3.2 AlgorithmLet us turn to the implementation of Algorithm 1.6.3 that realizes the ideas outlined inChapter 2. The algorithm maintains the lower bounds Æ1; : : : ; Æ4 by the following datastrutures.hloal variablesi�NT delta1;NT delta2a;p_queue<NT, blossom<NT>*> delta2b;p_queue<NT, edge> delta3;p_queue<NT, blossom<NT>*> delta4;node resp_d1;edge resp_d2a;



68 Chapter 3. Implementation and Testsdelta1 keeps trak of the minimum (stored) potential of an even tree vertex that hasbeen enountered. delta1 is only used in the non{perfet mathing ase. The (atual)value of delta2a represents the (atual) redued ost of the best edge of all best edgesfrom an even non{tree vertex to an even tree vertex. The responsible vertex or edgeof delta1 and delta2a is stored in resp d1 and resp d2a , respetively.6 An item hp; ptiin delta2b represents the best edge of an unlabeled blossom pointed to by pt . The(atual) priority of p equals the (atual) redued ost of this edge. Eah edge e thatis a andidate for a shrink step has an item hp; ei in delta3 . The (atual) priority of pequals one half of the (atual) redued ost of edge e. delta4 ontains one item hp; ptifor eah non{trivial tree blossom. pt is a pointer to the blossom objet and the (atual)priority of p equals one half of the (atual) potential of that blossom.In Chapter 2 (Setion 2.3 and Setion 2.4) we have disussed the semantis of eah itemin any of those priority queues in more detail; we will not repeat that disussion here.A ounter Delta is used to aumulate the total sum of dual adjustments that havebeen performed up to the urrent stage of the algorithm.hloal variablesi+�NT Delta = 0;We need a mehanism to identify the pq item in delta2b or delta4 orresponding to ablossom objet. Therefore, we add the following data member to the blossom lass.hlass blossom: data membersi+�pq_item item_in_pq;Whenever a blossom sends an item to delta2b or delta4 , the orresponding pq item isstored in item in pq of that blossom.When a vertex beomes an even tree vertex, its inident edges will be sanned; it mayhappen that several verties beome even tree verties at one. Therefore, all new eventree verties are olleted in a queue Q whih is realized by a singly linked list of verties(type node slist).hloal variablesi+�node_slist Q(G);At the end of a phase the urrent alternating tree is destroyed and all priorities in eahonatenable priority queue need to be reset to in�nity . We therefore aumulate in Tall pointers to surfae blossoms that are part of the urrent alternating tree; and in Othe pointers of all unlabeled surfae blossoms (outside of T ) that are adjaent to anyeven tree blossom.hloal variablesi+�list<blossom<NT>*> T;list<blossom<NT>*> O;6In Chapter 2, we assumed that eah even tree vertex has an item in a priority queue delta1 ; andthat eah even non{tree surfae blossom has an item in a priority queue delta2 . However, it is suÆientin fat to keep trak of the data as desribed above: initiating the orresponding step for resp d1 orresp d2a will terminate the urrent phase.



3.3 Single Searh Tree Approah 69Sine we must be able to identify a blossom's item (type list item) in T or O, eahblossom objet stores this list item in the data member item in T or item in O , respe-tively.hlass blossom: data membersi+�list_item item_in_T;list_item item_in_O;An array item of (type node array< pq item>) is used to identify the orrespondingitem (type  pq item) for eah vertex of G.hloal variablesi+�node_array<_pq_item> item_of(G);Finally, we introdue some variables that are used frequently. M is a list of edges andwill be used to represent the resulting mathing. The maximum value of number typeNT is stored in INFTY .hloal variablesi+�edge e;node resp, opst, ur, adj, u, v, r;blossom<NT> *RESP, *OPST, *CUR, *ADJ, *R;list<edge> M;onst NT INFTY = INFINITY(NT);The overall struture of the algorithm omputing either a maximum{weight mathingor a maximum{weight perfet mathing is as follows.hSST.t: algorithmi�template<lass NT>list<edge> MWM_SST(onst ugraph &G, onst edge_array<NT> &w,node_array<NT> &pot, array<two_tuple<NT, int> > &BT,node_array<int> &b, int heur = 1, bool perfet = false) {hloal variablesihinitializationiforall_nodes(r, G) {R = _BLOSSOM_OF(r);if (R->mate) ontinue;hlear priority queues and QiR->status_hange(even, Delta, T, Q);bool terminate = false;while (!terminate) {hsan all edges of verties in Qihdetermine lower bounds and2b, : : : , and4 iif (delta2a == Delta) {haugment step using best edge of delta2aiterminate = true;}else if (delta1 == Delta) {



70 Chapter 3. Implementation and Testshalternate step using best node of delta1 iterminate = true;}else if (and2b == Delta) {hgrow step using best edge of delta2bi}else if (and3 == Delta) {hshrink step using best edge of delta3 i}else if (and4 == Delta) {hexpand step using best blossom of delta4 i}else {hdual adjustmenti}}}hextrat mathing and heker informationireturn M;}In a main loop, we iterate over all verties r of G. When the blossom R of r isunmathed, i.e. the mate of R equals nil , a phase is initiated. We de�ne the followingmaro in order to more elegantly retrieve the pointer to the blossom objet ontaininga given vertex.hSST.t: data struturesi+�#define _BLOSSOM_OF(this_node) \(this_node ? blossom_of<NT>(item_of[this_node℄) : nil)At the beginning of eah phase, delta1 ; : : : ; delta4 are reset and the queue Q is madeempty.hlear priority queues and Qi�delta1 = delta2a = INFTY;delta2b.lear(); delta3.lear(); delta4.lear();Q.lear();R is made an even tree blossom alling the member funtionvoid status hange(LABEL l, NT Delta, list<blossom<NT>*> &T, node slist &Q)the implementation of whih will be given shortly. In the inner while loop, we �rstsan all edges inident to verties of Q in order to maintain delta1 ; : : : ; delta4 orretly.Then, the minimum priorities of delta2b, delta3 and delta4 are determined and storedin and2b, and3 and and4 , respetively.hdetermine lower bounds and2b, : : : , and4 i�NT and2b = (delta2b.empty() ? INFTY : delta2b.prio(delta2b.find_min()));NT and3 = (delta3.empty() ? INFTY : delta3.prio(delta3.find_min()));NT and4 = (delta4.empty() ? INFTY : delta4.prio(delta4.find_min()));



3.3 Single Searh Tree Approah 71Thereafter, it is heked if any of those lower bounds equals zero.7 If so, the appropriatestep is initiated. Note that between two onseutive dual adjustments, di�erent stepsmay have to be exeuted. We adopt the onvention that all grow steps preede asingle shrink step, and, further, all shrink steps preede any expand step. This seemsreasonable to us, sine extending the tree in grow steps is rather heap ompared to ashrink step. Moreover, an expand step turned out to be more ostly than a shrink step.Finally, when we an hoose between either an augment step or an alternate step, weprefer the augment step. An augment step will derease the number of free verties bytwo, whereas an alternate step produes only a derease by one. When neither of thesesteps an be exeuted, a dual adjustment is performed in order to progress.hdual adjustmenti�NT delta = leda_min(delta1,leda_min(delta2a,leda_min(and2b,leda_min(and3, and4))));if ((delta == INFTY) && perfet) return M; // return empty mathingDelta = delta; // orresponds to Delta += (delta - Delta)A phase terminates, when either the ase delta1 == Delta (this never happens in theperfet mathing ase) or delta2a == Delta has ourred; or delta an be hosen asINFTY and thus no perfet mathing exists (in the perfet mathing ase only). Inthe latter ase, we return the empty mathing.Initialization: Depending on the value assigned to the argument heur , the algorithmuses a di�erent method to ompute an initial mathing and the vertex potentials.hinitializationi�int free = G.number_of_nodes();node_array<node> mate(G, nil);swith(heur) {ase 0: { hempty mathingi break; }ase 1: { hgreedy mathingi break; }default: { hjump start mathingi break; }}All three methods use the node array pot to store the initial potential of eah vertexand a node array mate to represent the mathing. free denotes the number of freeverties.When the initial mathing leaves no vertex unmathed it will be optimal and we animmediately return it.7Remember that the atual priorities are omputed by subtrating Delta from the stored priorities.Therefore, an atual priority equals zero i� the stored priority equals Delta.



72 Chapter 3. Implementation and Testshinitializationi+�if (free == 0) {hprepare solutionireturn M;}Otherwise, for eah vertex u of G a trivial blossom CUR with potential pot [u℄ is on-struted; the orresponding  pq item is stored in item of [u℄. When mate[u℄ is di�erentfrom nil , the data member mate of CUR is set to the vertex mate[u℄ and CUR getsunlabeled.hinitializationi+�forall_nodes(u, G) {item_of[u℄ = new_blossom<NT>(pot[u℄, u, CUR);if (mate[u℄) {CUR->mate = mate[u℄;CUR->label = unlabeled;}}Starting with an empty mathing, the potentials are set as outlined in Setion 1.6.3.hempty mathingi�forall_nodes(u, G) {if (outdeg(u) == 0) { pot[u℄ = 0; ontinue; }NT max = -INFTY;forall_adj_edges(e, u) max = leda_max(w[e℄, max);pot[u℄ = max/2;}For eah vertex u we determine the value max whih is maximum along all edge weightsof inident edges. The potential of u is set to max=2; pot [u℄ is set to zero, when noinident edge exists.The onstrution of a greedy mathing or a jump start mathing will be the subjet ofSetion 3.5. For now, it shall be suÆient to regardhgreedy mathingi�free = greedy_mathing(G, w, pot, mate, perfet);andhjump start mathingi�free = jump_start(G, w, pot, mate, perfet);as blak{boxes that return the appropriate data in pot , mate and free.In ase all verties are mathed after the initial mathing has been omputed, M anbe onstruted as shown below.



3.3 Single Searh Tree Approah 73hprepare solutioni�forall_edges(e, G) {u = soure(e);v = target(e);if (mate[u℄ && (mate[u℄ == v) &&mate[v℄ && (mate[v℄ == u))M.push(e);}For eah edge e, it is heked whether the endpoints are the mates of eah other, ornot; if so, e is a mathing edge and added to M . Observe that the information neededto hek optimality is set orretly: pot ontains the potential of eah vertex; BT isempty and all entries in the node array b are set to �1, indiating that eah vertex isa surfae blossom.Performing a Status Change: We next outline the member funtion of lassblossom that realizes a status hange.hlass blossom: member funtionsi+�void status_hange(LABEL l, NT Delta, list<blossom<NT>*> &T, node_slist &Q) {if (l == unlabeled) {hmake unlabeled non{tree blossomi}else if (l == odd) {hmake odd tree blossomi}else if (l == even) {hmake even tree blossomi}label = l;}The new status of the blossom objet is determined by the given label l. The funtionneeds to adjust the o�set of the blossom by some Delta as developed in Setion 2.1.Moreover, T and Q must be maintained orretly.When a blossom gets unlabeled, its o�set is adjusted depending on its urrent labellabel and the list item item in T of that blossom is deleted from T . Note that only treeblossoms an get unlabeled.hmake unlabeled non{tree blossomi�assert((label != l) && item_in_T);offset += (label == odd ? Delta : -Delta);T.del(item_in_T);item_in_T = nil;We only allow non{tree blossoms to beome odd tree blossoms.8 The o�set is dereasedby Delta and its pointer is added to T .8Why a blossom an hange its status from being an even labeled non{tree blossom to an odd labeledtree blossom will beome apparent when the realization of an augment step is inspeted more losely.



74 Chapter 3. Implementation and Testshmake odd tree blossomi�assert((label != l) && !item_in_T);offset -= Delta;item_in_T = T.append(this);Consider the ase where a blossom beomes an even tree blossom. When its label isodd , we only need to update the o�set . Otherwise, the blossom is a non{tree blossom.The o�set gets adjusted and its pointer is added to T .hmake even tree blossomi�assert((label != l) || !item_in_T);if (label == odd) offset += 2*Delta;else { // non-tree blossomoffset += Delta;item_in_T = T.append(this);}happend all verties to QiThere is something more to do here: all verties ontained in the blossom objet mustbe appended to Q. Therefore, we iterate over all items it of the blossom and appendthe vertex of this item (i.e. node of (it)) to Q. Some preparatory work is done as well.happend all verties to Qi�_pq_item it;forall_items(it, *this) {inf(it)->pot += offset;Q.append(node_of(it));}if (!trivial()) pot -= 2*offset;offset = 0;The potential of eah vertex ontained in the blossom and the potential of the blossomitself (if non{trivial) is adjusted suh that these atual potentials are omputed orretlywith respet to the new o�set o�set = 0. Sine every vertex of the blossom has to beinspeted anyway, it is reasonable to use the provident strategy (see Setion 2.1.3) atthis point.Sanning New Even Verties: For all verties that have been added to Q, i.e. theverties that have reently beome even tree verties, the inident edges have to besanned in order to keep the data in the global priority queues delta1 to delta4 as wellas the redued ost of edges assoiated with verties orretly.hsan all edges of verties in Qi�NT ur_pot, adj_pot, atual_p, stored_p;while (!Q.empty()) {ur = Q.pop();CUR = _BLOSSOM_OF(ur);ur_pot = ompute_potential(CUR, Delta, item_of[ur℄);if (!perfet) {htry to improve delta1 i



3.3 Single Searh Tree Approah 75}forall_adj_edges(e, ur) {adj = opposite(ur, e);ADJ = _BLOSSOM_OF(adj);hdisard dead and tree edgesiadj_pot = ompute_potential(ADJ, Delta, item_of[adj℄);atual_p = ur_pot + adj_pot - w[e℄;hprune edgesiif ((ADJ->label == even) && !ADJ->item_in_T) {hnew delta2a edge enounteredi}else if (ADJ->label == unlabeled) {hnew delta2b edge enounteredi}else if (ADJ->label == even) // ADJ is even tree blossomdelta3.insert(atual_p/2 + Delta, e);else if (ADJ->label == odd) {stored_p = atual_p - ADJ->offset;ADJ->improve_onnetion(item_of[adj℄, stored_p, ur);}}}For eah vertex ur of Q we ompute its atual potential ur pot alling the templatefuntion ompute potential , whih is essentially a realization of the Formulae (2.1) and(2.2) of Setion 2.1. The funtion an also be asked to ompute the atual potential ofa blossom CUR by setting it to nil .hSST.t: helpersi�template<lass NT>NT ompute_potential(blossom<NT> *CUR, NT Delta, _pq_item it = nil) {int a = (it == nil ? -2 : 1);int sigma = 0;if (CUR->item_in_T) sigma = (CUR->label == even ? -1 : 1);NT stored = (it == nil ? CUR->pot : CUR->pot_of(it));return stored + a * CUR->offset + a * sigma * Delta;}When ur pot is the new minimum potential of all even tree verties, delta1 and resp d1are set aordingly (only in non{perfet mathing ase).htry to improve delta1 i�if (ur_pot < delta1 - Delta) {delta1 = ur_pot + Delta;resp_d1 = ur;// if (delta1 == Delta) break;}When the new (atual) value of delta1 equals zero, i.e. delta1 ==Delta , we ould alsoimmediately break the san step. The alternate step for resp d1 would derease thenumber of free verties by one and terminate the phase. However, we defer this step



76 Chapter 3. Implementation and Testsand omplete the sanning proedure instead. The reason for doing so is that delta2amight also get dereased to zero and the orresponding augment step will then dereasethe number of free verties by two.All edges e inident to ur are onsidered. The potential of eah adjaent vertex adjis omputed so as to enable the omputation of the atual redued ost atual p of e.However, dead edges or tree edges are disarded:hdisard dead and tree edgesi�// do not onsider edges within a blossomif (CUR == ADJ) ontinue;// do not onsider tree edgesif ((ADJ->label == odd) &&((ADJ->base == adj && ADJ->mate == ur) ||(ADJ->dis == adj && ADJ->pred == ur))) ontinue;Moreover, we use a pruning strategy. Sine a phase terminates when the stored priorityof delta1 (in non{perfet ase only) or delta2a equals Delta, we an disard all edges ewhose stored priority exeeds the minimum value of delta1 and delta2a . We will say eis hopeless. Note, in the ase where e is a andidate edge for a shrink step, its storedpriority in delta3 will equal atual p=2 +Delta.9hprune edgesi�#if !defined(_NO_PRUNING)if ((ADJ->label == even) && ADJ->item_in_T) {if (atual_p/2 + Delta > leda_min(delta1, delta2a)) ontinue;}else if (atual_p + Delta > leda_min(delta1, delta2a)) ontinue;#endifDepending on the status of ADJ , four ases are distinguished. First, when ADJ is aneven non{tree blossom, a new delta2a edge has been enountered.hnew delta2a edge enounteredi�if (atual_p < delta2a - Delta) {delta2a = atual_p + Delta;resp_d2a = e;if (delta2a == Delta) break;}We hek whether e is the new best edge of delta2a ; if neessary, we update the value ofdelta2a and set resp d2a , aordingly. In ase where the new (atual) value of delta2aequals zero, we break the san step immediately.Seond, when ADJ is an unlabeled non{tree blossom, a new delta2b edge has beenenountered.9The user an swith o� the pruning strategy by de�ning the token NO PRUNING (#defineNO PRUNING) before the �le MWM.t is inluded.



3.3 Single Searh Tree Approah 77hnew delta2b edge enounteredi�stored_p = atual_p - ADJ->offset + Delta;if (ADJ->improve_onnetion(item_of[adj℄, stored_p, ur))if (ADJ->item_in_pq)delta2b.derease_p(ADJ->item_in_pq, atual_p + Delta);else {ADJ->item_in_pq = delta2b.insert(atual_p + Delta, ADJ);ADJ->item_in_O = O.append(ADJ);}The stored redued ost stored p of e is omputed aording to (2.5) (as desribed inSetion 2.1.2). We hek whether e is the new best edge of adj to an even labeled treevertex and, if so, update the data of the orresponding item by the following memberfuntion:hlass blossom: member funtionsi+�bool improve_onnetion(_pq_item it, NT x, node u) {if (!it) return false;NT old_min = min_prio();if (derease_p(it, x)) inf(it)->best_adj = u;return old_min != min_prio();}When the new priority x is less than the one urrently stored with it , i.e. funtionderease p returns true, the best adj entry is set to u. The funtion returns true i� theminimum priority of the blossom objet has hanged.In ase e is the new best edge of ADJ , we either derease the orresponding item indelta2b (if there exists any), or insert an appropriate one. In the latter ase, ADJ isadditionally inserted into O.The last two ases are easy. For an even tree blossom ADJ , an appropriate item issimply inserted into delta3 ; and for an odd tree blossom ADJ , we all the memberfuntion improve onnetion as desribed above.Alternate Step: We ome to the alternate step whih is initiated when the atualvalue of the minimum item in delta1 equals zero. Remember that this will never happenin the perfet mathing ase.halternate step using best node of delta1 i�RESP = _BLOSSOM_OF(resp_d1);RESP->base = resp_d1;alternate_path(RESP, item_of);hdestroy alternating tree T iRESP->label = even;First, the surfae blossom RESP of resp d1 is retrieved. The alive edges along theeven length path from RESP to the root blossom of the tree are alternately unmathedand mathed. RESP will beome free. The base of RESP is set to resp d1 , sine thatvertex has (atual) potential zero and thus is allowed to stay unmathed. The urrentalternating tree gets destroyed (as will be desribed below). Thereafter, RESP will



78 Chapter 3. Implementation and Testsbe an unlabeled non{tree blossom. Remember, however, that free non{tree blossomsare supposed to be even. Therefore, RESP 's label is orreted to even (we do not allstatus hange).Next, we desribe the funtion alternate path whih alternates the alive edges along thetree path from RESP to the root blossom of the tree. More preisely, eah mathingedge along this path will beome non{mathing and eah non{mathing edge beomesmathing. Reall that mathing edges are represented by means of the data membersbase and mate of lass blossom. The funtion will be reused in the augment step below.hSST.t: helpersi+�template<lass NT>void alternate_path(blossom<NT>* RESP, node_array<_pq_item> &item_of) {if (!RESP) return;blossom<NT> *CUR = RESP;node pred = RESP->base, dis = nil, mate;while (CUR) {if (CUR->label == even) {mate = CUR->mate;CUR->mate = dis;CUR->base = pred;CUR = _BLOSSOM_OF(mate);}else { // CUR->label == oddpred = CUR->pred;dis = CUR->dis;CUR->mate = pred;CUR->base = dis;CUR = _BLOSSOM_OF(pred);}}}Starting at CUR = RESP , we follow the tree path towards the root. We keep thefollowing invariants: pred and dis denote the predeessor and disovery vertex, re-spetively, of the odd blossom whih has been onsidered most reently; initially, predis set to the base of RESP and dis is set to nil . For an even labeled tree blossom CUR,we store the former mate in mate and set its data members mate and base to dis andpred , respetively. After this, the blossom to be inspeted next is retrieved by using theformer mate information stored in mate. When CUR is an odd tree blossom, pred anddis are set, and the mate and base data members of CUR are set aordingly. Thenext blossom to onsider is the blossom of pred .Augment Step: When the atual redued ost of resp d2a equals zero, the urrent(surfae) mathing is augmented. We need to determine the two surfae blossoms RESPand OPST of the endpoints of edge e = resp d2a .



3.3 Single Searh Tree Approah 79hdetermine RESP and OPST of ei�resp = soure(e);opst = target(e);RESP = _BLOSSOM_OF(resp);OPST = _BLOSSOM_OF(opst);if (!OPST->item_in_T) {leda_swap(resp, opst);leda_swap(RESP, OPST);}// invariant: OPST is tree blossomOPST denotes the blossom that is ontained in the alternating tree T . First, the evennon{tree blossom RESP is made an odd tree blossom (here we need to allow an evennon{tree blossom to beome an odd tree blossom); its pred and dis entries are setappropriately.haugment step using best edge of delta2ai�e = resp_d2a;hdetermine RESP and OPST of eiRESP->status_hange(odd, Delta, T, Q);RESP->pred = opst;RESP->dis = resp;alternate_path(RESP, item_of);hdestroy alternating tree T iThen, the edges along the tree path from RESP (traversing OPST ) towards the rootblossom of T are alternated alling alternate path . Finally, the alternating tree T getsdestroyed, as desribed next.Destroy Tree: T stores all pointers to the surfae blossoms ontained in the alter-nating tree. For eah suh blossom CUR, we reset the priorities of all items to in�nityby alling the member funtion reset (see Setion 3.2), and perform a status hange:CUR gets unlabeled.hdestroy alternating tree T i�forall(CUR, T) {if (CUR->label == odd) {CUR->dis = CUR->pred = nil;CUR->item_in_pq = nil;}CUR->reset();CUR->status_hange(unlabeled, Delta, T, Q);}T.lear();For an odd tree blossom CUR, the data members dis and pred as well as item in pqhave to be set to nil . Finally, T is made empty.Every unlabeled non{tree blossom that is adjaent to any even tree blossom ontainsat least one item whose priority di�ers from in�nity . All those items need to be reset(to in�nity).



80 Chapter 3. Implementation and Testshdestroy alternating tree T i+�forall(CUR, O) {CUR->reset();CUR->item_in_pq = nil;CUR->item_in_O = nil;}O.lear();The pointers of all unlabeled surfae blossoms adjaent to any even tree blossom havebeen olleted in O. Therefore, we all the member funtion reset for eah surfaeblossom pointed to by an entry CUR of O; nil gets assigned to CUR's data membersitem in pq and item in O . Alternatively, one ould also delete eah onnetion from avertex ontained in CUR to an even tree vertex separately. However, it turned out thatalling reset one for eah suh surfae blossom is more eÆient. O is afterwards madeempty.Grow Step: The implementation of a grow step is as follows. First, we retrieve theunlabeled non{tree blossom RESP having atual priority zero in delta2b.hgrow step using best edge of delta2bi�RESP = delta2b.inf(delta2b.find_min());delta2b.del_item(RESP->item_in_pq);RESP->item_in_pq = nil;The item of RESP in delta2b is deleted and item in pq is set to nil . The best edge ofRESP is stored with the minimum item. Using the member funtions of lass blossom ,it is not diÆult to obtain resp and opst , the two endpoints of that edge.hgrow step using best edge of delta2bi+�_pq_item best = RESP->find_min();resp = RESP->node_of(best);opst = RESP->best_adj(best);The vertex resp is ontained in RESP , and opst denotes the even labeled vertex in thealternating tree. RESP beomes an odd tree vertex having opst and resp as predeessorand disovery vertex, respetively.hgrow step using best edge of delta2bi+�RESP->status_hange(odd, Delta, T, Q);RESP->pred = opst;RESP->dis = resp;RESP is deleted from O and its data member item in O is set to nil , sine it is nolonger an unlabeled non{tree blossom; notie that RESP must have an item in O.hgrow step using best edge of delta2bi+�O.del_item(RESP->item_in_O);RESP->item_in_O = nil;We do not need to delete the onnetion stored with resp from RESP . This will bedone when the tree gets destroyed later on.



3.3 Single Searh Tree Approah 81Finally, when RESP is a non{trivial blossom, an item representing RESP and one halfof the value of its potential is inserted into delta4 .hgrow step using best edge of delta2bi+�if (!RESP->trivial())RESP->item_in_pq =delta4.insert(ompute_potential(RESP, Delta)/2 + Delta, RESP);The mate blossom MATE of RESP is also added to T . MATE beomes an even treeblossom.hgrow step using best edge of delta2bi+�node mate = RESP->mate;blossom<NT> *MATE = _BLOSSOM_OF(mate);MATE->status_hange(even, Delta, T, Q);if (MATE->item_in_pq) {delta2b.del_item(MATE->item_in_pq);MATE->item_in_pq = nil;O.del_item(MATE->item_in_O);RESP->item_in_O = nil;}When MATE has an item in delta2b it must be removed; we also delete its item fromO.Shrink Step: A shrink step is more omplex. The minimum item in delta3 ontainingthe new tight edge e is deleted and the blossoms RESP and OPST ontaining theendpoints resp and opst of e are determined (as desribed above).hshrink step using best edge of delta3 i�e = delta3.inf(delta3.find_min());delta3.del_min();hdetermine RESP and OPST of eiif (RESP == OPST) ontinue; // dead edge enountered;In ase e is dead, i.e. RESP and OPST refer to the same blossom, we simply disarde and ontinue with the main algorithm. Otherwise, we have to determine the lowestommon anestor blossom LCA of RESP and OPST as well as the shrink path, i.e. thede�ning odd length surfae yle, of the new blossom.hshrink step using best edge of delta3 i+�blossom<NT> *LCA;list<node> P1, P2;list<blossom<NT>*> sub1, sub2;hdetermine LCA and shrink path of RESP and OPST iThe ode hunk whih implements this will be presented shortly. For the time being,assume sub1 and P1 orrespond to the lists subblossom p and shrink path of the newblossom as desribed in Setion 3.3.1. We onstrut a new surfae blossom SUPERwhose base and mate equal those of LCA. Note that the priority queue of SUPER



82 Chapter 3. Implementation and Testsis empty. Its atual potential is set to zero (the stored potential must hene equal�2Delta); and P1 is assigned to its data member shrink path .hshrink step using best edge of delta3 i+�blossom<NT> *SUPER = new blossom<NT>(LCA->base);SUPER->pot = -2*Delta;SUPER->mate = LCA->mate;SUPER->shrink_path = P1;Subsequently, the priority queues of all subblossoms CUR of SUPER are onatenatedone after another, alling the member funtion append subblossom disussed below.When CUR is an odd tree blossom and has sent an item to delta4 , this item is deleted.Finally, SUPER is added to the list of T .hshrink step using best edge of delta3 i+�forall(CUR, sub1) {if (CUR->item_in_pq) {delta4.del_item(CUR->item_in_pq);CUR->item_in_pq = nil;}SUPER->append_subblossom(CUR, Delta, T, Q);}SUPER->item_in_T = T.append(SUPER);We next need to �ll in details of the member funtion append subblossom whih helpsto onatenate the subblossoms.hlass blossom: member funtionsi+�void append_subblossom(blossom<NT> *CUR, NT Delta,list<blossom<NT>*> &T, node_slist &Q) {if (CUR->label == odd)CUR->status_hange(even, Delta, T, Q);if (!CUR->trivial())CUR->pot += -2*CUR->offset + 2*Delta;T.del(CUR->item_in_T);CUR->item_in_T = nil;onat(*CUR);CUR->split_item = last_item();subblossom_p.append(CUR);}Eah odd subblossom is made even by alling the member funtion status hange . Inase CUR is non{trivial, its potential gets frozen as explained (in Setion 2.1.3). CURis deleted from T , sine it is no longer a surfae blossom. The priority queue of CURgets onatenated to that of the blossom objet by alling the inherited funtion onat .split item of CUR is set to the last item of the resulting priority queue (whih is the lastitem of CUR), and CUR is appended to the subblossom p list of the urrent blossomobjet.



3.3 Single Searh Tree Approah 83Determination of the Lowest Common Anestor: We will determine the lowestommon anestor blossom of RESP and OPST by traversing the two tree paths towardsthe root in a lok{step fashion.10We introdue an additional ounter lok , whih is initially set to zero and will beinremented eah time a lowest ommon anestor has to be determined; sine lokmight get inremented up to n2 times, type double has been hosen (in order to preventan overow as might our for type int).hloal variablesi+�double lok = 0;Moreover, eah blossom oupies two markers alled marker1 and marker2 .hlass blossom: data membersi+�double marker1, marker2;The way we determine the lowest ommon anestor is as follows. We traverse the treepaths from RESP and OPST towards the root. For eah even blossom CUR1 on the�rst path (starting with RESP), we set marker1 to lok ; and for eah even tree blossomCUR2 on the seond path (starting with OPST ), we set marker2 to lok . The lowestommon anestor blossom is enountered when either marker2 of CUR1 or marker1of CUR2 equals lok .hdetermine LCA and shrink path of RESP and OPST i�blossom<NT> *CUR1 = RESP, *CUR2 = OPST;CUR1->marker1 = CUR2->marker2 = ++lok;P1.push(resp); P2.push(opst);while (CUR1->marker2 != lok && CUR2->marker1 != lok &&(CUR1->mate != nil || CUR2->mate != nil)) {if (CUR1->mate) {sub1.push(CUR1);P1.push(CUR1->base); P1.push(CUR1->mate);CUR1 = _BLOSSOM_OF(CUR1->mate);sub1.push(CUR1);P1.push(CUR1->dis); P1.push(CUR1->pred);CUR1 = _BLOSSOM_OF(CUR1->pred);CUR1->marker1 = lok;}if (CUR2->mate) {sub2.push(CUR2);P2.push(CUR2->base); P2.push(CUR2->mate);CUR2 = _BLOSSOM_OF(CUR2->mate);sub2.push(CUR2);P2.push(CUR2->dis); P2.push(CUR2->pred);CUR2 = _BLOSSOM_OF(CUR2->pred);10A trivial method to determine the lowest ommon anestor of RESP and OPST is as follows.Starting at RESP we trae the tree path up to the root, marking eah traversed blossom. After this,following the tree path from OPST , the �rst marked blossom we meet will be the lowest ommonanestor. However, that method uses time O(n) per determination and thus would not omply withour worst{ase bound of O(m log n) per phase.



84 Chapter 3. Implementation and TestsCUR2->marker2 = lok;}}sub1.push(CUR1); sub2.push(CUR2);While we are traing the paths towards the lowest ommon anestor, we keep trakof the subblossoms and edges traversed on either path. The lists sub1 and sub2 (typelist<blossom<NT>�>) ontain the pointers of all traversed surfae blossoms from RESPand OPST to CUR1 and CUR2 in reversed order, respetively. P1 and P2 (typelist<node>) onsist of all vertex pairs representing the (direted) alive path from RESPand OPST to CUR1 and CUR2 in reversed order, respetively.Assume the while loop above is left, sine marker1 of CUR2 equals lok . CUR2 thendenotes the lowest ommon anestor blossom LCA. We orret sub1 and P1 suh thatthe head of sub1 equals LCA and the �rst vertex pair of P1 orresponds to the �rst(direted) edge on the reversed tree path from RESP to LCA. The ase where CUR1equals the lowest ommon anestor blossom LCA is treated analogously.hdetermine LCA and shrink path of RESP and OPST i+�if (CUR2->marker1 == lok) { // CUR2 is LCAwhile (sub1.head() != CUR2) {sub1.pop(); sub1.pop();P1.pop(); P1.pop();P1.pop(); P1.pop();}}else if (CUR1->marker2 == lok) { // CUR1 is LCAwhile (sub2.head() != CUR1) {sub2.pop(); sub2.pop();P2.pop(); P2.pop();P2.pop(); P2.pop();}}// sub1.head() == sub2.head() == LCALCA = sub1.pop();sub2.reverse(); sub1.on(sub2);P2.reverse(); P1.on(P2);Finally, the onatenation of sub1 and sub2 (the �rst element of sub1 is popped andsub2 is reversed beforehand) yields the desired list sub1 orresponding to the listsubblossom p of the new blossom objet as spei�ed previously. Analogously, the on-atenation of P1 with the reversed path P2 orresponds to the shrink path of the newblossom.Expand Step: The responsible blossom RESP whih is going to be expanded aneasily be obtained from delta4 .hexpand step using best blossom of delta4 i�RESP = delta4.inf(delta4.find_min());delta4.del_item(RESP->item_in_pq);



3.3 Single Searh Tree Approah 85Next, we need to reover the data for eah (immediate) subblossom of RESP . Therefore,we de�ne a new member funtion expand whih restores the priority queue for eahsubblossom of RESP and unfreezes the potential if neessary. RESP is deleted from Tand the pointers of all subblossoms are added to T .hexpand step using best blossom of delta4 i+�RESP->expand(Delta);forall(CUR, RESP->subblossom_p)CUR->item_in_T = T.append(CUR);T.del(RESP->item_in_T);The details of the member funtion expand are disussed next. Later on, we will alsouse that member funtion to expand an even or unlabeled non{tree blossom. We iterateover all (immediate) subblossoms of the blossom objet stored in the subblossom p list.For eah subblossom CUR we split the urrent priority queue of the blossom objet atCUR's split item into two. The �rst of whih gets assigned to CUR and the remainingbeomes the new urrent priority queue of the blossom objet (whih will be split inthe next iteration). At the end, all subblossom priority queues are restored and thepriority queue of the blossom objet is empty.hlass blossom: member funtionsi+�void expand(NT Delta) {blossom<NT> *CUR;forall(CUR, subblossom_p) {split_at_item(CUR->split_item, *CUR, *this);CUR->offset = offset;CUR->label = label;if (!CUR->trivial() && label == odd)CUR->pot += 2*offset + 2*Delta;else if (!CUR->trivial()) {assert(!CUR->item_in_T);assert(CUR->label == even || CUR->label == unlabeled);CUR->pot += 2*offset;}}}Moreover, the o�set of eah subblossom CUR is set to the o�set value of the blossomobjet. Reall that at the time of shrinking, we arranged that eah subblossom is labeledeven. However, the atual potential of eah vertex, and the redued ost assoiated withit, is omputed orretly with respet to the status of the blossom objet ontaining thatvertex. Therefore, eah subblossom is labeled aording to the blossom objet (allingstatus hange would be wrong). Finally, the potential of eah non{trivial subblossomCUR gets unfrozen (by the formula given in Setion 2.1.3).We an now determine the base blossom BASE and the disovery blossom DISC ofRESP as follows.



86 Chapter 3. Implementation and Testshexpand step using best blossom of delta4 i+�blossom<NT> *BASE = _BLOSSOM_OF(RESP->base);blossom<NT> *DISC = _BLOSSOM_OF(RESP->dis);int dist = RESP->restore_mathing(BASE, DISC);hextend alternating treeidelete RESP;The mathing needs to be restored for the subblossoms. We do so by alling themember funtion restore mathing whih will be the subjet of the next paragraph. Inthe ode hunk to extend the alternating tree, we will set up some additional data forthe subblossoms along the even length (alive) path from BASE to DISC , and, moreover,remove the remaining subblossoms from T . Finally, we an destroy the blossom objetpointed to by RESP .Restoring the Mathing: The member funtion restore mathing restores themathing data for all subblossoms of the blossom objet.hlass blossom: member funtionsi+�int restore_mathing(blossom<NT> *BASE, blossom<NT> *DISC) {hylially rotate subblossom p and shrink path listihalternately math/unmath subblossoms along subblossom pireturn dist;}The idea is simple. We start at the base blossom BASE and alternately unmath andmath the edges along the odd length (alive) yle (represented by shrink path). Firstof all, we need to ylially rotate the lists subblossom p and shrink path until the baseblossom BASE ours at the end of subblossom p:hylially rotate subblossom p and shrink path listi�while (subblossom_p.tail() != BASE) {subblossom_p.append(subblossom_p.pop());shrink_path.append(shrink_path.pop());shrink_path.append(shrink_path.pop());}Note that the i{th vertex pair of shrink path orresponds to the inoming edge of thei{th subblossom on subblossom p. The mate and base entries of the BASE blossom areset to mate and base of the blossom objet, respetively.halternately math/unmath subblossoms along subblossom pi�BASE->mate = mate;BASE->base = base;Then, the subblossoms along the subblossom p list are mathed pairwise. In the proess,we keep trak of the position dist of DISC in subblossom p; we start ounting with 1.



3.3 Single Searh Tree Approah 87halternately math/unmath subblossoms along subblossom pi+�node b, m;int dist, pos = 1;list_item p_it = shrink_path.first();list_item sub_it = subblossom_p.first();blossom<NT> *CUR = subblossom_p.inf(sub_it), *ADJ;while (CUR != BASE) {if (CUR == DISC) dist = pos;sub_it = subblossom_p.su(sub_it); pos++;ADJ = subblossom_p.inf(sub_it);if (ADJ == DISC) dist = pos;p_it = shrink_path.su(p_it);p_it = shrink_path.su(p_it); b = shrink_path.inf(p_it);p_it = shrink_path.su(p_it); m = shrink_path.inf(p_it);CUR->base = b; CUR->mate = m;ADJ->base = m; ADJ->mate = b;sub_it = subblossom_p.su(sub_it); pos++;CUR = subblossom_p.inf(sub_it);p_it = shrink_path.su(p_it);}if (CUR == DISC) dist = pos;Extending the Alternating Tree: We need to set up some additional data, suh asthe pred and dis pointers et., for the subblossoms of RESP lying on the even length(alive) path from BASE to DISC . Furthermore, all remaining subblossoms must leaveT . The way we ahieve the desired result is by another traversal of the blossom yle.We start at the base blossom BASE and follow the even length path to DISC , settingup the neessary data for eah tree blossom on this path. After this, all remainingsubblossoms on the blossom yle beome unlabeled and leave T .Remember that dist stores the position of DISC in subblossom p and that BASE is thelast element in this list. Moreover, we know that the number of elements in subblossom pis odd. When dist is odd, the reversal of subblossom p ontains all subblossoms ofthe even length path from BASE to DISC followed by all subblossoms that leave T .Otherwise, when dist is even, we move BASE to the head of subblossom p. Again,subblossom p then onsists of the subblossoms of the even length path from BASE toDISC followed by the subblossoms leaving T .hextend alternating treei�if (dist % 2) {RESP->subblossom_p.reverse();RESP->shrink_path.reverse();}else RESP->subblossom_p.push(RESP->subblossom_p.Pop());We establish the following invariant for the vertex pairs along shrink path . The i{thvertex pair of shrink path orresponds to the outgoing edge of the i-th subblossom insubblossom p.



88 Chapter 3. Implementation and TestsNext, we turn to the set up of the data for the subblossoms staying in T . First, thedisovery and predeessor verties of DISC are set aordingly.hextend alternating treei+�DISC->dis = RESP->dis;DISC->pred = RESP->pred;Next, the �rst two elements CUR and ADJ are popped from the subblossom p list;CUR orresponds to an odd blossom and ADJ to an even blossom. We set the predand dis entries for CUR; and in ase CUR is non{trivial, insert an item in delta4 .ADJ is made even. This proess is repeated until the urrent blossom CUR equalsDISC .hextend alternating treei+�CUR = RESP->subblossom_p.pop();while (CUR != DISC) {ADJ = RESP->subblossom_p.pop();ur = RESP->shrink_path.pop();adj = RESP->shrink_path.pop();CUR->pred = adj; CUR->dis = ur;if (!CUR->trivial())CUR->item_in_pq =delta4.insert(ompute_potential(CUR, Delta)/2 + Delta, CUR);ADJ->status_hange(even, Delta, T, Q);RESP->shrink_path.pop();RESP->shrink_path.pop();CUR = RESP->subblossom_p.pop();}// send item for DISC alsoif (!CUR->trivial())CUR->item_in_pq =delta4.insert(ompute_potential(CUR, Delta)/2 + Delta, CUR);Finally, eah remaining blossom CUR in subblossom p gets unlabeled (and is therebyremoved from T ). When the priority queue of CUR is not empty, its best edge is sentto delta2b and CUR is inserted into O. Moreover, the pred and dis entries of CURneed to be set to nil .hextend alternating treei+�while (!RESP->subblossom_p.empty()) {CUR = RESP->subblossom_p.pop();CUR->status_hange(unlabeled, Delta, T, Q);if (!CUR->empty()) {CUR->item_in_pq = delta2b.insert(CUR->min_prio() + CUR->offset, CUR);CUR->item_in_O = O.append(CUR);}CUR->pred = CUR->dis = nil;}This onludes the disussion of all details onerned with an expand step.



3.3 Single Searh Tree Approah 89Extrating Mathing and Cheker Information: The algorithm terminates witha surfae mathing. We have to extrat the original mathing M (type list<edge>) byexpanding all non{trivial blossoms (whih are either labeled even or unlabeled).hextrat mathing and heker informationi�int k = 0;forall_nodes(v, G)unpak_blossom(_BLOSSOM_OF(v), item_of, pot, b, BT, k, -1, Delta);if (k != 0) BT.resize(k);forall_edges(e, G)if (_BLOSSOM_OF(soure(e))->mate == target(e)) M.push(e);We use a funtion unpak blossom whih reursively expands all subblossoms to a givenblossom; simultaneously, the information needed by the heker will be onstruted.A surfae blossom is expanded ompletely, the �rst time when one of its verties isonsidered. When all blossoms are expanded, we have to reset the index range ofBT to [0; : : : ; k � 1℄, where k will refer to the number of non{trivial surfae blossoms.Finally, eah mathing edge is added to M .We turn to the desription of the funtion unpak blossom :hSST.t: helpersi+�template<lass NT>void unpak_blossom(blossom<NT> *RESP, onst node_array<_pq_item> &item_of,node_array<NT> &pot, node_array<int> &b,array<two_tuple<NT, int> > &BT,int &k, int parent, NT Delta) {if (RESP->trivial()) {hset up heker data for trivial blossomi}else {hset up heker data for non{trivial blossomiRESP->expand(Delta);blossom<NT> *BASE = _BLOSSOM_OF(RESP->base);blossom<NT> *DISC = nil;RESP->restore_mathing(BASE, DISC);blossom<NT>* CUR;forall(CUR, RESP->subblossom_p)unpak_blossom(CUR, item_of, pot, b, BT, k, idx, Delta);delete RESP;}}The funtion reates the data pot , b and BT needed for the heker. We disussedthe semantis of these arrays in Setion 3.1 and will not repeat the disussion here. kdenotes the index that is used to store the next non{trivial blossom data in BT . Weuse parent to pass the parent index of a non{trivial surfae blossom to its (immediate)subblossoms.First, assume RESP is a trivial blossom ontaining only the vertex ur . When RESPhas already been expanded, i.e. b[ur ℄ != �1, we immediately leave unpak blossom .



90 Chapter 3. Implementation and TestsOtherwise, we simply set up its heker data:hset up heker data for trivial blossomi�node ur = RESP->node_of(RESP->first_item());if (b[ur℄ != -1) return;pot[ur℄ = ompute_potential(RESP, Delta, item_of[ur℄);b[ur℄ = parent;The atual potential of the vertex ur is omputed and entered in pot [ur ℄. b[ur ℄ isset to the parent index parent (of the smallest non{trivial blossom ontaining ur ; or�1).When RESP is non{trivial, its heker data is set up as follows.hset up heker data for non{trivial blossomi�if (k > BT.high()) BT.resize(2*k+1);BT[k℄.first() = ompute_potential(RESP, Delta);BT[k℄.seond() = parent;int idx = k++;We double the size of BT whenever k exeeds the highest index of BT . The atualpotential of RESP is omputed and stored in the �rst omponent of BT [k℄. RESP 'sparent index is stored in the seond omponent. We keep the urrent value of k in idx(whih will be used as the parent index for the reursive alls) and inrement k.Subsequently, the subblossoms are expanded and the mathing is restored for the (im-mediate) subblossoms of RESP . The funtions needed to ahieve this were disussedfor the expand step (see above). Eah immediate subblossom gets expanded reursively,by alling unpak blossom for it. The parent index for the reursive alls is set to theindex value idx of RESP in BT .3.4 Multiple Searh Tree ApproahThe eÆieny of a priority queue based implementation of Edmonds' blossom{shrinkingapproah is substantially improved when several trees are grown simultaneously. Wenext sketh the basi ideas underlying our multiple searh tree approah. The imple-mentation details will be presented in the subsequent setions.An alternating tree Ti is rooted at eah free vertex ri. Eah tree Ti is extended as in thesingle searh tree approah. That is, we perform alternate, grow, shrink and expandsteps as before. However, an augment step is performed di�erently: when a tight edgeuv, u+ 2 Ti and v+ 2 Tj with Ti 6= Tj exists, the urrent mathing is augmented alongthe two tree paths (from u and v to their roots), and u and v get mathed. A dualadjustment by Æ hanges the potentials of all verties and surfae blossoms as explainedin Setion 1.6.3. As before, the value of Æ is determined by the lower bounds Æ1; : : : ; Æ4;Æ1 is only taken into aount in the non{perfet mathing ase. But note that thede�nition of Æ3 needs to be re�ned now. The redued ost of an edge uv, with u+ 2 Ti,v+ 2 Tj and Ti 6= Tj , dereases by 2Æ for a dual adjustment. Therefore, the reduedosts of those edges have to be taken into onsideration as well. More preisely, we



3.4 Multiple Searh Tree Approah 91rede�ne Æ3 as follows:Æ3 = minuv2E f�uv=2 : u+ 2 Ti; v+ 2 Tjg;where Ti and Tj refer to any of the alternating trees (di�erent or equal).In the multiple searh tree approah, eah vertex u keeps its best onnetion to analternating tree Ti. An edge uvi inident to u is alled a best onnetion from u to Ti,when(1) vi is an even tree vertex in Ti, and(2) the (stored) redued ost �uvi is minimal along all other (stored) redued osts�uvj , with v+j 2 Ti, i.e. �uvi = minuvj2Ef�uvj : v+j 2 Tig:When several best onnetions from u to a �xed tree Ti exist, the best onnetion fromu to Ti will refer to any of those.For eah vertex u we have a priority queue Pu whih stores the best onnetions from uto all existing alternating trees. However, even tree verties form an exeption: whenu+ 2 Ti is an even tree vertex ontained in an alternating tree Ti, we do not keep thebest onnetion from u to its own tree Ti in Pu. When uvi is the best onnetion fromu to Ti, the orresponding item in Pu equals h�uvi ; vii, where �uvi denotes the (stored)redued ost of that edge.As before, eah surfae blossom B (trivial or non{trivial) is assoiated with a on-atenable priority queue PB. Eah vertex u 2 B has a representative item in PB. Therepresentative item of a vertex u in PB orresponds to the minimum of all best onne-tions of u (with regard to the redued osts). Thus, the minimum item in PB representsthe best onnetion of B.In Setion 2.1 we presented a strategy to handle the varying priorities for eah of thesepriority queues.An alternating tree Ti ollets all edges uv that are andidates for a shrink step,i.e. u+; v+ 2 Ti, in a priority queue PTi . The priority stored with eah suh edgeuv orresponds to the (stored) redued ost of that edge. In the non{perfet mathingase, Ti knows its even vertex u+i 2 Ti whose (stored) potential is minimum along alleven tree verties in Ti.The way we will use the data assoiated with eah surfae blossom or alternating tree isas follows. Again, the lower bounds Æ1; : : : ; Æ4 that determine the value of Æ are realizedby means of the priority queues delta1 to delta4 .In the non{perfet mathing ase, eah alternating tree Ti has a orresponding itemhyui ; uii in delta1 . u+i 2 Ti denotes the even vertex stored with Ti as introdued before;and yui equals the (stored) potential of ui.Eah non{tree blossomBf?j+g sends its best onnetion to delta2 . An even labeled non{tree blossom will only our in the non{perfet mathing ase. The (atual) priority ofeah item in delta2 equals the (atual) redued ost of the represented edge.Æ3 is realized by two priority queues delta3a and delta3b . Generally speaking, delta3akeeps best onnetions that an be used for an augment step, and delta3b olletsandidate edges for a shrink step. More preisely, for eah best onnetion of an even



92 Chapter 3. Implementation and Teststree blossom B+ 2 Ti, we have an appropriate item in delta3a .11 An alternating tree Tisends its best andidate edge uv from PTi to delta3b. In both priority queues, the atualpriorities will orrespond to one half of the atual redued ost of the orrespondingedges.Finally, in delta4 we ollet all odd tree blossoms. The atual priority of eah itemequals one half of the atual potential of the orresponding blossom.The ideas outlined should suÆe for the moment. All remaining details will beomelear in the rest of this setion, where we disuss our implementation of a multiplesearh tree approah. Many partiulars have been presented for the single searh treeapproah in the preeding setion. We will therefore fous on the ensuing modi�ationsand extensions.3.4.1 Data StruturesWe ome to the data strutures of our implementation.hMST.t: data struturesi�template<lass NT> lass blossom;template<lass NT> lass vertex;template<lass NT> lass tree;hlass blossomihlass vertex ihlass treeiAs before, blossoms are represented by an objet of lass blossom . All data membersand most of the member funtions that have been introdued for that lass in thepreeding setion will be reused.De�nition of the Additional Class vertex :We de�ne a lass vertex whih keeps all data assoiated with a vertex. Its overallstruture is given below.hlass vertex i�template<lass NT>lass vertex : publi virtual p_queue<NT, node> {publi:NT pot;node my_node;h_array<node, pq_item> ITEM_OF;hlass vertex: member funtionsiLEDA_MEMORY(vertex<NT>);};11Here, we need to have eah even tree vertex keep trak of its best onnetions to other, i.e. di�erent,alternating trees.



3.4 Multiple Searh Tree Approah 93Class vertex inherits all properties of a priority queue (type p queue<NT ; node>). Thepriorities are of type NT and the information part refers to a vertex. Eah best on-netion uvi of a vertex u to an alternating tree Ti is represented by an item h�uvi ; viiin the priority queue. As before, pot is set to the (stored) potential u and my nodedenotes the vertex u itself. We will need to identify the item orresponding to u'sbest onnetion to a given tree Ti. Therefore, we use a hashing array ITEM OF (typeh array<node ; pq item>) whih maps the root vertex ri of a tree Ti to the appropriateitem (type pq item). h array is a dynami data type provided by LEDA. It is imple-mented by hashing with haining. All aess operations take expeted time O(1). Theoperations of this data type that are used will be explained briey at the time they are�rst needed.Construtor: The onstrutor of lass vertex is trivial. It simply reates a new vertexobjet for a vertex u having potential d.hlass vertex: member funtionsi�vertex(NT d, node u) : p_queue<NT, node>() { pot = d; my_node = u; }The objet is initialized with the empty priority queue, and ITEM OF is unde�ned forall verties.Member Funtions: We ome to some standard aess funtions. min prio returnsthe priority of the minimum item; and min inf the information part.hlass vertex: member funtionsi+�NT min_prio() onst{ return (find_min() ? prio(find_min()) : INFINITY(NT)); }node min_inf() onst{ return (find_min() ? inf(find_min()) : nil); }As before, INFINITY (NT ) or nil is returned, respetively, when the priority queue isempty.We also need to rede�ne the member funtion best adj of lass blossom:hlass blossom: member funtionsi+�onst node best_adj(_pq_item it) onst { return inf(it)->min_inf(); }This funtion returns the vertex stored with the minimum item in the priority queueof a vertex objet (inf (it)).The following member funtion tries to improve the best onnetion of a vertex objetto a tree, say T , rooted at r.hlass vertex: member funtionsi+�bool derease_p(node u, NT x, node r) {NT old_min = min_prio();if (!ITEM_OF.defined(r))



94 Chapter 3. Implementation and TestsITEM_OF[r℄ = insert(x, u);else {pq_item it = ITEM_OF[r℄;if (prio(it) > x) {p_queue<NT, node>::derease_p(it, x);p_queue<NT, node>::hange_inf(it, u);}}return old_min != min_prio();}u denotes the even tree vertex in T , and x will orrespond to the (stored) redued ostof the edge from my node to u. First, we hek whether the vertex objet stores an itemrepresenting a best onnetion to T . We do so by means of a de�ned operation providedby the data type h array . de�ned(r) returns true, i� an item has been set for r. In thease where r is not de�ned for ITEM OF , we insert a new item hx; ui representing thebest onnetion to T . ITEM OF [r℄ is set to the orresponding pq item (and heneforthde�ned for r). Otherwise, we an retrieve the item it of the urrent best onnetion toT by an aess operation ITEM OF [r℄. When x is smaller than the priority urrentlystored with it , the priority of it is dereased to x and the information is hanged to u.The funtion returns true, i� the minimum priority of the vertex objet has hanged.We will need a member funtion to delete the best onnetion of a vertex objet to atree rooted at r.hlass vertex: member funtionsi+�bool del(node r) {if (!ITEM_OF.defined(r)) return false;NT old_min = min_prio();del_item(ITEM_OF[r℄);ITEM_OF.undefine(r);return old_min != min_prio();}Given the root vertex r, we an look up its item using the aess operation ITEM OF [r℄;when ITEM OF is not de�ned for r nothing has to be done. This item is deleted fromthe priority queue and ITEM OF beomes unde�ned for r by alling unde�ne(r). If theminimum priority has hanged due to the deletion, the funtion returns true; otherwisefalse.De�nition of the Additional Class tree:We de�ne a new lass tree to maintain the neessary data for the alternating trees.hlass treei�hlass tree: friend funtions | de�nitionitemplate<lass NT> lass tree {hlass tree: friend funtions | delarationipubli:node root;



3.4 Multiple Searh Tree Approah 95node d1_node;list<blossom<NT>*> my_blossoms;p_queue<NT, edge> d3b_edges;pq_item item_in_d3b;hlass tree: member funtionsiLEDA_MEMORY(tree<NT>);};An objet T of lass tree (type tree<NT>) stores its root vertex in root . The pointers ofall surfae blossoms ontained in T are olleted in a list my blossoms . d1 node denotesan even vertex of T having minimum potential (along all even verties of T ); this entrywill be used in the non{perfet mathing ase only. Additionally, eah alternating treeT has its own priority queue d3b edges . An item hp; ei in d3b edges represents an edge ehaving (stored) redued ost p; moreover, e is a andidate for a shrink step, i.e. e = uvwith u+; v+ 2 T . The minimum item of d3b edges is sent as a representative to a globalpriority queue delta3b. item in d3b enables the identi�ation of this item in delta3b .p qWe briey explain why we deided to keep a separate priority queue for eah alternating tree.One ould, alternatively, simply insert all these edges in the global priority queue delta3b. Butwhen an alternating tree T is destroyed after an augment step, we would need a mehanism toidentify all andidate edges of T in delta3b . Eah suh edge would have to be deleted separatelyfrom delta3b onsuming time O(logm); or O(m logm) in total.In our strategy, however, we simply delete the representative of T (aessible by item in d3b)and make the priority queue d3b edges empty. This will take total time O(logm+m).x yEah blossom stores a pointer to its alternating tree. That is, we add the followingdata member to the blossom lass:hlass blossom: data membersi+�tree<NT> *my_tree;When a new blossom objet is onstruted, my tree is set to nil . Furthermore, an aessoperation tree root is de�ned to return the root vertex of the alternating tree ontainingthe blossom.hlass blossom: member funtionsi+�onst node tree_root() onst { return (my_tree ? my_tree->root : nil); }Construtor: The onstrution of a tree objet is trivial. d1 node and item in d3bare set to nil . A root vertex r for the tree objet to be reated an be given as anoptional argument.hlass tree: member funtionsi�tree(node r = nil) { root = r; d1_node = nil; item_in_d3b = nil; }Initially, my blossoms is empty and d3b edges ontains no items.Member Funtions: At this, we present only some basi member funtions. Theremaining ones will be introdued when required.



96 Chapter 3. Implementation and TestsA blossom objet (pointed to by) B is added to a tree as follows:hlass tree: member funtionsi+�void add(blossom<NT> *B){ B->item_in_T = my_blossoms.append(B); B->my_tree = this; }B is appended to the list my blossom of the alternating tree. The item (type list item)of B in my blossoms is stored in the data member item in T of B; and my tree of B isset to the urrent tree objet.Conversely, the removal of a blossom B from an alternating tree is realized by remove :hlass tree: member funtionsi+�void remove(blossom<NT> *B){ my_blossoms.del(B->item_in_T); B->item_in_T = nil; B->my_tree = nil; }The operations needed to retrieve the priority or information part of the minimum itemin d3b edges are given below.hlass tree: member funtionsi+�onst NT min_prio() onst {return (d3b_edges.find_min() ? \d3b_edges.prio(d3b_edges.find_min()) : INFINITY(NT)); }onst edge min_inf() onst{ return (d3b_edges.find_min() ? \d3b_edges.inf(d3b_edges.find_min()) : nil); }We de�ne an operation ins : it inserts an item hx; ei for an edge e having (stored)redued ost x into the priority queue d3b edges .hlass tree: member funtionsi+�bool ins(NT x, edge e) {pq_item old_min = d3b_edges.find_min();d3b_edges.insert(x, e);return (old_min != d3b_edges.find_min());}The funtion returns true, i� the minimum item in d3b edges has hanged.Friend Funtions: We delare a funtion new tree that allows us to reate a newtree objet more omfortably.hlass tree: friend funtions | delarationi�friend tree<NT>* new_tree<>(node r, blossom<NT>* &B);It onstruts a new tree objet that represents an alternating tree rooted at r. B isthe only blossom ontained in this tree. The funtion returns a pointer to the new treeobjet.



3.4 Multiple Searh Tree Approah 97hlass tree: friend funtions | de�nitioni�template<lass NT> tree<NT>* new_tree(node r, blossom<NT>* &B) {tree<NT>* T = new tree<NT>(r);B->item_in_T = T->my_blossoms.append(B);return T;}3.4.2 AlgorithmThe data strutures introdued above will suÆe for our multiple searh tree algorithm.We now proeed to present the implementation details of the algorithm. Altogether,�ve priority queues will be needed:hloal variablesi+�node_pq<NT> delta1(G);delta1 is a speialized priority queue of type node pq<NT>. A node pq is realized moreeÆiently than a priority queue of type p queue<NT ; node>. However, it an only beused with the restrition that eah vertex ours in at most one node pq . The data typesuits our purposes perfetly. For eah tree we set the priority of its d1 node in delta1to the (stored) potential of the vertex. Note that delta1 will only be used, however, inthe non{perfet ase.hloal variablesi+�p_queue<NT, blossom<NT>*> delta2;delta2 ontains an item hp; pti for eah non{tree blossom. The atual priority of pequals the atual redued ost of the best onnetion of the blossom pointed to by pt .In the perfet mathing ase, eah suh non{tree blossom will be unlabeled; however,in the non{perfet mathing ase also even labeled non{tree blossoms will our.hloal variablesi+�p_queue<NT, blossom<NT>*> delta3a;p_queue<NT, tree<NT>*> delta3b;In delta3a , eah item hp; pti refers to an even tree blossom (pointed to by pt). Theatual priority of p equals one half of the atual redued ost of the best onnetion ofthis blossom.Eah alternating tree T sends an item hp; pti to delta3b . pt is a pointer to T . The atualpriority of p orresponds to one half of the atual redued ost of the best andidateedge for a shrink step in T (stored in d3b edges).hloal variablesi+�p_queue<NT, blossom<NT>*> delta4;An item hp; pti in delta4 represents an odd tree blossom (pointed to by pt) havingatual potential equal to one half of the atual priority of p.Many loal variables, as introdued for the single searh tree algorithm, are needed hereas well. For instane, the node array item of , the singly linked list of nodes Q (type



98 Chapter 3. Implementation and Testsnode slist), the global ounter Delta, the list of mathing edgesM (type list<edge>), et.We will not disuss their meaning again, but refer to the desription in the preedingsetion.The overall struture of the algorithm hanges slightly.hMST.t: algorithmi�template<lass NT>list<edge> MWM_MST(onst ugraph &G, onst edge_array<NT> &w,node_array<NT> &pot, array<two_tuple<NT, int> > &BT,node_array<int> &b, int heur = 1, bool perfet = false) {hloal variablesiint free = G.number_of_nodes();hinitializationiwhile (free) {hsan all edges of verties in Qihdetermine lower bounds and1, : : : , and4 iif (and3a == Delta) {haugment step using best onnetion of blossom in delta3aifree -= 2;}else if (and1 == Delta) {halternate step using best node of delta1 ifree -= 1;}else if (and2 == Delta) {hgrow or augment step using best onnetion of blossom in delta2 i}else if (and3b == Delta) {hshrink step using best edge in delta3bi}else if (and4 == Delta) {hexpand step using best blossom of delta4 i}else {hdual adjustmenti}}hextrat mathing and heker informationireturn M;}The ounter free has to be interpreted as follows. In the perfet mathing ase, freesimply refers to the number of free verties. But in the non{perfet mathing ase,free denotes the number of free verties having (atual) potential larger than zero,i.e. the number of verties that violate (s)(2) (see Setion 1.6.1). An alternate stepwill derease free by 1, whereas an augment step dereases free by 2.We determine the minimum value and1 , and2 , and3a , and3b and and4 of eahpriority queue delta1 , delta2 , delta3a , delta3b and delta4 , respetively:



3.4 Multiple Searh Tree Approah 99hdetermine lower bounds and1, : : : , and4 i�NT and1 = (delta1.empty() ? INFTY : delta1.prio(delta1.find_min()));NT and2 = (delta2.empty() ? INFTY : delta2.prio(delta2.find_min()));NT and3a = (delta3a.empty() ? INFTY : delta3a.prio(delta3a.find_min()));NT and3b = (delta3b.empty() ? INFTY : delta3b.prio(delta3b.find_min()));NT and4 = (delta4.empty() ? INFTY : delta4.prio(delta4.find_min()));When any of these values equals Delta (and hene the atual priority equals zero),the appropriate step is initiated. Regarding the spei� order of these steps, the samearguments apply as were given for the single searh tree approah. The realization ofeah step will be disussed below.We perform a dual adjustment as follows. The ode is similar to the one disussed forthe single searh tree algorithm.hdual adjustmenti�NT delta = leda_min(and1,leda_min(and2,leda_min(and3a,leda_min(and3b, and4))));if ((delta == INFTY) && perfet) return M; // return empty mathingDelta = delta; // orresponds to Delta += (delta - Delta)When the value of free drops to zero, the algorithm terminates. We extrat the mathingand heker information in exatly the same way as has been desribed for the singlesearh tree approah; therefore, the ode realizing this will not be repeated here.Initialization: The initialization di�ers only slightly. As before, depending on thevalue of heur we onstrut either an empty mathing, a greedy mathing or a jumpstart mathing. Remember that the node array smate and pot represent the onstrutedmathing and the vertex potentials. What di�ers is the way we set up the data for eahblossom:hinitializationi+�forall_nodes(u, G) {item_of[u℄ = new_blossom<NT>(pot[u℄, u, CUR);if (mate[u℄) {CUR->mate = mate[u℄;CUR->label = unlabeled;}else {CUR->my_tree = new_tree<NT>(u, CUR);Q.append(u);}}For eah vertex u of G we onstrut a trivial blossom CUR onsisting of u only. Thepotential of u is set to pot [u℄. When u is mathed, its mate is stored in the data membermate of CUR, and CUR gets unlabeled. Otherwise, we onstrut a new alternatingtree whih is rooted at u. CUR is the only blossom of this tree objet; we let my tree



100 Chapter 3. Implementation and Testsof CUR point to the objet. u is added to Q suh that the priority queue data for eahadjaent vertex of u will be set up orretly when all edges inident to any vertex in Qare sanned for the �rst time.Performing a Status Change: We next revise the member funtion of lass blossomthat performs a status hange. The overall struture remains the same.hlass blossom: member funtionsi+�void status_hange(LABEL l, NT Delta, node_slist &Q) {if (l == unlabeled) {assert((label != l) && item_in_T);offset += (label == odd ? Delta : -Delta);my_tree->remove(this);}else if (l == odd) {assert((label != l) && !item_in_T);offset -= Delta;my_tree->add(this);}else if (l == even) {assert((label != l) || !item_in_T);if (label == odd) offset += 2*Delta;else { // non-tree blossomoffset += Delta;my_tree->add(this);}happend all verties to Qi}label = l;}We adjust the o�set value of the blossom objet as outlined for the single searh treeapproah. The blossom objet is added to or removed from the alternating tree usingthe member funtions add and remove of lass tree , respetively. What di�ers, however,is the ation to be taken when a blossom beomes an even tree blossom.happend all verties to Qi�_pq_item it;forall_items(it, *this) {Q.append(node_of(it));delete_onnetion(it, my_tree->root);hadjust vertex potential and priorities (in provident ase)i}hadjust blossom potential and o�set (in provident ase)iWe add eah vertex of the blossom objet to the list Q and also delete the best on-netion for eah suh vertex to the urrent tree; the member funtion delete onnetionwill be disussed below. We do so in order to omply with the onvention that eaheven tree vertex keeps its best onnetions to every di�erent tree.Another di�erene is that we do not use the provident strategy (see Setion 2.1.3) as



3.4 Multiple Searh Tree Approah 101in the ase of the single searh tree approah. That is, the potential and prioritiesassoiated with eah vertex of the blossom are not adjusted so as to ompute theiratual value with respet to the o�set o�set = 0. Instead, we implement the non{provident strategy. We will ome bak to this point when the implementation of ashrink step is onsidered more losely.We have experimented with both strategies for the multiple searh tree approah. Thenon{provident strategy seems to be slightly more eÆient in pratie and is thus usedby default.p qHowever, we briey state all additional details for the implementation of the provident strat-egy.12hadjust vertex potential and priorities (in provident ase)i�#ifdef _PROVIDENTif (offset != 0) {inf(it)->pot += offset;if (inf(it)->empty()) ontinue;inf(it)->adjust_priorities(offset);inrease_p(it, prio(it) + offset);}#endifAs before, we iterate over all items it of the blossom objet. When the blossom o�set di�ersfrom zero, the potential of eah vertex (inf (it)) ontained in the urrent blossom objet isadjusted as desribed in Setion 2.1.3. Moreover, we need to inrease all priorities stored witheah vertex objet by o�set . This is ahieved by alling the member funtion adjust prioritiesof lass vertex. Its implementation will be disussed for the shrink step, later on. The priorityof item it is also inreased by o�set , alling the inherited funtion inrease p.hadjust blossom potential and o�set (in provident ase)i�#ifdef _PROVIDENTif (!trivial()) pot -= 2*offset;offset = 0;#endifFinally, the blossom potential is adjusted (when non{trivial) and o�set is set to zero.x yWhat remains to be presented is the member funtion delete onnetion of lass blos-som:hlass blossom: member funtionsi+�bool delete_onnetion(_pq_item it, node r) {if (!it) return false;NT old_min = min_prio();if (inf(it)->del(r))if (inf(it)->empty())del_item(it);elseinrease_p(it, inf(it)->min_prio());return old_min != min_prio();}12De�ning the token PROVIDENT (#define PROVIDENT), before the �le MWM.t is inluded, fores thealgorithm to use the provident instead of the non{provident strategy.



102 Chapter 3. Implementation and TestsFor a given item it (type  pq item), the funtion deletes the best onnetion fromthe orresponding vertex objet (pointed to by inf (it)) to the tree rooted at r. Therealization is simple: we use the member funtion del of lass vertex to delete theorresponding item in the priority queue of the vertex objet. When del returns true,i.e. when the minimum item has been hanged due to this operation, we need to updatethe priority of it in the onatenable priority queue. Two ases are distinguished: whenthe priority queue of the vertex objet is empty, it is deleted (its priority is set toin�nity); otherwise, the priority of it is inreased to the new minimum priority storedin the priority queue of the vertex objet. The funtion returns true i� the minimumpriority of the blossom has hanged.Sanning New Even Verties: We next give some details of the sanning proe-dure. All edges e inident to a vertex ur in Q are inspeted in order to orretlymaintain the priority queues delta1 to delta4 as well as the priorities assoiated witheah vertex, tree or blossom. Most of the details are similar to those disussed for thesingle searh tree approah.hsan all edges of verties in Qi�NT ur_pot, adj_pot, atual_p, stored_p;while (!Q.empty()) {ur = Q.pop();CUR = _BLOSSOM_OF(ur);ur_pot = ompute_potential(CUR, Delta, item_of[ur℄);if (!perfet) {htry to improve delta1 i}forall_adj_edges(e, ur) {adj = opposite(ur, e);ADJ = _BLOSSOM_OF(adj);hdisard dead and tree edgesiadj_pot = ompute_potential(ADJ, Delta, item_of[adj℄);atual_p = ur_pot + adj_pot - w[e℄;if (!ADJ->item_in_T) {hnew delta2 edge enounteredi}else if ((ADJ->label == even) && (ADJ->my_tree != CUR->my_tree)) {hnew delta3a edge enounteredi}else if ((ADJ->label == even) && (ADJ->my_tree == CUR->my_tree)) {hnew delta3b edge enounteredi}else if (ADJ->label == odd) {stored_p = atual_p - ADJ->offset;ADJ->improve_onnetion(item_of[adj℄, stored_p, ur, CUR->tree_root());}}}In the non{perfet mathing ase, we need to keep the even tree vertex d1 node for



3.4 Multiple Searh Tree Approah 103eah alternating tree. Reall that the vertex d1 node is supposed to denote the vertexthat has minimum potential along all even tree verties ontained in the tree objet.htry to improve delta1 i�if (!CUR->my_tree->d1_node) {delta1.insert(ur, ur_pot + Delta);CUR->my_tree->d1_node = ur;}else if (ur_pot < delta1.prio(CUR->my_tree->d1_node) - Delta) {delta1.del(CUR->my_tree->d1_node);delta1.insert(ur, ur_pot + Delta);CUR->my_tree->d1_node = ur;}When no vertex is stored in d1 node of the tree objet ontaining CUR, we simply setthis data member to ur and insert an appropriate item into delta1 . Otherwise, welook up the urrent stored potential of d1 node (in delta1 ). When the atual potentialof d1 node is larger than the atual potential ur pot of ur , we proeed as follows.d1 node is deleted from delta1 and the new vertex ur is inserted with its storedpotential ur pot +Delta . Moreover, the vertex stored in d1 node is replaed by ur .When ADJ is a non{tree blossom, we have possibly disovered a new best onnetionfrom adj to the alternating tree ontaining CUR; let T denote the objet representingthis alternating tree.hnew delta2 edge enounteredi�stored_p = atual_p - ADJ->offset + Delta;if (ADJ->improve_onnetion(item_of[adj℄, stored_p, ur, CUR->tree_root()))if (ADJ->item_in_pq)delta2.derease_p(ADJ->item_in_pq, atual_p + Delta);elseADJ->item_in_pq = delta2.insert(atual_p + Delta, ADJ);We ompute the stored redued ost stored p of that edge and try to improve the on-netion from adj to T by alling improve onnetion , whih will be disussed shortly.The funtion returns true if the minimum priority of ADJ has hanged, i.e. the ur-rently inspeted edge is the new best onnetion of ADJ . If so, we either derease theorresponding priority in delta2 (when ADJ has an item in delta2 ), or insert a newitem into delta2 .We proeed in a similar way when ADJ represents an even tree blossom ontained ina di�erent tree:hnew delta3a edge enounteredi�stored_p = atual_p - ADJ->offset + 2*Delta;if (ADJ->improve_onnetion(item_of[adj℄, stored_p, ur, CUR->tree_root())) {if (ADJ->item_in_pq)delta3a.derease_p(ADJ->item_in_pq, atual_p/2 + Delta);elseADJ->item_in_pq = delta3a.insert(atual_p/2 + Delta, ADJ);}



104 Chapter 3. Implementation and TestsThe member funtion improve onnetion of lass blossom is implemented as follows.hlass blossom: member funtionsi+�bool improve_onnetion(_pq_item it, NT x, node u, node r) {if (!it) return false;NT old_min = min_prio();if (inf(it)->derease_p(u, x, r)) derease_p(it, x);return old_min != min_prio();}For a given item it (type  pq item), we try to improve the best onnetion from theorresponding vertex (pointed to by inf (it)) to the tree rooted at r. x denotes the(stored) redued ost of the newly disoverd onnetion, and u refers to an even vertexontained in the tree rooted at r. We use the member funtion derease p of lassvertex . Its implementation has been desribed before. When this onnetion is thenew minimum item of the priority queue of the vertex, i.e. derease p returns true, thepriority of item it is dereased to x as well. The funtion returns true i� the minimumpriority of the blossom objet has hanged.We next disuss the ase where ADJ is an even tree blossom ontained in the sametree as CUR.hnew delta3b edge enounteredi�tree<NT> *T = CUR->my_tree;if (T->ins(atual_p/2 + Delta, e))if (T->item_in_d3b)delta3b.derease_p(T->item_in_d3b, atual_p/2 + Delta);elseT->item_in_d3b = delta3b.insert(atual_p/2 + Delta, T);Using the member funtion ins of lass tree, we insert the new andidate edge e intothe priority queue d3b edges of T . When e is the new minimum edge of this tree (insreturns true), we update T 's item in delta3b aordingly.Alternate Step: An alternate step will only be initiated in the non{perfet mathingase. The responsible vertex resp whih attains the minimum in delta1 is retrieved.RESP denotes the surfae blossom of resp.halternate step using best node of delta1 i�resp = delta1.del_min();RESP = _BLOSSOM_OF(resp);RESP->base = resp;alternate_path(RESP, item_of);The edges along the tree path are alternated starting from RESP . RESP will beomefree, and hene we must set the base of RESP to resp; resp's atual potential equalszero and is thus allowed to stay free. The funtion alternate path has been given in thepreeding setion.



3.4 Multiple Searh Tree Approah 105halternate step using best node of delta1 i+�slist<blossom<NT>*> orret;RESP->my_tree->destroy_tree(orret, delta1, delta3a,delta3b, delta4, Delta, Q, item_of);orret_pqs(orret, delta2, delta3a);RESP->label = even;The tree objet ontaining RESP is destroyed by alling the member funtiondestroy tree, whih will be the subjet of the next paragraph. Destroying an alter-nating tree objet is more ompliated than in the single searh tree approah: weneed to remove all best onnetions to this tree. As a onsequene, the minimum itemof some non{tree blossoms or even labeled tree blossoms may hange, and thus theirorresponding items in delta2 and delta3a need to be adjusted. destroy tree will returnthese blossoms (represented by their pointers) in a list orret . Calling orret pqs forthis list will ahieve the desired result. Finally, we have to set the label of RESP toeven (destroy tree makes RESP unlabeled).Destroy Tree: When a tree objet T is going to be destroyed, it is not suÆient todelete the orresponding items of eah even or odd tree blossom from delta3a or delta4 ;we also have to delete all best onnetions to this tree. We tried two di�erent strategiesto ahieve the latter goal.One of the strategies is as follows: we keep all verties that store a best onnetionto T in a list. When T gets destroyed, we traverse this list and simply delete eahsuh onnetion. The time needed to do so is O(n logn), sine there an be at most nverties.Another possibility is to inspet eah edge uv inident to any even vertex u+ 2 T .When v (still) stores a best onnetion to T , it gets deleted.13 The time required bythis method is O(deg(T ) + n logn), where deg(T ) refers to the total number of edgesinident to all even verties ontained in T . Obviously, deg(T ) is bounded by m, thenumber of edges.Although the �rst strategy looks better with respet to the theoretial running{time,the latter turned out to be more eÆient in pratie. We therefore deided to use thelatter strategy.hlass tree: member funtionsi+�void destroy_tree(slist<blossom<NT>*> &orret,node_pq<NT> &delta1,p_queue<NT, blossom<NT>*> &delta3a,p_queue<NT, tree<NT>*> &delta3b,p_queue<NT, blossom<NT>*> &delta4,NT Delta, node_slist &Q, node_array<_pq_item> &item_of) {blossom<NT>* CUR;forall(CUR, my_blossoms) {if (CUR->label == even)CUR->delete_all_onnetions(item_of, orret);hdelete item of CUR from delta3a or delta4 i13Note that a vertex v may be onsidered several times due to the existene of di�erent edgesu1v; u2v; : : : where u+1 ; u+2 ; : : : 2 T .



106 Chapter 3. Implementation and Testsif (!CUR->min_hanged) {orret.push(CUR);CUR->min_hanged = true;}CUR->pred = CUR->dis = nil;CUR->status_hange(unlabeled, Delta, Q);}hdelete item of tree from delta1 and delta3bidelete this;}We iterate over all blossoms CUR ontained in the tree. When CUR is even, the bestonnetion from eah adjaent vertex of CUR to the tree is deleted. The way we ahievethis is by alling the member funtion delete all onnetions of lass vertex . We willome bak to the realization of this member funtion shortly.When CUR has sent an item to delta3a (in the ase where CUR is even) or an item todelta4 (in the ase where CUR is odd) we delete that item.hdelete item of CUR from delta3a or delta4 i�if (CUR->item_in_pq) {if (CUR->label == even)delta3a.del_item(CUR->item_in_pq);elsedelta4.del_item(CUR->item_in_pq);CUR->item_in_pq = nil;}In orret (type slist<blossom<NT>�>), we ollet all non{tree blossoms or even labeledtree blossoms whose orresponding item in delta2 or delta3a needs to be adjusted. Eahtree blossom CUR will beome an unlabeled non{tree blossom and thus we add CUR toorret . Sine we want eah suh blossom to our only one in this list, we introduea new data member for lass blossom:hlass blossom: data membersi+�bool min_hanged;Initially, min hanged is set to false . Whenever a blossom objet is stored in orret ,min hanged will be set to true. The pred and dis entries of CUR are set to nil andthe status of CUR is hanged to unlabeled.Finally, the priority stored for d1 node in delta1 has to be removed. Moreover, whenthe alternating tree has an item in delta3b, we delete this item as well.hdelete item of tree from delta1 and delta3bi�if (d1_node)delta1.del(d1_node);if (item_in_d3b)delta3b.del_item(item_in_d3b);We now disuss the member funtion delete all onnetions of lass blossom.



3.4 Multiple Searh Tree Approah 107hlass blossom: member funtionsi+�void delete_all_onnetions(onst node_array<_pq_item> &item_of,slist<blossom<NT>*> &orret) {edge e;_pq_item it;node ur, adj;blossom<NT> *ADJ;forall_items(it, *this) {ur = node_of(it);forall_adj_edges(e, ur) {adj = opposite(ur, e);ADJ = blossom_of<NT>(item_of[adj℄);bool min_hanged = ADJ->delete_onnetion(item_of[adj℄, tree_root());if (min_hanged && !ADJ->min_hanged && ADJ->label != odd) {orret.append(ADJ);ADJ->min_hanged = true;}}}}For eah vertex ur ontained in the blossom objet, we inspet eah inident edgee. adj denotes the vertex whih is adjaent to ur with respet to e. The blossomontaining adj is pointed to by ADJ . We delete the best onnetion from adj to thetree ontaining the urrent blossom by alling delete onnetion . The implementationdetails for this funtion have already been given above. When the minimum of ADJ hashanged and ADJ is either labeled even or unlabeled we add ADJ to orret . However,this will be done only when ADJ is not already ontained in orret .Correting Global Priority Queues: We ome to the orretions that are nees-sary for the blossoms stored in the list orret . Note that eah blossom in orret iseither a non{tree blossom or an even tree blossom.hMST.t: helpersi+�template<lass NT>void orret_pqs(slist<blossom<NT>*> &orret,p_queue<NT, blossom<NT>*> &delta2,p_queue<NT, blossom<NT>*> &delta3a) {blossom<NT> *CUR;forall(CUR, orret) {if (CUR->item_in_pq) {hdelete item of CUR from delta2 or delta3ai}if (!CUR->empty()) {hinsert item for CUR in delta2 or delta3ai}CUR->min_hanged = false;}orret.lear();}



108 Chapter 3. Implementation and TestsFor eah blossom CUR, we �rst delete its item (if any) from delta2 or delta3a :hdelete item of CUR from delta2 or delta3ai�if (!CUR->item_in_T)delta2.del_item(CUR->item_in_pq);elsedelta3a.del_item(CUR->item_in_pq);CUR->item_in_pq = nil;and then insert a new item (if neessary) into delta2 or delta3a :hinsert item for CUR in delta2 or delta3ai�if (!CUR->item_in_T)CUR->item_in_pq = delta2.insert(CUR->min_prio() + CUR->offset, CUR);elseCUR->item_in_pq = delta3a.insert((CUR->min_prio() + CUR->offset)/2, CUR);The data member min hanged of CUR is set to false , and, eventually, orret is madeempty.Augment Step: When the atual priority of the minimum item in delta3a equalszero, an augment step is initiated. Most of the details given previously suÆe for thedisussion of the implementation details of this step.haugment step using best onnetion of blossom in delta3ai�RESP = delta3a.inf(delta3a.find_min());delta3a.del_item(RESP->item_in_pq);RESP->item_in_pq = nil;We retrieve the even tree blossom RESP stored in the information part of the minimumitem and then delete this item from delta3a .The best onnetion of RESP orresponds to the new tight edge that we will use toaugment the mathing. We de�ne a member funtion best edge for lass blossom asfollows:hlass blossom: member funtionsi+�void best_edge(node &resp, node &opst) onst {resp = node_of(find_min());opst = best_adj(find_min());}This member funtion allows us to determine the endpoints of the best onnetion toa given blossom more elegantly.haugment step using best onnetion of blossom in delta3ai+�RESP->best_edge(resp, opst);OPST = _BLOSSOM_OF(opst);resp orresponds to the vertex ontained in the blossom RESP and opst denotes theother endpoint ontained in OPST . OPST represents an even tree blossom. Note that



3.4 Multiple Searh Tree Approah 109the trees ontaining RESP and OPST are distint. The two tree paths from RESPand OPST to their roots are alternated, alling the funtion alternate path for eahblossom.haugment step using best onnetion of blossom in delta3ai+�alternate_path(RESP, item_of);alternate_path(OPST, item_of);RESP->base = OPST->mate = resp;RESP->mate = OPST->base = opst;After this, we math RESP and OPST with eah other by setting their base and mateentries appropriately. What remains to be done is to delete the two trees ontainingRESP and OPST . The funtion used to ahieve this has been disussed above.haugment step using best onnetion of blossom in delta3ai+�slist<blossom<NT>*> orret;RESP->my_tree->destroy_tree(orret, delta1, delta3a,delta3b, delta4, Delta, Q, item_of);OPST->my_tree->destroy_tree(orret, delta1, delta3a,delta3b, delta4, Delta, Q, item_of);orret_pqs(orret, delta2, delta3a);Finally, we update the items in delta2 and delta3a for blossoms olleted in orret .Grow or Augment Step: The priority queue delta2 keeps all best onnetions ofnon{tree blossoms. In the perfet mathing ase, eah suh blossom will be unlabeledand thus its best onnetion an be used for a grow step. However, sine alternate stepsmight our in the non{perfet mathing ase, non{tree blossoms an also be labeledeven. We will use the best onnetion of an even non{tree blossom to augment themathing.hgrow or augment step using best onnetion of blossom in delta2 i�RESP = delta2.inf(delta2.find_min());delta2.del_item(RESP->item_in_pq);RESP->item_in_pq = nil;if (RESP->label == even) {haugment step using best onnetion of RESPi}else {hgrow step using best onnetion of RESPi}The blossom objet RESP is retrieved from delta2 and the minimum item is deletedfrom delta2 . If RESP is labeled even, an augment step for the best onnetion of RESPis initiated; otherwise, we use the best onnetion of RESP for a grow step. Let usonsider the augment step �rst.haugment step using best onnetion of RESPi�RESP->best_edge(resp, opst);OPST = _BLOSSOM_OF(opst);



110 Chapter 3. Implementation and TestsWe extrat the verties resp and opst . resp is part of the blossom RESP and theblossom ontaining opst is denoted by OPST . The blossom objet OPST representsan even tree blossom.haugment step using best onnetion of RESPi+�alternate_path(OPST, item_of);RESP->base = OPST->mate = resp;RESP->mate = OPST->base = opst;RESP->label = unlabeled;The way we augment the mathing is as follows. We all alternate path for OPST . Alledges along the tree path from OPST to the root are alternated; OPST beomes free.We then math RESP and OPST and set the label of RESP to unlabeled .The tree of OPST is destroyed and the priority queues delta2 and delta3a are orretedas disussed before. free is dereased by 1 (not by 2), sine the number of free vertieswith potential larger than zero has been dereased by 1.14haugment step using best onnetion of RESPi+�slist<blossom<NT>*> orret;OPST->my_tree->destroy_tree(orret, delta1, delta3a,delta3b, delta4, Delta, Q, item_of);orret_pqs(orret, delta2, delta3a);free -= 1;We ome to the grow step. The best onnetion stored with the unlabeled blossomRESP is retrieved.hgrow step using best onnetion of RESPi�RESP->best_edge(resp, opst);OPST = _BLOSSOM_OF(opst);OPST denotes an even tree blossom. We make RESP an odd tree blossom of the treethat ontains OPST .hgrow step using best onnetion of RESPi+�RESP->my_tree = OPST->my_tree;RESP->status_hange(odd, Delta, Q);RESP->pred = opst;RESP->dis = resp;if (!RESP->trivial())RESP->item_in_pq =delta4.insert(ompute_potential(RESP, Delta)/2 + Delta, RESP);When RESP is non{trivial, we insert a representative item for RESP into delta4 .The mate blossom MATE of RESP is also added to the alternating tree. MATEbeomes an even tree blossom.14Note that all verties in RESP already satis�ed the omplementary slakness ondition (s)(2)before the augment step, i.e. we have dereased free for eah of these verties in some earlier step.



3.4 Multiple Searh Tree Approah 111hgrow step using best onnetion of RESPi+�node mate = RESP->mate;blossom<NT> *MATE = _BLOSSOM_OF(mate);MATE->my_tree = OPST->my_tree;MATE->status_hange(even, Delta, Q);if (MATE->item_in_pq) {delta2.del_item(MATE->item_in_pq);if (!MATE->empty())MATE->item_in_pq =delta3a.insert((MATE->min_prio() + MATE->offset)/2, MATE);else MATE->item_in_pq = nil;}When MATE has an item in delta2 , we delete that item. The best onnetion (if any)of MATE to another (distint) tree is inserted into delta3a .Shrink Step: We next desribe the realization of a shrink step. Eah item in delta3brepresents the best andidate edge (for a shrink step) of an alternating tree. First ofall, we determine the tree objet T whose best andidate edge has (atual) redued ostzero.hshrink step using best edge in delta3bi�tree<NT> *T = delta3b.inf(delta3b.find_min());delta3b.del_item(T->item_in_d3b);T->item_in_d3b = nil;The new tight edge e itself is stored in the information part of the minimum item ofT 's priority queue d3b edges .hshrink step using best edge in delta3bi+�e = T->min_inf();T->d3b_edges.del_min();resp = soure(e); RESP = _BLOSSOM_OF(resp);opst = target(e); OPST = _BLOSSOM_OF(opst);resp and opst refer to the endpoints of e. We let RESP and OPST denote the blossomsontaining these endpoints. The lowest ommon anestor blossom LCA and the shrinkpath P1 now have to be determined.hshrink step using best edge in delta3bi+�blossom<NT> *LCA;list<node> P1, P2;list<blossom<NT>*> sub1, sub2;hdetermine LCA and shrink path of RESP and OPST iThe ode realizing this has been disussed in detail for the single searh tree approah;it is not repeated here. A new blossom objet SUPER is reated and some of its datamembers are set appropriately.



112 Chapter 3. Implementation and Testshshrink step using best edge in delta3bi+�blossom<NT> *SUPER = new blossom<NT>(LCA->base);SUPER->mate = LCA->mate;SUPER->my_tree = T;SUPER->shrink_path = P1;Reall that the immediate subblossom objets are olleted in the list sub1 . For eahsuh objet CUR, we delete its item (if any) from delta4 or delta3a depending on thestatus of CUR.hshrink step using best edge in delta3bi+�forall(CUR, sub1) {if (CUR->item_in_pq) {if (CUR->label == odd)delta4.del_item(CUR->item_in_pq);elsedelta3a.del_item(CUR->item_in_pq);CUR->item_in_pq = nil;}SUPER->append_subblossom(CUR, Delta, Q);}CUR is made a subblossom of the new blossom SUPER by alling the member funtionappend subblossom . The implementation of append subblossom di�ers from the onepresented for the single searh tree approah. It realizes the non{provident strategy(see Setion 2.1.3) as will be disussed below.hshrink step using best edge in delta3bi+�SUPER->pot = 2*(SUPER->offset - Delta);T->add(SUPER);if (!SUPER->empty())SUPER->item_in_pq =delta3a.insert((SUPER->min_prio() + SUPER->offset)/2, SUPER);Finally, the stored potential of SUPER is set suh that its atual potential equals zero.We need to add SUPER to T and (possibly) insert an item that represents its bestonnetion into delta3a . Finally, we delete all dead edges ontained in the priorityqueue d3b edges of T as shown below and (if neessary) insert a new representative intodelta3b.hshrink step using best edge in delta3bi+�T->del_dead_edges(item_of);if (!T->d3b_edges.empty())T->item_in_d3b = delta3b.insert(T->min_prio(), T);Deleting all dead (minimum) edges from d3b edges of a given tree objet is simple. Wesimply delete the minimum item from d3b edges until its edge e is alive (CUR != ADJ ),or d3b edges is empty.



3.4 Multiple Searh Tree Approah 113hlass tree: member funtionsi+�void del_dead_edges(onst node_array<_pq_item> &item_of) {blossom<NT> *CUR, *ADJ;while (!d3b_edges.empty()) {edge e = min_inf();CUR = blossom_of<NT>(item_of[soure(e)℄);ADJ = blossom_of<NT>(item_of[target(e)℄);if (CUR != ADJ) break;else d3b_edges.del_min();}}The member funtion append subblossom is realized as follows. Eah all makes CURa subblossom of the blossom objet.hlass blossom: member funtionsi+�void append_subblossom(blossom<NT>* CUR, NT Delta, node_slist &Q) {if (CUR->label == odd)CUR->status_hange(even, Delta, Q);if (!CUR->trivial())CUR->pot += -2*CUR->offset + 2*Delta;if (offset != CUR->offset) {hadjust potentials and priorities of smaller groupi}CUR->my_tree->remove(CUR);onat(*CUR);CUR->split_item = last_item();subblossom_p.append(CUR);}As in the single searh tree approah, CUR is made even, when it refers to an oddsubblossom. Moreover, the potential of a non{trivial subblossom is frozen, as explainedbefore. When the o�set urrently assigned to the blossom objet di�ers from the o�setvalue of CUR we adjust the vertex potentials and assoiated redued osts of the smallergroup. After that, all atual values (potentials and redued osts) are omputed withrespet to the same o�set value o�set . We an, therefore, onatenate the priorityqueue of CUR to the priority queue of the blossom objet and append CUR to thesubblossom p list. CUR is removed from its alternating tree.The ideas underlying the uni�ation of di�erent o�set values of two blossoms have beengiven in Setion 2.1.3. We now proeed to present our realization.The atual potentials and priorities assoiated with eah vertex ontained in the ur-rent blossom objet are omputed with respet to the value o�set . Correspondingly,the atual potentials and priorities of a vertex ontained in the subblossom CUR areomputed with regard to the o�set value of CUR. First of all, we determine the blossomSMALL B that ontains fewer verties. The other blossom is referred to as LARGE B .The di�erene of their o�set values is stored in adjustment .



114 Chapter 3. Implementation and Testshadjust potentials and priorities of smaller groupi�blossom<NT>* SMALL_B = (size() < CUR->size() ? this : CUR);blossom<NT>* LARGE_B = (size() < CUR->size() ? CUR : this);NT adjustment = SMALL_B->offset - LARGE_B->offset;Next, we iterate over all items of the smaller blossom SMALL B .hadjust potentials and priorities of smaller groupi+�_pq_item it;forall_items(it, *SMALL_B) {SMALL_B->inf(it)->pot += adjustment;if (SMALL_B->inf(it)->empty()) ontinue;SMALL_B->inf(it)->adjust_priorities(adjustment);NT ur_prio = SMALL_B->prio(it);if (adjustment < 0)SMALL_B->derease_p(it, ur_prio + adjustment);elseSMALL_B->inrease_p(it, ur_prio + adjustment);}offset = LARGE_B->offset;For eah item it , we adjust the potential of the orresponding vertex by adjustment .When the priority queue assoiated with this vertex is not empty, we also need to adjustall priorities ontained in this queue. The member funtion adjust priorities (whih willbe disussed next) of lass vertex has been implemented to ahieve this. Finally, thepriority of it is dereased or inreased by adjustment as well.The priorities in a priority queue of a vertex objet are adjusted by a value adjustmentas follows.hlass vertex: member funtionsi+�void adjust_priorities(NT adjustment) {if (adjustment == 0) return;node r;pq_item it;NT ur_prio;forall_defined(r, ITEM_OF) {it = ITEM_OF[r℄;ur_prio = prio(it);if (adjustment < 0)p_queue<NT, node>::derease_p(it, ur_prio + adjustment);else { // simulate inrease_pnode v = inf(it);del_item(it);ITEM_OF[r℄ = insert(ur_prio + adjustment, v);}}}We iterate over all root verties r for whih an item it (type pq item) has been de�ned.When the value of adjustment is smaller than zero, we simply derease the urrentpriority of it by adjustment , alling operation derease p. Otherwise, we simulate an



3.5 Construting Better Initial Solutions 115inrease p operation by deleting it and then inserting it with the new priority again.The new item (type pq item) needs to be set for ITEM OF [r℄. Note that we do infat need the funtionality of the forall de�ned iterator provided by the data type lassh array .This onludes our desription of the implementation details for the shrink step. Wenext onsider the expand step.Expand Step: Only a few minor hanges ensue for the expansion of a blossom. Mostdetails are exatly the same as for the single searh tree approah.hexpand step using best blossom of delta4 i�RESP = delta4.inf(delta4.find_min());delta4.del_item(RESP->item_in_pq);The responsible blossom RESP is retrieved from delta4 and the orresponding item isdeleted. After that, RESP is expanded by alling the member funtion expand . Alldetails of this funtion have been disussed for the expand step in the single searh treeapproah.hexpand step using best blossom of delta4 i+�RESP->expand(Delta);forall(CUR, RESP->subblossom_p)RESP->my_tree->add(CUR);RESP->my_tree->remove(RESP);What di�ers here is the way we add eah subblossom CUR to the tree ontainingRESP , and the way we subsequently remove RESP from its tree: we do so by usingthe member funtions add and remove , respetively.We restore the mathing for the immediate subblossoms, extend the alternating treeand, �nally, destroy the blossom objet RESP . Again, the ode realizing this is exatlythe same as before.hexpand step using best blossom of delta4 i+�blossom<NT> *BASE = _BLOSSOM_OF(RESP->base);blossom<NT> *DISC = _BLOSSOM_OF(RESP->dis);int dist = RESP->restore_mathing(BASE, DISC);hextend alternating treeidelete RESP;3.5 Construting Better Initial SolutionsThe performane of both algorithms is onsiderably improved when a heuristi is usedto onstrut an initial mathing and the vertex potentials. We will disuss two heuris-tis in this setion: a greedy heuristi and a frational mathing heuristi.The greedy heuristi will set the initial vertex potentials as in the empty mathingase and then hoose a mathing within the tight edges in a greedy fashion. The time



116 Chapter 3. Implementation and Testsrequired by this heuristi will be O(n+m).The frational mathing heuristi �rst solves the frational mathing problem; the fra-tional mathing problem only omprises of onstraints (1) and (3) of (wm) or (wpm)(see Setion 1.4), respetively. The solution to this problem will be half{integral and,moreover, the edges with value 12 will form vertex disjoint odd length yles. The initialmathing will then onsist of all edges having value 1 and of bjCj=2 edges from everyodd length yle C. Construting an initial mathing and the vertex potentials in thisway will take time O(n(m+ n logn)).The funtionint greedy mathing(onst ugraph &G, onst edge array<NT> &w,node array<NT> &pot, node array<node> &mate,bool perfet);realizes the greedy heuristi andint jump start(onst ugraph &G, onst edge array<NT> &w,node array<NT> &pot, node array<node> &mate,bool perfet);implements the frational mathing heuristi. Given an undireted graph G and aweight funtion w, either funtion onstruts an initial mathing of G and, moreover,returns the vertex potentials in a node array pot . The mathing is represented by anode array mate : an edge e = uv is a mathing edge i� the endpoints u and v are matesof eah other, i.e. mate [u℄ == v and mate [v℄ == u. The funtion returns the number offree verties.The omputed mathing and the vertex potentials will satisfy the following onditions:(1) the redued ost of eah edge is non{negative,(2) eah mathing edge is tight, and(3) when perfet is set to false : eah potential is non{negative.We present the implementation details of eah funtion in the subsequent setions.3.5.1 Greedy HeuristiThe idea underlying the onstrution of a greedy mathing is simple. We omputethe initial potential pot [u℄ of eah vertex u as for the empty mathing, i.e. we setthe potential pot [u℄ to one half of the weight of the heaviest inident edge: pot [u℄ =maxfwe=2 : e 2 Æ(u)g. When u is an isolated vertex, we set pot [u℄ = 0, sine it willnever be mathed. The redued osts of all edges will then satisfy (1) and, moreover,(3) is also satis�ed.1515(3) only holds under the assumption that all edge weights are non{negative. We may makethis assumption here, sine the weighted mathing problem is not a�eted when a positive onstant = maxfjwej : e 2 Eg is added to all edge weights.



3.5 Construting Better Initial Solutions 117hgreedy.t: initialize vertex potentialsi�edge e;node u, v;pot.init(G, -INFINITY(NT));forall_nodes(u, G)if (outdeg(u) == 0) pot[u℄ = 0;forall_edges(e, G) {u = soure(e);v = target(e);pot[u℄ = leda_max(pot[u℄, (w[e℄/2));pot[v℄ = leda_max(pot[v℄, (w[e℄/2));}After this, we inspet eah edge e = uv of G: when e is tight and, moreover, neither unor v is mathed, we make e a mathing edge (u is made a mate of v and vie versa).Note that (2) is met. The number of free verties is kept in free.hgreedy.t: onstrut greedy mathingi�int free = G.number_of_nodes();mate.init(G, nil);forall_edges(e, G) {u = soure(e);v = target(e);if ((pot[u℄ + pot[v℄ == w[e℄) &&(mate[u℄ == nil) && (mate[v℄ == nil)) {mate[v℄ = u;mate[u℄ = v;free -= 2;}}In the non{perfet mathing ase, the vertex potentials are not restrited to being non{negative. We an therefore tighten the redued osts of edges that are inident to freeverties.hgreedy.t: adjust vertex potentials in non{perfet asei�if (perfet) {forall_nodes(u, G) {if (!mate[u℄) {NT slak = INFINITY(NT);forall_adj_edges(e, u) {v = opposite(u, e);slak = leda_min(pot[u℄ + pot[v℄ - w[e℄, slak);}pot[u℄ -= slak;}}}We inspet all edges uv inident to a free vertex u and determine the value slak , whihrefers to the minimum redued ost of these edges. The redued ost of eah suh edgewill also stay non{negative when we derease the value of pot [u℄ by slak .



118 Chapter 3. Implementation and TestsThe omplete greedy algorithm to ompute an initial mathing and the vertex potentialssatisfying (1) to (3) now redues to:hgreedy.t: algorithmi�template<lass NT>int greedy_mathing(onst ugraph &G, onst edge_array<NT> &w,node_array<NT> &pot, node_array<node> &mate,bool perfet) {hgreedy.t: initialize vertex potentialsihgreedy.t: onstrut greedy mathingihgreedy.t: adjust vertex potentials in non{perfet aseireturn free;}Obviously, the time required by this funtion will be O(n+m).3.5.2 Frational Mathing ProblemLet us onsider the linear programming formulation (fwpm) of the so{alled frational(perfet) mathing problem to a given instane G = (V;E;w).16 (fwpm) is the linearprogramming relaxation of (iwpm) presented in Setion 1.4.2.(fwpm) maximize wTxsubjet to x(Æ(u)) = 1 for all u 2 V , (1)xuv � 0 for all uv 2 E. (2)The following theorem states that an optimal solution to (fwpm) meets ertain re-quirements.Theorem 3.5.1 (Half{Integrality of Frational Mathing Problem) Let x bean optimal solution to (fwpm) and let P(fwpm) denote the onvex hull de�ned bythe inidene vetors of (fwpm). Then, x is half{integral, i.e. xe 2 f0; 12 ; 1g for alle 2 E. Moreover, the edges e for whih xe = 12 form vertex disjoint odd length ylesif x is a vertex of P(fwpm).17p qWe sketh a onstrutive proof of Theorem 3.5.1.First, we show that every optimal solution x to (fwpm) must be half{integral. As mentionedpreviously (see Setion 1.4), Birkho� [Bir46℄ proved that every optimal solution to the frationalmathing problem is integral when G is restrited to being bipartite. We onstrut a bipartite16There also exists a frational non{perfet mathing problem: (fwpm)(1) is replaed by x(Æ(u)) � 1for all u 2 V . However, we will onentrate on the perfet mathing ase here. All results to ome aneasily be transferred to the non{perfet ase using the redution presented in Setion 1.5.17At this point we assume that the reader is familiar with ertain onepts and results from the �eldof polyhedral ombinatoris. We briey summarize the two results needed here (for a more extensivedisussion see Cook et al. [CCPS98℄). (1) A vetor v of a polyhedron P(lp) is a vertex of P(lp) i� vannot be written as a onvex ombination of vetors in P(lp) n v. (2) If an optimal solution to a linearprogram (lp) exists, then (lp) has also an optimal solution x, whih is a vertex of the orrespondingpolyhedron P(lp).



3.5 Construting Better Initial Solutions 119graph G0 = (A _[B) as follows. For eah vertex v in G we have a vertex v0 2 A and a vertexv00 2 B. Eah edge e = uv in G orresponds to two edges e0 = u0v00 and e00 = u00v0 in G0.The weight of eah edge e0 and e00 in G0 equals the weight of the orresponding edge e in G.An optimal solution x0 to (fwpm) for G0 = (A _[B;E0; w0) will be integral. Thus, hoosingxe = 12 (x0e0 + x0e00) gives us a half{integral solution whih is optimal for the frational mathingproblem for G = (V;E;w), as desired.We now proeed to prove that all edges e with xe = 12 form vertex disjoint odd length ylesif x is a vertex of P(fwpm). Clearly, every edge e with xe = 12 must be part of a yle, sinex(Æ(u)) = 1 for all u 2 V . Moreover, all yles are vertex disjoint. Let x be an optimal solutionand assume there exists an even length yle C with xe = 12 for eah edge e 2 C. We show thatx is not a vertex of the onvex hull P(fwpm) de�ned by the inidene vetors of (fwpm). Wede�ne a vetor d as follows: de = 0 for all e 62 C and de is alternately set to 12 and � 12 for theedges e along C. Then, x+ d as well as x� d are feasible solutions to (fwpm) (and at least oneof those has objetive value larger or equal to that of x). Sine x an be written as a onvexombination x = 12 (x+ d) + 12 (x� d), x annot be a vertex of P(fwpm).x yTheorem 3.5.1 gives rise to the idea that one an use an optimal solution of (fwpm)to onstrut an initial mathing M . This idea was put forward by Derigs and Metz[DM86℄. We proeed as follows. First, we ompute an optimal (vertex) solution xto (fwpm) using a primal{dual method whih is similar to (but onsiderably simplerthan) the one developed in Setion 1.6. The omputed solutions (primal and dual) willmeet the following onditions:(i1) eah edge e with xe > 0 is tight,(i2) the redued ost of eah edge is non{negative,(i3) in the non{perfet mathing ase: all vertex potentials are non{negative.The initial mathing M is then onstruted as follows. Eah edge e with xe = 1 isadded to M . Moreover, we add bjCj=2 edges of every odd length yle C to M . Dueto the feasibility of (i1) to (i3), the invariants (1) to (3) will hold for M and theomputed vertex potentials.A realization of a primal{dual method for the frational mathing problem is as follows.We desribe a single searh tree approah. The algorithm starts with an initial mathingM (xe 2 f0; 1g) and vertex potentials suh that (i1) to (i3) are met. Initially, everymathed vertex is unlabeled and every free vertex is labeled even. The algorithmproeeds in phases. In eah phase an alternating tree T is grown from a free vertex r;a vertex r is said to be free in this ontext, when x(Æ(r)) = 0. Only tight edges areused by the algorithm. The details for an alternate step (in the non{perfet ase), agrow step and an augment step are idential to those given for the blossom{shrinkingapproah. However, when a tight edge uv with u+ 2 T and v+ 2 T exists, we proeeddi�erently. xe is set to 12 for all edges along the enountered odd length yle C, andthe edges along the tree path from the lowest ommon anestor of u and v to the rootr get alternately unmathed and mathed (r beomes mathed). After this, all vertiesin T are unlabeled and T is destroyed. When a tight edge uv with u+ 2 T and v? 62 Tis enountered and v is moreover part of a half{valued odd length yle, the edges alongthe odd length yle get alternately unmathed and mathed starting in v (v beomesfree) and then all edges along the path p = (v; u; : : : ; r) get alternately mathed andunmathed (v and r beome mathed). Following this, all verties in T get unlabeledand T is destroyed.



120 Chapter 3. Implementation and TestsA dual adjustment is performed as in the blossom{shrinking approah: eah potentialof an even tree vertex is dereased by Æ, eah potential of an odd tree vertex is inreasedby Æ and all other vertex potentials stay the same. The value of Æ is only determinedby the lower bounds Æ1; Æ2 and Æ3 (see Setion 1.6.3).Implementation: We now ome to our implementation. The algorithm an be askedto solve either the frational perfet mathing problem or the frational non{perfetmathing problem (depending on the argument perfet). It guarantees a worst{aserunning{time of O(n(m + n logn)). As before, priority queues are used to determinethe value of Æ and to identify new tight edges. Most of the ideas presented in thepreeding setions are reused.Besides some standard variables, we have two additional node arrays: label , whihstores the label to eah vertex, and pred , whih stores the predeessor vertex of eahodd vertex u in the alternating tree.hfrational.t: loal variablesi�edge e;node u, v, r;node_array<int> label(G);node_array<node> pred(G, nil);The value of Æ is determined by means of the following data strutures:hfrational.t: loal variablesi+�NT delta1;NT delta2a;node_pq<NT> delta2b(G);node resp_d1;edge resp_d2a;node_array<edge> resp_d2b(G);NT Delta = 0;delta1 stores the minimum (stored) potential of an even tree vertex resp d1 . By resp d2aand delta2a we keep trak of the best edge that will terminate the urrent phase. Morepreisely, resp d2a may denote an edge uv with u+ 2 T and vf?j+g 62 T ; v will lie ona half{valued yle if v? 62 T . The atual value of delta2a orresponds to the atualredued ost of uv . Otherwise, resp d2a refers to an edge uv with u+ 2 T and v+ 2 T .Then, the atual value of delta2a then equals one half of the atual redued ost of uv .We use a node array resp d2b and a node pq delta2b to maintain the best edge uv withu+ 2 T of eah vertex v? 62 T ; v? is not part of an odd length yle. resp d2b[v℄ storesthe edge uv and the (atual) priority of delta2b[v℄ refers to the (atual) redued ost ofuv. As before, we aumulate the total amount of dual adjustments in Delta:hfrational.t: loal variablesi+�slist<edge> tight;slist<node> Q;node_slist T(G);



3.5 Construting Better Initial Solutions 121A list tight is used to ollet all edges that have reently beome tight and an thusbe used by the algorithm. Q and T are essentially used as in the single searh treealgorithm of the blossom{shrinking approah: Q stores all new even verties, and Tkeeps all verties that are part of the alternating tree.The overall struture of our algorithm is as follows.hfrational.t: algorithmi�template<lass NT>int jump_start(onst ugraph &G, onst edge_array<NT> &w,node_array<NT> &pot, node_array<node> &mate,bool perfet) {hfrational.t: loal variablesihfrational.t: initializationiforall_nodes(r, G) {if (mate[r℄ || pred[r℄) ontinue;hlear priority queues, Q and tightipot[r℄ += Delta;T.append(r); Q.append(r);bool terminate = false;while (!terminate) {hsan all edges of verties in Qiif (delta1 == Delta) {halternate step using best node of delta1 i}else if (!tight.empty()) {huse all tight edgesi}else {hdual adjustmentihextrat tight edgesi}}}hmath all odd length ylesireturn free;}The initialization is simple: we ompute a greedy mathing and label all verties ap-propriately.hfrational.t: initializationi�int free = greedy_mathing(G, w, pot, mate, perfet);if (free == 0) return free;forall_nodes(u, G)label[u℄ = (mate[u℄ ? unlabeled : even);Next, a phase is initiated for eah free vertex r. We use the following onvention to



122 Chapter 3. Implementation and Testsdetermine the value x(Æ(u)) to a given vertex u:x(Æ(u)) = 8><>:0 when mate [u℄ = nil and pred [u℄ = nil ,12 when mate [u℄ = nil and pred [u℄ 6= nil ,1 when mate [u℄ 6= nil .For a half{valued odd length yle C we will set the pred [u℄ entry of eah ver-tex u 2 C suh that the yle an be traversed following these entries, i.e. C =u; pred [u℄; pred [pred [u℄℄; : : : .At the beginning of eah phase, delta1 and delta2a are reset and delta2b, Q and T aremade empty.hlear priority queues, Q and tighti�delta1 = delta2a = INFINITY(NT);delta2b.lear();Q.lear(); tight.lear();The free vertex r is added to T and entered into Q. Due to the status hange ofr, we have to adjust its potential by +Delta (see formula (2.3), Setion 2.1); we donot maintain an o�set for eah vertex, but instead adjust its potential when a statushange ours. In a while loop, all edges inident to verties in Q are sanned as willbe explained below. Afterwards, we initiate an alternate step when the atual valueof delta1 equals zero (this will only happen in the non{perfet ase), or use the tightedges olleted in tight to extend T . When neither ase applies, a dual adjustment isperformed.hdual adjustmenti�NT and2b = (delta2b.empty() ? \INFINITY(NT) : delta2b.prio(delta2b.find_min()));NT delta = leda_min(delta1, leda_min(delta2a, and2b));if (delta == INFINITY(NT) && perfet) {mate.init(G, nil);return 0;}Delta = delta; // orresponds to Delta += (delta - Delta)When the atual value of delta1 equals zero, we immediately resume the while loop.When delta2a has atual value zero, the responsible edge resp d2a is appended to tight(resp d2a is the only element). The next step will terminate the phase; note that Q isempty. Otherwise, all new tight edges are retrieved from delta2b and added to tight .hextrat tight edgesi�if (delta1 == Delta)ontinue;else if (delta2a == Delta) {tight.append(resp_d2a);resp_d2a = nil;}else {while (!delta2b.empty() &&



3.5 Construting Better Initial Solutions 123(delta2b.prio(delta2b.find_min()) == Delta)) {u = delta2b.del_min();tight.append(resp_d2b[u℄);resp_d2b[u℄ = nil;}}Finally, the algorithm terminates with an optimal solution to the frational mathingproblem. We alternately math and unmath (xe 2 f0; 1g) the edges along all existingodd length yles to obtain the �nal mathing. Exatly one vertex per yle (whih isu below) will beome free.hmath all odd length ylesi�forall_nodes(u, G)if (pred[u℄) {alternate_yle(u, mate, pred);free++;}The funtion alternate yle is easily de�ned as follows.hfrational.t: helpersi�void alternate_yle(node u, node_array<node> &mate,node_array<node> &pred) {node ur1 = pred[u℄;while (ur1 != u) {mate[pred[ur1℄℄ = ur1;mate[ur1℄ = pred[ur1℄;node h = pred[ur1℄;pred[ur1℄ = nil;ur1 = h;h = pred[ur1℄;pred[ur1℄ = nil;ur1 = h;}pred[u℄ = nil;}Starting with ur1 = pred [u℄, we traverse the odd length yle, alternately mathingand unmathing the edges along this yle by setting the mate and pred entries appro-priately.All remaining details will be �lled in subsequently.Sanning New Even Verties: As in the blossom{shrinking approah, all edgesinident to any vertex that has reently beome an even tree vertex need to be inspeted.This is neessary so as to maintain delta1 , delta2a as well as delta2b orretly.hsan all edges of verties in Qi�while (!Q.empty()) {u = Q.pop();NT pot_u = pot[u℄ - Delta;



124 Chapter 3. Implementation and Testsif (!perfet) {htry to improve delta1 i}forall_adj_edges(e, u) {v = opposite(u, e);if (label[v℄ == odd) ontinue;NT pot_v = pot[v℄ - (((label[v℄ == even) && T.member(v)) ? Delta : 0);NT pi = pot_u + pot_v - w[e℄;if (pi == 0) {hadd edge e to tighti}else {hprune edgesiif ((label[v℄ == unlabeled) && mate[v℄) {hnew delta2b edge enounteredi}else {hnew delta2a edge enounteredi}}}}We ompute the atual potential pot u for eah even tree vertex u in Q. The atualpotential of a vertex u will be determined as stated in Setion 2.1 (formula (2.1)); theonly di�erene is that no o�set exists.delta1 is only maintained in the non{perfet mathing ase.htry to improve delta1 i�if (pot_u < leda_min(delta1, delta2a) - Delta) {delta1 = pot_u + Delta;resp_d1 = u;if (delta1 == Delta) break;}All edges e = uv inident to u are onsidered. When the adjaent vertex v of u is oddwe simply ontinue, sine nothing has to be done. Otherwise, we ompute the atualpotential pot v of v and the atual redued ost pi of uv. When e is tight, i.e. pi equalszero, we add e to the list tight .hadd edge e to tighti�if ((label[v℄ == unlabeled) && mate[v℄) tight.append(e);else {tight.lear(); Q.lear();tight.append(e);break;}If we have enountered a tight edge that will terminate the urrent phase, we proeedas follows. Q and tight are emptied and e beomes the only element of tight ; we breakthe sanning proedure.Otherwise, the atual redued ost pi is larger than zero. As for our single searh tree



3.5 Construting Better Initial Solutions 125algorithm of the blossom{shrinking approah, we prune hopeless edges; i.e. edges whosestored priority in delta2a or delta2b exeeds the minimum value of delta1 and delta2a .18hprune edgesi�#if !defined(_NO_PRUNING)if (label[v℄ == even && T.member(v)) {if (pi/2 + Delta >= leda_min(delta1, delta2a)) ontinue;}else if (pi + Delta >= leda_min(delta1, delta2a)) ontinue;#endifWhen v is an unlabeled vertex and does not lie on a half{valued yle, we hek whetheror not e is the new best edge for v. If it is, we set resp d2b[v℄ to e and store the (stored)redued ost of e in delta2b.hnew delta2b edge enounteredi�if (delta2b.member(v)) {if (pi < delta2b.prio(v) - Delta) {delta2b.derease_p(v, pi + Delta);resp_d2b[v℄ = e;}}else {delta2b.insert(v, pi + Delta);resp_d2b[v℄ = e;}When v is not of the kind above, we have disovered a new edge for delta2a . A hek isperformed to determine whether e is the new best edge of delta2a ; if it is, delta2a andresp d2a are set appropriately. Note that pi must be halved in the ase where v is aneven labeled tree vertex.hnew delta2a edge enounteredi�if ((label[v℄ == even) && T.member(v)) pi /= 2;if (pi < delta2a - Delta) {delta2a = pi + Delta;resp_d2a = e;}Alternate Step: Let us onsider the alternate step. The edges along the (evenlength) tree path from resp d1 towards the root r get alternately unmathed andmathed.halternate step using best node of delta1 i�alternate_path(resp_d1, label, mate, pred);destroy_tree(T, label, pot, mate, pred, Delta);label[resp_d1℄ = even;terminate = true;18De�ne the token NO PRUNING (#define NO PRUNING) to swith o� this strategy.



126 Chapter 3. Implementation and TestsAfter this, T is destroyed and the phase terminates. Note that destroy tree will set thelabel of resp d1 to unlabeled . We therefore need to orret it to even.We give the implementation details of the funtion alternate path , whih alternates theedge along the tree path starting with the given vertex u.hfrational.t: helpersi+�void alternate_path(node u, node_array<int> &label,node_array<node> &mate, node_array<node> &pred) {node ur = u;node pre = nil, nxt;while (ur) {if (label[ur℄ == even) {nxt = mate[ur℄;mate[ur℄ = pre;ur = nxt;}else {pre = ur;mate[ur℄ = pred[ur℄;nxt = pred[ur℄;pred[ur℄ = nil;ur = nxt;}}}Following the path from u towards the root, the mate and pred entries are set appro-priately for eah vertex on the path.The urrent alternating tree T is easily destroyed.hfrational.t: helpersi+�template<lass NT>void destroy_tree(node_slist &T, node_array<int> &label, node_array<NT> &pot,node_array<node> &mate, node_array<node> &pred, NT Delta) {node v;while (!T.empty()) {v = T.pop();if (label[v℄ == even) pot[v℄ -= Delta;else {pot[v℄ += Delta;if (mate[v℄) pred[v℄ = nil; // only for verties not on yle}label[v℄ = unlabeled;}}Eah vertex v is removed from T . Depending on the status of v, its potential pot [v℄needs to be adjusted as stated in formula (2.3). Moreover, when u is an odd vertex,pred [u℄ is set to nil ; however, it is ruial that pred [u℄ is not set to nil when u is part



3.5 Construting Better Initial Solutions 127of a half{valued yle.19Using Tight Edges: All edges that an be used by the algorithm are olleted intight . In a while loop, we retrieve eah suh edge e = uv and at aordingly. Weensure that u always denotes a tree vertex.huse all tight edgesi�while (!tight.empty()) {e = tight.pop();u = (T.member(soure(e)) ? soure(e) : target(e));v = opposite(u, e);if (label[v℄ == odd || label[u℄ == odd) ontinue;if (label[v℄ == unlabeled) {if (mate[v℄) {hgrow step using edge ei}else { // v on half-valued ylehalternate yle and tree path using edge eiterminate = true;break;}}else { // label[v℄ == evenif (T.member(v)) {honstrut half valued yleiterminate = true;break;}else {haugment step using edge eiterminate = true;break;}}}It may happen that tight stores two edges e = uv and e0 = u0v to the same unlabeledvertex v (not lying on a half{valued yle). Assume e0 is used before e. Then, v will belabeled odd, when e is onsidered later on; e is of no use. We therefore ontinue withthe next tight edge when either of the endpoints v or u is odd.Grow Step: We turn to the desription of a grow step using a tight edge e = uv ; uis an even tree vertex. v beomes an odd tree vertex with predeessor vertex u.19That we need to take this ase into aount will beome lear later on, when the onstrution of ahalf{valued yle is disussed.



128 Chapter 3. Implementation and Testshgrow step using edge ei�label[v℄ = odd;pred[v℄ = u;pot[v℄ -= Delta;T.append(v);delta2b.del(v);resp_d2b[v℄ = nil;The potential of v is adjusted aording to its status hange. We delete the best edgedata for v from delta2b and resp d2b.The mate m of v is also added to T . m beomes an even tree vertex and is added toQ. Its entry in delta2b as well as in resp d2b is deleted.hgrow step using edge ei+�node m = mate[v℄;label[m℄ = even;pot[m℄ += Delta;T.append(m);Q.append(m);delta2b.del(m);resp_d2b[m℄ = nil;Alternate Cyle and Tree Path: We next onsider the ase where e = uv is atight edge with u+ 2 T , v? 62 T and v lies on a half{valued yle C. We alternatelyunmath and math the edges along C starting at v; the funtion alternate yle toahieve this has already been presented. v will afterwards be free.halternate yle and tree path using edge ei�alternate_yle(v, mate, pred);alternate_path(u, label, mate, pred);mate[u℄ = v;mate[v℄ = u;destroy_tree(T, label, pot, mate, pred, Delta);free--;We alternately unmath and math the edges along the tree path from u to r allingalternate path and �nally math u and v with eah other. T is subsequently destroyed.Construting a Half{Valued Cyle: When a tight edge e = uv is of the kindu+ 2 T and v+ 2 T , we proeed as follows. We determine the lowest ommon anestorvertex la of u and v by alling the funtion seek la . Starting in la the edges along thetree path are alternately unmathed and mathed by the funtion alternate path (labeomes free). Then, a new half{valued yle C = (la ; : : : ; u; v; : : : ; la) is onstruted,alling onstrut yle. Finally, the tree T is destroyed and free is dereased by one,sine the root r is now mathed.



3.5 Construting Better Initial Solutions 129honstrut half valued ylei�node la;seek_la(u, v, la, mate, pred, P1, P2, lok);alternate_path(la, label, mate, pred);onstrut_yle(u, v, la, mate, pred);destroy_tree(T, label, pot, mate, pred, Delta);free--;The lowest ommon anestor vertex is determined in lok{step fashion as disussedbefore. We therefore additionally introdue the following loal data strutures.hfrational.t: loal variablesi+�double lok = 0;node_array<double> P1(G, 0);node_array<double> P2(G, 0);The determination of the lowest ommon anestor vertex is ahieved as follows.hfrational.t: helpersi+�void seek_la(node u, node v, node &la,node_array<node> &mate, node_array<node> &pred,node_array<double> &P1, node_array<double> &P2,double &lok) {node ur1 = u, ur2 = v;P1[ur1℄ = P2[ur2℄ = ++lok;while ((P1[ur2℄ != lok) && (P2[ur1℄ != lok) &&(mate[ur1℄ || mate[ur2℄)) {if (mate[ur1℄) {ur1 = pred[mate[ur1℄℄;P1[ur1℄ = lok;}if (mate[ur2℄) {ur2 = pred[mate[ur2℄℄;P2[ur2℄ = lok;}}if (P1[ur2℄ == lok) // ur2 is lala = ur2;else if (P1[ur1℄ == lok) // ur1 is lala = ur1;else la = nil;}We follow the two tree paths from u and v towards the root r. All even verties onthe path from u to r are marked by lok using the node array P1 and all even vertieson the path from v to r are marked by lok using the node array P2 . When eitherP1 [ur2 ℄ or P2 [ur1 ℄ equals lok , the lowest ommon anestor la has been found.We now disuss the details of the half{valued yle onstrution. The idea is simple.Let pu and pv denote the two tree paths from u and v to the la vertex, respetively.First, the pred entries of all verties along pu are set suh that they represent thereversed path of pu. Then, the pred entries of all verties along pv are set suh that



130 Chapter 3. Implementation and Teststhey represent pv itself. Finally, we set pred [u℄ to v and obtain the representation of Cas desired.hfrational.t: helpersi+�void onstrut_yle(node u, node v, node la,node_array<node> &mate, node_array<node> &pred) {node ur1 = u, ur2 = v;while (ur1 != la) {// set pred data to reversed tree path; delete mate entriesnode h = mate[ur1℄;mate[ur1℄ = nil;ur1 = pred[h℄;pred[h℄ = mate[h℄;mate[h℄ = nil;pred[ur1℄ = h;}while (ur2 != la) {// set pred data to tree path; delete mate entriesnode h = mate[ur2℄;pred[ur2℄ = mate[ur2℄;mate[ur2℄ = nil;mate[h℄ = nil;ur2 = pred[h℄;}pred[u℄ = v;}Augment Step: The only detail that has not been presented yet is how to performan augment step for a tight edge e = uv with u+ 2 T and v+ 62 T . We �rst alternatelyunmath and math the edges along the tree path from u to the root vertex r (u beomesfree). Thereafter, u and v are mathed with eah other (v beomes unlabeled), the treeT is destroyed and free is dereased by 2.haugment step using edge ei�alternate_path(u, label, mate, pred);mate[u℄ = v;mate[v℄ = u;label[v℄ = unlabeled;destroy_tree(T, label, pot, mate, pred, Delta);free -= 2;This onludes the disussion of all the details involved in the onstrution of an initialmathing M and the vertex potentials by solving the frational mathing problem.3.6 Experimental ResultsWe performed several experiments in order to rate the pratial eÆieny of our algo-rithms. The omparisons we made are as follows.



3.6 Experimental Results 131(1) Comparison of di�erent strategies: single searh tree approah with and with-out pruning strategy, multiple searh tree approah with and without providentstrategy.(2) Comparison of the single searh tree approah with the multiple searh tree ap-proah, and the e�et of using di�erent heuristis.(3) Comparison of our multiple searh tree approah with other mathing algorithmsavailable in LEDA.(4) Comparison of our multiple searh tree approah with the urrently most eÆientalgorithm, Blossom IV, of Cook and Rohe [CR97℄.In this setion we will disuss the results of these omparisons. In summary, they revealthe eÆieny of our algorithms in pratie. We wish to state that our multiple searhtree approah is (at least) ompetitive to Blossom IV: so far, we have not enounteredan instane on whih our algorithm is inferior (if the omparison is fair, as we areabout to explain). However, we would like to leave the deision on whether or not ouralgorithm is superior to Blossom IV to the reader. We deided so, due to the fat thatBlossom IV uses a so{alled prie and repair strategy for omplete geometri instanesthat we have not yet implemented for our algorithm. The prie and repair strategysigni�antly improves the running{time of Blossom IV on these instanes. Due to thelak of a similar strategy for our algorithm, the omparisons on omplete geometriinstanes are regarded to be not quite fair.Experimental Setting: We experimented with three kinds of instanes: Delaunayinstanes, (sparse and dense) random instanes and omplete geometri instanes.For the Delaunay instanes we hose n random points in the unit square and omputedthe Delaunay triangulation (using the LEDA Delaunay implementation). The edgeweights orrespond to the Eulidean distanes saled to integers in the range [0; : : : ; 216).Delaunay graphs are known to ontain perfet mathings (see Dillenourt [Dil90℄).For the random instanes we reated random graphs with n verties. The number ofedges for sparse graphs was hosen as m = �n for small values of �, � � 10.The number of edges for dense graphs is about 20%, 40% and 60% of the density of aomplete graph, i.e. m = dn(n� 1)=2, with d 2 f0:2; 0:4; 0:6g.Complete geometri instanes were indued by n random points in a n� n square andtheir Eulidean distane.The running{times of all our experiments are stated in seonds and are the average oft = 5 runs, unless stated otherwise. All experiments were performed on a Sun UltraSpar, 333 Mhz.Di�erent Strategies We disuss the inuene of the usage of di�erent strategies foreah approah. The omparisons were made on sparse random graphs with n vertiesand a �xed � = 10. Both algorithms omputed a maximum{weight mathing; thegreedy heuristi was used.



132 Chapter 3. Implementation and TestsThe single searh tree approah (SST) has been implemented to use a pruning strategyby default. Table 3.1 implies this to be reasonable.n � SST+pru� SST+pru+ t10000 6 37:42 28:17 520000 6 125:95 99:60 540000 6 428:78 364:67 5Table 3.1: E�et of pruning strategy for single searh tree algorithm (SST).We ompared the single searh tree algorithm using the pruning strategy (SSTpru+)with the single searh tree algorithm not using the pruning strategy (SSTpru�). Therunning{time of the single searh tree algorithm is onsiderably improved using thepruning strategy. Reall that the pruning strategy is also implemented for the frationalmathing heuristi.For the multiple searh tree approah, the user may hoose between the providentand the non{provident strategy. As mentioned previously, the non{provident strategy(MSTpro�) seems to us to be slightly superior to the provident strategy (MSTpro+).However, the di�erenes are negligible, as indiated in Table 3.2.n � MST+pro+ MST+pro� t10000 6 13:14 12:89 520000 6 29:20 28:59 540000 6 67:02 66:01 5Table 3.2: E�et of non{provident strategy for multiple searh tree algorithm (MST).In the subsequent omparisons, we will always use the strategies that are hosen bydefault. That is, the single searh tree approah as well as the frational mathingheuristi use the pruning strategy, and the multiple searh tree approah implementsthe non{provident strategy.Single Searh Tree vs. Multiple Searh Tree Approah: We ompared thesingle searh tree approah (SST) to the multiple searh tree approah (MST) usingdi�erent heuristis. The results are given in Table 3.3.n SST� MST� SST+ MST+ GY SST� MST� FM t10000 37:01 6:27 24:05 4:91 0:13 5:79 3:20 0:40 520000 142:93 14:81 89:55 11:67 0:24 18:54 8:00 0:83 540000 593:58 31:53 367:37 25:51 0:64 76:73 17:41 1:78 5Table 3.3: SST vs. MST algorithm and e�et of greedy and frational mathing heuristis.Both algorithms omputed a maximum{weight perfet mathing on Delaunay instaneswith n verties. Either no heuristi (�), the greedy heuristi (+) or the frationalmathing heuristi (�) was used. The time needed to onstrut a greedy or a frationalmathing is given in olumns GY and FM , respetively.



3.6 Experimental Results 133The frational mathing heuristi is omputationally more intensive than the greedyheuristi. However, the frational mathing heuristi improves the overall running{time of both algorithms signi�antly. We draw attention to the fat that the di�erenebetween the two heuristis is more pronouned for the single searh tree approah. Themultiple searh tree approah is superior to the single searh tree approah.p qWe will attempt to give an interpretation for the better running{time performane of the mul-tiple searh tree approah. We take a loser look at the number of dual adjustments that wereperformed during the ourse of the algorithms. Our algorithms an be asked to output ertainstatistial information (not doumented in the preeding setions). We give a sample outputbelow.MST SST----------------------------------------------------- -----------------------------------------------------INIT: 0.28 se. INIT: 0.19 se.MATCHING: 14.40 se. MATCHING: 40.07 se.EXTRACT: 0.14 se. EXTRACT: 0.12 se.CHECKER: 0.23 se. CHECKER: 0.22 se.----------------------------------------------------- -----------------------------------------------------ADJUSTMENTS: 7663 ADJUSTMENTS: 13428SCAN: 29295 5.91 se. (avg. 0.20 mse.) SCAN: 81237 4.93 se. (avg. 0.06 mse.)GROW: 16593 0.44 se. (avg. 0.03 mse.) GROW: 62265 0.86 se. (avg. 0.01 mse.)SHRINK: 8 0.00 se. (avg. 0.00 mse.) SHRINK: 155 0.11 se. (avg. 0.71 mse.)EXPAND: 5 0.00 se. (avg. 0.00 mse.) EXPAND: 148 0.16 se. (avg. 1.08 mse.)ALTERNATE: 43 0.00 se. (avg. 0.00 mse.) ALTERNATE: 258 0.21 se. (avg. 0.81 mse.)AUGMENT: 4983 7.40 se. (avg. 1.49 mse.) AUGMENT: 4983 0.44 se. (avg. 0.09 mse.)DESTROY TREE: 10000 6.54 se. (avg. 0.65 mse.) DESTROY TREE: 5241 0.57 se. (avg. 0.11 mse.)----------------------------------------------------- -----------------------------------------------------TOTAL TIME (without heking): 14.84 se. TOTAL TIME (without heking): 40.39 se.Both algorithms omputed a maximum{weight mathing on the same random instane withn = 10000, m = 60000 and edge weights in the range [0; : : : ; 216). No heuristi was used.We �rst of all observe that the multiple searh tree approah needs to perform fewer dualadjustments than the single searh tree approah. This is to be expeted; we onsider the rateof hange �f of the dual objetive value. For the single searh tree approah we observedthat �f = �Æ, when a dual adjustment is performed by Æ (f. disussion on page 30). In themultiple searh tree approah, however, we have a derease by Æ for eah existing tree. That is,�f = �tÆ, where t refers to the number of alternating trees that urrently exist when a dualadjustment is performed.Further, it seems to us that the single searh tree approah needs to initiate needless steps, sineit is fored to searh from a �xed free vertex. Note, for example, that the average number ofsan, alternate, grow, shrink and expand steps per augmentation di�ers drastially. However,this statement is vague.x yIn the omparisons that follow, we hose the multiple searh tree approah using thefrational mathing heuristi (MST�) as the anonial implementation.Comparisons to Mathing Algorithms in LEDA: LEDA provides an algorithmfor eah of the four variants of the mathing problem introdued in Chapter 1: amaximum{ardinality bipartite mathing algorithm (BCM), a maximum{ardinalitymathing algorithm (GCM), a maximum{weight bipartite mathing algorithm (BWM)and a maximum{weight mathing algorithm (GWM). The theoretial running{time ofthe algorithms are as follows: O(pnm) for BCM, O(nm�(n;m)) for GCM (� denotesthe inverse Akermann funtion), O(n(m + n logn)) for BWM and O(n3) for GWM.For a detailed desription of the underlying algorithms and their implementations seethe book by Mehlhorn and N�aher [MN99, Chapter 7℄.



134 Chapter 3. Implementation and TestsWe ompared our MST algorithm to eah of the algorithms. The tests were performedon sparse random graphs with n verties and �n edges. In the ardinality ases, unitweights (we = 1) were used by our algorithm. The results an be seen in Table 3.4.Due to the time intensity of GWM, the omparisons were made on small instanes onlywith n = 10000.n � BCM MST� GCM MST� BWM MST� GWM MST� t10000 4 0:73 1:14 0:55 1:94 3:67 1:57 585:43 1:44 510000 6 0:92 0:67 0:50 0:91 7:81 3:95 883:66 3:96 510000 8 1:28 0:74 0:45 1:18 9:82 6:62 897:81 6:25 520000 4 1:81 2:69 1:42 5:19 9:30 3:31 � 3:42 520000 6 2:23 1:61 1:42 5:06 29:64 11:05 � 10:05 520000 8 3:06 1:65 1:29 2:56 35:62 18:05 � 18:53 540000 4 5:52 8:04 4:26 9:19 24:45 8:39 � 8:23 540000 6 5:92 4:54 3:86 14:10 109:35 32:50 � 30:22 540000 8 7:41 4:31 3:66 9:69 128:66 51:13 � 56:46 5Table 3.4: Comparison of our MST algorithm to the mathing algorithms available in LEDA.We draw attention to the fat that, for bipartite instanes, our algorithm is ompetitivewith the speialized algorithms in LEDA. In the bipartite ase, the frational mathingheuristi will always ompute an optimal mathing. That is, MST essentially reduesto the frational mathing algorithm disussed in the preeding setion.Blossom IV: The Blossom IV algorithm of Cook and Rohe [CR97℄ is the most ef-�ient ode urrently available for weighted perfet mathings in general graphs. TheeÆieny of Blossom IV is revealed in two papers:(1) In [CR97℄ Blossom IV is ompared to the implementation of Applegate andCook [App93℄. It is shown that Blossom IV is substantially faster.(2) In [App93℄ the Applegate and Cook implementation is ompared to other imple-mentations. The authors show that their ode is superior to all other odes.Blossom IV an be asked to run either a single searh tree approah, a multiple searhtree approah or a re�nement of the multiple searh tree approah alled the variableÆ approah. In the variable Æ approah, eah alternating tree Tri hooses its own dualadjustment value Æri so as to maximize the derease in the dual objetive value. Aheuristi is used to make these hoies, sine the determination of optimum Æri 's wouldbe too ostly. The experiments in [CR97℄ show that the variable Æ approah is superiorto the other approahes in pratie.We ompared our MST algorithm to the multiple searh tree approah (B4) as well asto the variable Æ approah (B4var) of Blossom IV. Blossom IV (B4 and B4var) also usesa frational mathing heuristi to ompute an initial mathing (indiated by �).Delaunay Instanes: We give the experiments on Delaunay instanes with n vertiesin Table 3.5.



3.6 Experimental Results 135n B4� B4�var MST� t10000 73:57 4:11 3:37 520000 282:20 12:34 7:36 540000 1176:58 29:76 15:84 5Table 3.5: MST algorithm vs. Blossom IV (B4 and B4var) on Delaunay instanes.Observe that the variable Æ approah (B4var) is signi�antly faster than the multi-ple searh tree approah (B4). Our MST algorithm is ompetitive to the variable Æapproah B4var.Asymptotis: In Table 3.6 we ompared Blossom IV to our MST approah on ran-dom instanes; we varied n for a �xed � = 6.n � B4� B4�var MST� t10000 6 20:94 18:03 3:51 520000 6 82:96 53:87 9:97 540000 6 194:48 177:28 29:05 5Table 3.6: MST algorithm vs. Blossom IV (B4 and B4var) on random instanes.Both algorithms, B4var and MST, seem to grow less than quadratially as a funtionin n. B4var takes about six times as long as our multiple searh tree approah MST. InTable 3.7 we additionally varied �.n � B4� B4�var MST� t10000 6 20:90 20:22 3:49 510000 8 48:50 22:83 5:18 510000 10 37:49 30:78 5:41 520000 6 96:34 54:08 10:04 520000 8 175:55 89:75 12:20 520000 10 264:80 102:53 15:06 540000 6 209:84 202:51 29:27 540000 8 250:51 249:83 36:18 540000 10 710:08 310:76 46:57 5Table 3.7: MST algorithm vs. Blossom IV (B4 and B4var) on random instanes.A log{log plot indiating the asymptotis of Blossom IV (B4var) and our MST algorithmon random instanes (� = 6) is depited in Figure 3.2.Inuene of Edge Weights: Table 3.8 shows the inuene of edge weights on therunning{time. We took random instanes with m = 4n edges and random edge weightsin the range [1; : : : ; b℄ and varied b.



136 Chapter 3. Implementation and Tests
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1000100101Figure 3.2: Asymptotis of MST algorithm and Blossom IV (B4var) on random instanes.n � b B4� B4�var MST� t10000 40000 1 3:98 3:99 0:85 110000 40000 10 2:49 3:03 2:31 110000 40000 100 3:09 3:10 2:58 110000 40000 1000 17:41 8:40 2:91 110000 40000 10000 13:69 11:91 2:78 110000 40000 100000 12:06 11:20 2:69 1Table 3.8: MST algorithm vs. Blossom IV (B4 and B4var). Inuene of edge weights.Both B4 and B4var are sensitive to di�erent edge weights. Their running{time signif-iantly depends on the range of hosen edge weights. The running{time of our MSTalgorithm is stable (exept for the unweighted ase (b = 1), whih is simpler).p qWe attempt an explanation. When the range of edge weights is small, a single dual adjustmentis more likely to produe more than one tight edge. In addition to or as a onsequene of this,it seems to us that the number of dual adjustments needed to ompute an optimal mathing issmaller. Table 3.9 indiates that this assumption is in fat true. We reorded the number ofdual adjustments needed by Blossom IV (B4var) and our MST algorithm.n � b B4�var MST� t10000 4 1 0 0 110000 4 10 2094 2076 110000 4 100 5269 5101 110000 4 1000 7487 7091 110000 4 10000 8063 7877 110000 4 100000 8491 8134 1Table 3.9: MST algorithm vs. Blossom IV (B4 and B4var). Number of dual adjustments.



3.6 Experimental Results 137Sine Blossom IV needs time O(n) to perform a dual adjustment, whereas our implementationneeds time O(m logn) for all dual adjustments in a phase, our MST algorithm is less harmedwhen the edge weights are hosen from a large range.Observe that, although the variable Æ approah (B4var) of Blossom IV was used, our algorithmneeds less dual adjustments.x yVariane: Table 3.10 gives information about the variane in running{time of Blos-som IV (B4var) and our MST algorithm. For eah algorithm the best, worst and averagetime of �ve random instanes, with n verties and � = 6, is given. The utuation seemsto be about the same for the B4var and the MST algorithm.n � B4�var MST� tbest worst average best worst average10000 6 16:88 20:03 18:83 3:34 4:22 3:78 520000 6 49:02 60:74 55:15 9:93 11:09 10:30 540000 6 162:91 198:11 180:88 25:13 32:24 29:09 5Table 3.10: MST algorithm vs. Blossom IV (B4var) on random instanes. Variane.Dense Random Instanes: The experiments suggest that our MST algorithm issuperior to B4var on sparse instanes. Table 3.11 shows the running{time on denseinstanes with n verties and about 20%, 40% and 60% density. Our MST algorithmis ompetitive to B4var on these instanes as well.n m B4� B4�var MST� t1000 100000 6:97 5:84 1:76 51000 200000 16:61 11:35 3:88 51000 300000 18:91 18:88 5:79 52000 200000 46:71 38:86 8:69 52000 400000 70:52 70:13 16:37 52000 600000 118:07 115:66 23:46 54000 400000 233:16 229:51 42:32 54000 800000 473:51 410:43 92:55 54000 1200000 523:40 522:52 157:00 5Table 3.11: Comparison of MST algorithm to Blossom IV (B4 and B4var). Dense graphs.Complete Random Instanes and Prie and Repair: Blossom IV provides aso{alled prie and repair heuristi for omplete geometri instanes. The instanes areimpliitly represented by a set of points in an n�n square (the edge weights orrespondto the Eulidean distane). Using the prie and repair strategy signi�antly improvesthe running{time of Blossom IV on these instanes. We have not yet implementedsuh a heuristi for our algorithm. We ompared our MST algorithm to Blossom IVon omplete geometri instanes (B4var did not and B4parvar did use the prie and repairstrategy). Our algorithm requires an expliit representation of the underlying graphand we thus were only able to experiment with rather small instanes. The results arepresented in Table 3.12.



138 Chapter 3. Implementation and Testsn B4�var B4�parvar MST� t1000 37:01 0:43 24:05 52000 225:93 1:10 104:51 54000 1789:44 4:33 548:19 5Table 3.12: MST algorithm vs. Blossom IV (B4var and B4parvar ). E�et of prie and repair.The idea underlying the prie and repair heuristi is simple. Instead of running thealgorithm on the omplete set of edges, the prie and repair heuristi starts with asparse subgraph. One an optimum weighted mathing is omputed for the sparsesubgraph a hek is performed to determine whether or not the omputed mathing isalso optimum for the omplete graph. This is what is alled priing. Some of the edgeshaving negative redued ost are added to the urrent graph, with the mathing andthe potentials being modi�ed suh that all preonditions of the mathing algorithm aresatis�ed. The algorithm is resumed so as to repair the mathing for the urrent graph.This proess is repeated until the obtained mathing is optimum for the omplete graph.There are several natural hoies for the seletion of the sparse subgraph. For example,a minimum{weight mathing will have a natural tendeny to avoid heavy edges. Thus,taking the k lightest edges inident to any vertex seems to be a reasonable hoie. Infat, this was the way Applegate and Cook [App93℄ onstruted the initial subgraph(they alled it the k{nearest neighbour graph). Another hoie, proposed by Cookand Rohe [CR97℄, is to use the Delaunay triangulation of the point set as the initialsubgraph. For more extensive soures related to the prie and repair strategy see Derigsand Metz [DM91℄, Applegate and Cook [App93℄ and Cook and Rohe [CR97℄.`Worse{ase' Instanes for Blossom IV: A demanding task would be to imple-ment a generator, whih onstruts instanes that fore either algorithm, i.e. our MSTor the Blossom IV algorithm, into its worst ase. Random graphs tend to be rathersimple instanes; during the performane of our experiments, for example, many ran-dom instanes ourred that had been solved almost optimal by the frational mathingheuristi. So far, we have not been able to generate worst{ase instanes for either al-gorithm. However, we wish to onlude this setion with two `worse{ase' instanesthat demonstrate the superiority of our algorithm to Blossom IV.The �rst `worse{ase' instane for Blossom IV is simply a hain. We onstruted ahain having 2n verties and 2n � 1 edges. The edge weights along the hain werealternately set to 0 and 2 (the edge weight of the �rst and last edge equals 0). BlossomIV (B4var) and our MST algorithm were asked to ompute a maximum{weight perfetmathing. Note that the frational mathing heuristi will always ompute an optimalsolution on instanes of this kind. Table 3.13 shows the results.2n B4�var MST� t10000 94:75 0:25 120000 466:86 0:64 140000 2151:33 2:08 1Table 3.13: Comparison of MST algorithm to Blossom IV (B4var) on hains.



3.6 Experimental Results 139The running{time of Blossom IV grows more than quadratially (as a funtion of n),whereas the running{time of our MST algorithm grows about linearly with n. Wepresent our argument as to why this is to be expeted. First of all, the greedy heuristiwill math all edges having weight 2; the two outer verties remain unmathed. Eahalgorithm will then have to perform O(n) dual adjustments so as to obtain the opti-mum mathing. A dual adjustment takes time O(n) for Blossom IV (eah potentialis expliitly updated), whereas it takes O(1) for our MST algorithm. Thus, BlossomIV will need time O(n2) for all these adjustments and, on the other hand, the timerequired by our MST algorithm will be O(n). The idea of testing both algorithms onthis kind of hains is due to Kurt Mehlhorn (personal ommuniation).Another `worse{ase' instane for Blossom IV ourred in VLSI{Design having n =151780 verties and m = 881317 edges. Kindly, Andreas Rohe made this instaneavailable to us. We ompared the Blossom IV algorithms (B4 and B4var) to our MSTalgorithm. We ran our algorithm with the greedy heuristi (MST+) as well as with thefrational mathing heuristi (MST�). The results are given in Table 3.14.n m B4� B4�var MST+ MST� t151780 881317 200019:74 200810:35 3172:70 5993:61 1(332:01) (350:18) (5:66) (3030:35)Table 3.14: Comparison of MST algorithm to Blossom IV (B4var) on boese.edg instane.The seond row states the times that were needed by the heuristis. Observe that bothBlossom IV algorithms need more than two days to ompute an optimum mathing,whereas our algorithm solves the same instane in less than an hour. For our MSTalgorithm the frational mathing heuristi did not help at all on this instane: toompute a frational mathing took almost as long as omputing an optimum mathingfor the original graph (using the greedy heuristi).





Open Problems
We have desribed a priority queue based O(nm log n) algorithm of Edmonds' blossom{shrinking approah. Two implementations, a single searh tree and a multiple searhtree algorithm, were presented. The additional programming expenditure for the mul-tiple searh tree algorithm turned out to be well worth the e�ort when eÆieny inpratie is onsidered.Our multiple searh tree algorithm is ompetitive with the most eÆient known im-plementation, Blossom IV, due to Cook and Rohe [CR97℄. Blossom IV implementsa re�nement of a multiple searh tree approah, alled the variable Æ approah, andonly requires simple data strutures. We an thus provide an aÆrmative answer tothe question whether or not sophistiated data strutures suh as onatenable priorityqueues help in pratie.Our researh raises several questions. (1) The variable Æ algorithm is substantially fasterthan the other algorithms of Blossom IV. Would it be possible to integrate the variableÆ approah into a priority queue based O(nm logn) algorithm? Moreover, it wouldbe interesting to see if an O(nm logn) variable Æ algorithm will improve the pratialeÆieny as dramatially as for Blossom IV. (2) A prie and repair strategy is worthonsidering for the O(nm log n) algorithm as well. We expet that suh a strategy willimprove the running{time of our algorithm on dense and omplete instanes tremen-dously. (3) As previously mentioned, a generator of instanes foring either algorithminto its worst ase would be of use. (4) Reently, Stefan N�aher (personal ommu-niation) observed that using a stati variant of the graph data struture in LEDA(urrently, we use a dynami graph data struture) improves the overall running{timeof other graph algorithms by a fator of about two. Most likely, a similar e�et anbe ahieved for our algorithm too. (5) Our frational mathing heuristi also uses pri-ority queue data strutures. So far, however, it only implements a single searh treeapproah. We believe that a frational mathing heuristi based on the multiple searhtree approah would further improve the running{time. Possibly, this would also resultin a more eÆient algorithm for bipartite mathing problems. (6) At the end of Chap-ter 1, we (very roughly) skethed the ideas underlying an O(n(m+ n log n)) approah.Although we doubt that an eÆient implementation of this approah is possible, it isworth attempting to falsify our hypothesis.
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