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Abstract. The problem of sharing the cost of a common infrastructure
among a set of strategic and cooperating players has been the subject of
intensive research in recent years. However, most of these studies consider
cooperative cost sharing games in an offline setting, i.e., the mechanism
knows all players and their respective input data in advance. In this pa-
per, we consider cooperative cost sharing games in an online setting:
Upon the arrival of a new player, the mechanism has to take instan-
taneous and irreversible decisions without any knowledge about players
that arrive in the future. We propose an online model for general demand
cost sharing games and give a complete characterization of both weakly
group-strategyproof and group-strategyproof online cost sharing mech-
anisms for this model. Moreover, we present a simple method to derive
incremental online cost sharing mechanisms from online algorithms such
that the competitive ratio is preserved. Based on our general results, we
develop online cost sharing mechanisms for several binary demand and
general demand cost sharing games.

1 Introduction

The pivotal point in mechanism design is to achieve a global objective even
though part of the input information is owned by selfish players. In cost sharing,
the aim is to share the cost of a common service in a fair manner while the
players’ valuations for the service are private information. Based on the declared
bids of the players, a cost sharing mechanism determines a service allocation
and distributes the incurred cost among the served players. In many cost shar-
ing games, the common service is represented by a combinatorial optimization
problem like minimum Steiner tree, machine scheduling, etc., which defines a
cost for every possible service allocation. We consider cooperative cost sharing
games, i.e., players may form coalitions to coordinate their bidding strategies.

During the last decade, there has been substantial research on binary demand

cost sharing games, where a service allocation defines simply whether or not a
player is served. In this paper, we consider the general demand setting, in which
players require not only one but several levels of service, and the mechanism
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determines which service level is granted to each player and at what price. We
assume that players are concerned only about the quantity of service levels they
obtain, e.g., the number of distinct connections to a source, executions of their
job, etc. Moreover, once a player’s request for a certain service level was refused,
she will not be granted a higher level. This general demand cost sharing model
has recently been investigated quite intensively; see [1, 4, 11, 12].

To the best of our knowledge, all previous works on cooperative cost sharing
consider offline settings, where the entire instance is known in advance. Hence,
when determining the allocation and payment scheme, the mechanism can take
into account all input data associated with every player (bids for different ser-
vice levels and other relevant player characteristics). However, many natural cost
sharing games inherently bear an online characteristic in the sense that play-
ers arrive over time and reveal their input data only at their arrival. In such
settings, the mechanism needs to take instantaneous and irreversible decisions
with respect to the assigned service level and payment of the player without
any knowledge about players that arrive in the future. Problems in which the
input data is revealed gradually and irreversible decisions have to be taken with-
out knowledge of future requests are the subject of online computation [2]. The
standard yardstick to assess the quality of an online algorithm is by means of its
competitive ratio, i.e., the worst case ratio of the cost of the solution produced
by the online algorithm compared to the cost of an optimal offline algorithm
that knows the entire input data in advance.

Our Contributions. The main contributions of this paper are as follows:

1. We propose the first online model for general demand cost sharing games:
In its most general form, every player arrives several times to request an
additional service level. Upon the arrival of a player, the online mechanism
immediately determines a price for her new request. We require that at each
point of time, the sum of the collected payments approximates the cost of
the (optimal offline) solution for the current allocation.

2. We completely characterize weakly group-strategyproof and group-strategy-
proof (formal definitions in Sec. 2) online mechanisms for general demand
cost sharing games: We show that online cost sharing mechanisms are au-
tomatically weakly group-strategyproof for binary demand games. In the
general demand case, this is true if the marginal costs of the underlying cost
function are increasing. Moreover, we prove necessary and sufficient condi-
tions for group-strategyproofness of online cost sharing mechanisms.

3. We present a simple yet effective method to derive online cost sharing mecha-
nisms from competitive online algorithms: Given a ρ-competitive algorithm
for the underlying problem, we show that the induced incremental online
mechanism is ρ-budget balanced at all times. Using the above characteriza-
tion, this enables us to derive incentive compatible online mechanisms for
several binary demand and general demand cost sharing games for network
design and scheduling problems.



Related Work. Immorlica et al. [9] partially characterized group-strategyproof
cost sharing mechanisms in the offline case. They state that upper-continuous

group-strategyproof β-budget balanced binary demand cost sharing mechanisms
correspond to cross-monotonic cost sharing schemes. Juarez [10] very recently
gave a similar characterization for mechanisms fulfilling the MAX property,
meaning that indifferent players are always accepted.3 He also showed that
group-strategyproof cost sharing mechanisms correspond to feasible sequential

mechanisms if indifferent players are always rejected. A sequential mechanism
offers players service one after another according to an order that may change
with previous decisions (see [10] for precise definitions).

Moulin [12] introduced incremental cost sharing mechanisms in the offline
setting. An incremental mechanism is a sequential mechanism in which the pay-
ment offered to a player is equal to her incremental cost, i.e. the increase in cost
caused by adding her to the set of previously selected players. He claimed that for
supermodular cost functions, incremental mechanisms are group-strategyproof
and budget balanced. However, this statement is flawed (as indicated in [10])
and holds only under the assumption that players are never indifferent.

We extend the characterizations for group-strategyproof mechanisms to the
general demand online setting. The mechanisms in our online model always
accept indifferent players and thus fulfill Juarez’ MAX property. This allows us to
guarantee group-strategyproofness for all incremental mechanisms derived from
submodular cost functions. Moreover, we achieve weak group-strategyproofness
for the whole class of games with increasing marginal cost functions.

2 Online General Demand Cost Sharing Games

We first review offline general demand cost sharing games as studied in [1, 4, 11,
12]. Let U be a set of players that are interested in a common service. In a general

demand cost sharing game, every player has valuations for a finite number of
service levels, i.e. the maximum service level requested is bounded by a constant
L ∈ N. Let (i, l) denote player i’s request for service level l. Each player i ∈ U
has a valuation vector vi ∈ R

L
+, where vi,l denotes how much more (additive)

player i likes service level l compared to service level l−1. The valuation vectors
are private information, i.e. vi is known to i only. Additionally, each player i
announces a bid vector bi ∈ R

L
+. bi,l represents the maximum price player i is

willing to pay for service level l (in addition to service level l − 1).
An allocation of goods or service to the set of players U is denoted by a

vector x ∈ N
U
0 , where xi ∈ N0 indicates the level of service that player i obtains;

here xi = 0 represents that i does not receive any good or service. Note that
as a characteristic of this model, only subsequent service levels can be allocated
to a player (i.e. if a player obtains service level l, then she also obtains service
levels 1, . . . , l − 1). We denote by ei ∈ N

U
0 the ith unit vector.

The servicing cost of an allocation x ∈ N
U
0 is given by a cost function

C : N
U
0 → R+. We assume that C is non-decreasing in every component and

3 A player is said to be indifferent if her bid is equal to her requested payment.



C(0) = 0 for the all-zero allocation 0. In the examples we study, the common
service is represented by a combinatorial optimization problem like e.g. Steiner
tree, machine scheduling, etc. In these cases, we define C(x) as the cost of an
offline optimal solution to the underlying optimization problem.

A general demand cost sharing mechanism solicits the bid vectors bi from all
players i ∈ U , and computes a service allocation x ∈ N

U
0 and a payment φi,l ∈ R

for every player i ∈ U and service level l ≤ L. We sometimes write x(b) and
φ(b) to refer to the outcome resulting from bid vector b. We assume that the
mechanism complies with the following standard assumptions:

1. Individual rationality: A player is charged only for service levels that she
receives, and for any service level, her payment is at most her bid, i.e. for all
i, l: φi,l = 0 if xi < l and φi,l ≤ bi,l if xi ≥ l.

2. No positive transfer : A player is not paid for receiving service, i.e. φi,l ≥ 0
for all i, l.

3. Consumer sovereignty: A player is guaranteed to receive an additional service
level if she bids high enough, i.e. there exists a threshold value b∗i,l for each
player i and service level l such that xi ≥ l if bi,l ≥ b∗i,l and xi ≥ l − 1.

For notational convenience, we define vi,0 = φi,0 = 0 for all players i ∈ U .
Let C̄(x) denote the cost of the actually computed solution for allocation x. A

cost sharing mechanism is β-budget balanced if the total payment obtained from
all players deviates by at most a factor β ≥ 1 from the total cost, i.e. C̄(x) ≤∑

i∈U

∑L

l=1 φi,l ≤ β ·C(x). If β = 1, we simply call the cost sharing mechanism
budget balanced.

We assume that players act strategically and each player’s goal is to maximize
her own utility. The utility of player i is defined as ui(x, φ) :=

∑xi

l=1(vi,l − φi,l).
Since the outcome (x, φ) computed by the mechanism depends on the bids b of
the players (and not on their true valuations), a player may have an incentive
to declare a bid vector bi that differs from her true valuation vector vi. We say
that a mechanism is strategyproof if bidding truthfully is a dominant strategy
for every player. That is, for every player i ∈ U and every two bid vectors b,b′

with bi = vi and bj = b′j for all j 6= i, we have ui(x, φ) ≥ ui(x
′, φ′), where (x, φ)

and (x′, φ′) are the solutions output by the mechanism for bid vectors b and b′,
respectively. Note that in our model, a player cannot lie about the characteristics
or arrival times of her requests.

In cooperative mechanism design, it is assumed that players can form coali-
tions in order to coordinate their bids. A mechanism is group-strategyproof if no
coordinated bidding of a coalition S ⊆ U can strictly increase the utility of some
player in S without strictly decreasing the utility of another player in S. For-
mally, for every coalition S ⊆ U and every two bid vectors b,b′ with bi = vi for
all i ∈ S and bi = b′i for all i /∈ S, if there is some i ∈ S with ui(x

′, φ′) > ui(x, φ)
then there is some j ∈ S with ui(x

′, φ′) < ui(x, φ). A mechanism is weakly group-

strategyproof if no coordinated bidding can strictly increase the utility of every

player in a coalition. That is, for every coalition S ⊆ U and every two bid vectors
b,b′ with bi = vi for all i ∈ S and bi = b′i for all i /∈ S, there is some i ∈ S



with ui(x
′, φ′) ≤ ui(x, φ). Intuitively, weak group-strategyproofness suffices if

we assume that players adopt a slightly more conservative attitude with respect
to their willingness of joining a coalition: Group-strategyproofness is needed if a
player will participate in a coalition even if her utility is not affected, while weak
group-strategyproofness suffices if she only joins if she is strictly better off.

Online Model. Many cost sharing games studied in the literature are derived
from combinatorial optimization problems. This motivates us to define online

cost sharing games very generally depending on the varying online characteristics
inherited from different online optimization problems [2].

The most important characteristic of our model is that an online mechanism
must immediately fix the payment for a requested service at the point of time
when it is revealed, without any knowledge about future requests. As in the
offline setting, we assume that an online mechanism never accepts further re-
quests from players that have previously been rejected. For cost sharing games
that are derived from combinatorial optimization problems, the mechanism has
to maintain a (possibly suboptimal) feasible solution for the current service al-
location. The feasible modifications of this current solution are inherited from
the underlying online optimization problem.

We use the online list model by Borodin et al. [2] to describe the proceeding
of an online mechanism: Service requests (i, l) arrive according to an online order.
(For certain problems like online scheduling, jobs may have release dates which
are then treated as arrival times of the respective requests.) Upon arrival, the
player reveals the characteristics of her new request (i.e. the input information
for the underlying combinatorial optimization problem) and her bid bi,l. The
mechanism immediately offers her the additional service level at a price p that
may depend on previous inputs and decisions only. If her bid bi,l is larger or
equal to this price, the request is accepted and added to the current allocation.
Otherwise, the request is rejected and all further appearances of player i are
removed from the online list (formally, we set p = ∞ for all subsequent requests
of player i). A more formal description is given in Algorithm 1.

Algorithm 1: Online general demand cost sharing mechanism.

Input: online cost sharing game
Output: allocation vector x = (xi)i∈U , payment vector φ = (φi,l)i∈U,l≤L

Initialize x0 = 01

forall requests t ∈ T do2

Read out input data and bid bi,l of newly arrived request t =: (i, l).3

Determine payment p for new request.4

if bi,l ≥ p then set xt = xt−1 + ei and φi,l = p5

else set xt = xt−1 and φi,l = 0; delete all further appearances of player i.6

end7

Output allocation vector x and payments φ8

Let xt denote the current allocation after processing request t ∈ T = {1, 2, . . .}.
Let C̄(xt) denote the cost of the actually computed solution for xt. We call an



online cost-sharing mechanism β-budget balanced at all times for some β ≥ 1 if
for all requests t ∈ T :

C̄(xt) ≤
∑

i∈U

xt

i∑

l=1

φi,l ≤ β · C(xt).

The conditions of individual rationality and no positive transfer as well as the
different forms of incentive compatibility transfer in a straightforward way.

3 Incentive Compatibility

The following characterizations hold for all online mechanisms in our framework.
Note that the requirements for group-strategyproofness highly depend on the
fact that requests are accepted if the announced bid is equal to the offered price.

Strategyproofness. To guarantee strategyproofness, we must bound the in-
crease in marginal valuations of individual players. This is essential to prevent
players from overbidding for some level to obtain positive utility for higher lev-
els. In previous works on general demand cost sharing [1, 11], players’ valuations
were assumed to be non-increasing. However, we can slightly relax this condition
by introducing a positive factor λ:

Definition 1. A valuation vector vi ∈ R
L is λ-decreasing if for all 1 < l ≤ L,

vi,l ≤ λ · vi,l−1.

Given λ-decreasing valuations for all players, an online mechanism is guaranteed
to be strategyproof if and only if its cost shares grow faster than the valuations.

Definition 2. A cost sharing mechanism has λ-increasing prices if for every

bid vector b and player i ∈ U , the price for any service level 1 < l ≤ xi(b) is at

least λ times the price for the previous service level, i.e. φi,l(b) ≥ λ · φi,l−1(b).

service level xi

total price

xi
X

l=1

φi,l

total valuation

xi
X

l=1

vi,l

Fig. 1. Illustration of λ-decreasing valuations and λ-increasing prices for λ = 1

The above conditions can be further generalized by letting λ vary for every
player (and/or level) or by adding constant terms to the right hand sides. How-
ever, the following fact emphasizes that a similar set of conditions are necessary
to achieve strategyproofness. We omit the proof due to space restrictions.



Fact 1 A general demand online mechanism is not strategyproof if cost shares

do not increase by more than valuations per service level.

Weak Group-Strategyproofness. We prove now that under the above con-
ditions, an online mechanism is in fact weakly group-strategyproof.

Theorem 1. If valuations are λ-decreasing, a general demand online cost shar-

ing mechanism with λ-increasing prices is weakly group-strategyproof.

Proof. Fix a coalition S ⊆ U and a bid vector b with bi = vi for all i ∈ S.
Assume for contradiction that all members of the coalition can strictly increase
their utilities by changing their bids to b′ (while bi = b′i for all i /∈ S). Let (i, l)
be the first request for which the mechanism makes different decisions in the
runs on b and b′. By the online character of the mechanism, the price offered
for request (i, l) only depends on previous decisions and is thus equal in both
runs. Let p denote this offer price. There are two possible cases:

1. vi,l < p ≤ b′i,l. Then, φi,l(b
′) = p, and λ-decreasing valuations and λ-

increasing prices yield . . . ≤ λ−2vi,l+2 ≤ λ−1vi,l+1 ≤ vi,l < φi,l(b
′) ≤

λ−1φi,l+1(b
′) ≤ λ−2φi,l+2(b

′) ≤ . . .. Hence, player i has negative utility for
service levels l and higher in the run on b′, whereas when bidding truthfully,
the utility for each level is non-negative.

2. b′i,l < p ≤ vi,l. Then, player i obtains only l − 1 levels of service in the run
on b′, but she may get additional utility by accepting level l in the run on b.

Hence, player i gets less or equal utility in the run on b′, a contradiction. ⊓⊔

For binary demand cost sharing games, both Definitions 1 and 2 are always
fulfilled since there is only one service level. Hence, quite remarkably, binary de-
mand online cost sharing mechanisms are inherently weakly group-strategyproof.

Group-Strategyproofness. To ensure the stronger notion of group-strategy-
proofness, we must prevent that dropping out, i.e. underbidding in case of in-
difference, can help subsequent players. Towards this end, we introduce the fol-
lowing generalization of the well-known notion of cross-monotonicity for binary
demand cost sharing games [12].

Consider a fixed instance of an online cost sharing game and let φi,l(b) denote
the price that player i is offered for service level l when b is the bid vector input
to the mechanism. Throughout this section, we assume λ-decreasing valuations
and λ-increasing prices.

Definition 3. An online mechanism is cross-monotonic if for every player i ∈ U
and service level l, the offered price does not decrease when a subset of requests

are accepted in previous iterations, i.e.

φi,l(b
′) ≥ φi,l(b)

for all bid vectors b,b′ such that xt−1(b′) ≤ xt−1(b), where (i, l) is request t.



This condition is sufficient for group-strategyproofness. The proof contains
two main ideas: First, dropping out can never help others since it only increases
cost shares of subsequent bidders. Second, the first member of a coalition who
overbids for an additional level of service can only decrease her utility by doing
this, since prices increase more than valuations in terms of service levels.

Theorem 2. If valuations are λ-decreasing, an online cost sharing mechanism

with λ-increasing prices is group-strategyproof if it is cross-monotonic.

Proof. Fix a coalition S ⊆ U and a bid vector b with bi = vi for all i ∈ S.
Assume that every member of the coalition increases or maintains her utility
when the coalition changes their bids to b′ (while bi = b′i for all i /∈ S).

We first prove that xt(b′) ≤ xt(b) for all t ∈ T . Assume for contradiction that
there is a request which is accepted in the run on b′ but not in the run on b.
Let (i, l) be the earliest such request, say request t. That is, xτ (b′) ≤ xτ (b)
for all τ < t. By cross-monotonicity, we have φi,l(b

′) ≥ φi,l(b). Since players
outside the coalition submit the same bids in both runs, player i must be a
member of the coalition to gain service in the run on b′. But then, φi,l(b

′) ≥
φi,l(b) > bi,l = vi,l and hence by λ-decreasing valuations and λ-increasing prices,
player i has negative utility for service levels l and higher in the run on b′. Since
xτ (b′) ≤ xτ (b) for all τ < t, by cross-monotonicity φi,k(b′) ≥ φi,k(b) for all
k < l as well, and therefore ui(b

′) < ui(b), contradicting the first assumption.
We can conclude that xt(b′) ≤ xt(b) for all t ∈ T . Hence, φi,l(b

′) ≥ φi,l(b)
for all i, l by cross-monotonicity. This means that

ui(b
′) =

xi(b
′)∑

l=1

(vi,l − φi,l(b
′)) ≤

xi(b)∑

l=1

(vi,l − φi,l(b)) = ui(b)

for all i and l, hence we obtain group-strategyproofness. ⊓⊔
We prove next that the conditions in Theorem 2 are not only sufficient but

also necessary, even in the binary demand case.

Theorem 3. A binary demand online mechanism is not group-strategyproof if

it is not cross-monotonic.

Proof. Consider an online mechanism that is not cross-monotonic; let L = 1.
That is, there are bid vectors b,b′ with xt−1(b′) ≤ xt−1(b) and φi(b

′) < φi(b)
for some player i. For simplicity, assume that i is the last player in the online
instance. Since the mechanism is online, φi(b

′) does not depend on b′i, so we can
assume that b′i = φi(b). We will define valuations such that there is a coalition S
which has an incentive to misreport their valuations.

Define S := {j ∈ U | bj 6= b′j} ∪ {i}. Assume that all j ∈ U \ S bid bj = b′j .
Now, define vj := φj(b) for all j ∈ S. Observe that if all players in S bid
truthfully, the outcome of the mechanism is the same as for bid vector b. Now,
if the coalition changes their bids to b′, some players j ∈ S \ {i} lose service
but all retain their previous utility of zero. Meanwhile, player i increases her
utility from zero to φi(b) − φi(b

′) > 0. Hence, the mechanism is not group-
strategyproof. ⊓⊔



4 Incremental Online Mechanisms

We now describe a generic method to turn competitive online algorithms into
online cost sharing mechanisms. Given a ρ-competitive algorithm alg for a com-
binatorial optimization problem, we define an incremental online mechanism for
the corresponding cost sharing game, which is ρ-budget balanced at all times.
The mechanism is weakly group-strategyproof if the algorithm’s marginal costs
are increasing, which is gratuitous in the binary demand case.

Let alg be a ρ-competitive algorithm for an online combinatorial optimiza-
tion problem P . Consider an instance I of P . The incremental online mechanism
induced by alg works as follows: Requests arrive according to I. Each time a
new request arrives, we simulate alg on the online instance induced by the re-
quests that have previously been accepted and the new item. The price p for the
additional service level is set to be the incremental cost caused by the update in
the competitive algorithm. We call an online algorithm alg cross-monotonic if
the induced incremental online mechanism is cross-monotonic. It is straightfor-
ward to see that the budget balance factor of an incremental online mechanism
is inherited from the competitive ratio of the input algorithm: In every iteration,
the sum of the collected payments equals the cost inferred by the algorithm.

Lemma 1. The incremental online mechanism is ρ-budget balanced at all times.

4.1 Binary Demand Examples

To demonstrate the applicability of our framework, we apply it to competitive
online algorithms for a number of combinatorial optimization problems. In this
section, we give examples for binary demand cost sharing games, i.e. the maxi-
mum service level is L = 1 and every player has only one request.

Online Scheduling. Consider the parallel machine scheduling problem with
the objective of minimizing the makespan. Any list scheduling algorithm has
an approximation factor of at most 2 for this problem. Hence, the online al-
gorithm that adds each arriving job to the machine with currently least load
is 2-competitive. Unfortunately, it is not cross-monotonic as deleting jobs can
cause higher or lower completion times for subsequent jobs. Thus, our framework
yields a 2-budget balanced weakly group-strategyproof online mechanism.

Corollary 1. There is a 2-budget balanced weakly group-strategyproof incremen-

tal online mechanism for the minimum makespan scheduling problem on parallel

machines P | |Cmax.

Online Steiner Tree and Forest. Given an undirected graph G with edge
costs, connection requests arrive online. In the Steiner forest problem, each re-
quest consists of a pair of terminals si, ti; in the Steiner tree problem, all requests
have one vertex in common, i.e. si = sj for all i, j ∈ U . The goal is to select a
minimum cost set of edges such that each terminal pair is connected by a path.
Let n denote the number of players (i.e., terminal pairs).



The online greedy Steiner tree algorithm picks the shortest path to the cur-
rent tree each time a new terminal pair arrives. It has a competitive ratio of
log n, while the competitive ratio of any online algorithm is known to be at
least 1/2 logn [8]. Hence, our framework gives a weakly group-strategyproof
Θ(log n)-budget balanced online cost sharing mechanism for the Steiner tree
problem, which is asymptotically best possible. The greedy algorithm for the
online Steiner forest problem achieves an approximation ratio of O(log2 n).

Corollary 2. There is an O(log2 n)-budget balanced weakly group-strategyproof

incremental online mechanism for the Steiner forest game. This mechanism is

(log n)-budget balanced for the Steiner tree game.

Unfortunately, the greedy algorithm is not cross-monotonic, as the removal
of some players may cause other players to switch their paths, which in turn can
have arbitrary effects on the costs incurred by subsequent players. This issue can
be overcome if paths are unambiguous; e.g. if G = (V, E) is a forest, the above
mechanisms are group-strategyproof. Pushing this insight further, we obtain an
O(log |V |)-budget balanced group-strategyproof mechanism for the Steiner forest
game if the underlying graph is known in advance: We use the oblivious online
Steiner forest algorithm by Gupta et al. [6], which essentially works as follows:
Given the underlying graph, the algorithm precomputes a collection of paths.
When a new terminal pair arrives, it simply connects it by one of the predefined
paths. The authors show that one can identify a collection of paths such that the
resulting algorithm is O(log |V |)-competitive. Since the used paths are defined
in advance, a player can only benefit from the presence of other players, who
might pay for parts of her designated path. Hence, we obtain cross-monotonicity
without losing much in terms of the budget balance guarantee.

Corollary 3. There is an O(log2 |V |)-budget balanced group-strategyproof incre-

mental online mechanism for the Steiner forest game, where V is the vertex set

of the underlying graph.

We believe that such “universal” algorithms that determine generic solutions
without knowing the upcoming instance will also yield group-strategyproof on-
line mechanisms for several other interesting problems like e.g. the traveling
salesman problem.

4.2 General Demand Examples

We now exploit the whole range of our framework by deriving incremental mecha-
nisms for general demand cost sharing games. In the first example, players arrive
only once with the complete list of their requests. In the second example, the
arrival sequence is mixed, i.e. players take turns announcing additional requests.

Online Preemptive Scheduling. A common problem in preemptive schedul-
ing is the parallel machine setting in which each job has a release date. The



cost of a solution is given by the sum of all completion times. The single ma-
chine case is solved optimally by the shortest remaining processing time (srpt)
algorithm [13]. srpt is a 2-approximation for the parallel machine case [5].

In the corresponding cost sharing game, we treat the release date of a job
as its arrival time. Upon arrival, each player may request multiple executions
of her job. In scheduling terms, each player owns a set of jobs which all have
the same release date and processing time. E.g. imagine a student who asks a
copy shop to print and bind several copies of his thesis, or a joinery is asked to
produce a few of the same individual piece of furniture. In such scenarios, it is
very natural to assume that the marginal valuation for each additional copy is
decreasing, i.e. vi,l ≥ vi,l+1 for all i, l.

srpt schedules all of a player’s jobs subsequently. Hence, each of them de-
lays the same number of jobs, and later copies have larger completion times.
Therefore, the mechanism induced by srpt has increasing marginal prices.

Corollary 4. There is a 2-budget balanced weakly group-strategyproof general

demand incremental online mechanism for the preemptive scheduling problem

with release dates P |ri, pmtn|∑ Ci. This mechanism is budget balanced in the

single machine case.

Online Multicommodity Routing. In an online multicommodity routing
problem, we are given a directed graph with monotonically increasing cost func-
tions on each arc. Commodities arrive online and request routing of l units from
some vertex to another. We assume that the routing is splittable in integer units.
The greedy algorithm which routes each unit of flow separately in an optimal
way is (3 + 2

√
2)-competitive for this problem [7]. Marginal costs are increasing

since the cost functions on each arc grow with increasing traffic. This is true
even when players arrive in a mixed order and request to route additional units
between their source-destination pair. However, this is a congestion-type game
(the more players in the game, the higher the costs per request), and so we
cannot expect group-strategyproofness.

Corollary 5. There is a (3 + 2
√

2)-budget balanced weakly group-strategyproof

incremental online mechanism for the online multicommodity routing problem in

which each player arrives multiple times.

5 Conclusion

We characterized strategyproofness, weak group-strategyproofness and group-
strategyproofness of mechanisms in a new framework for online general demand
cost sharing games. Quite notably, weak group-strategyproofness comes for free
for binary demand problems. Online mechanisms are group-strategyproof if and
only if dropping out cannot help subsequent players. Consequently, we cannot
expect incremental cost sharing mechanisms for problems with congestion effects
like e.g. scheduling games to be group-strategyproof, while this seems easier for
network design problems.



In the offline setting, finding a good order to consider players is the key to
derive cost sharing mechanisms with attractive budget balance factors (see [3]).
In the online case, this order is determined by an adversary and thus not under
the control of the mechanism designer, which strongly constrains the possibilities
of designing valuable cost sharing mechanisms. However, our results prove that
there is no gap between the best possible competitive ratio of an online algorithm
and the best possible budget balance factor of a weakly group-strategyproof
online cost sharing mechanism.

We consider this work as a very natural and general starting point to exploit
cooperative cost sharing in an online context. It would be interesting to see more
applications to our framework, with or without usage of the direct derivation
of incremental mechanisms from competitive algorithms. Our model restricts
feasible allocations to a continuous sequence of accepts for each player, starting
with their first request. This feature of the model is crucial for truthfulness as
it prevents players from underbidding to reject some service request and then
obtain it later for a cheaper price. One interesting line of research would be
to allow for more general mechanisms which might accept further requests of
players even after a request has been rejected.
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3. J. Brenner and G. Schäfer. Singleton acyclic mechanisms and their applications

to scheduling problems. In Proc. of the 1st Int. Sympos. on Algorithmic Game

Theory, volume 4997 of LNCS, pages 315–326, 2008.
4. N. Devanur, M. Mihail, and V. Vazirani. Strategyproof cost-sharing mechanisms

for set cover and facility location games. Decision Support Syst., 39(1):11–22, 2005.
5. J. Du, J. Y. T. Leung, and G. H. Young. Minimizing mean flow time with release

time constraint. Theoretical Computer Sci., 75(3):347–355, 1990.
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