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Abstract. We introduce a new measure of the discrepancy in strategic
games between the social welfare in a Nash equilibrium and in a social
optimum, that we call selfishness level . It is the smallest fraction of
the social welfare that needs to be offered to each player to achieve that
a social optimum is realized in a pure Nash equilibrium. The selfishness
level is unrelated to the price of stability and the price of anarchy and in
contrast to these notions is invariant under positive linear transforma-
tions of the payoff functions. Also, it naturally applies to other solution
concepts and other forms of games.

We study the selfishness level of several well-known strategic games. This
allows us to quantify the implicit tension within a game between players’
individual interests and the impact of their decisions on the society as a
whole. Our analysis reveals that the selfishness level often provides more
refined insights into the game than other measures of inefficiency, such
as the price of stability or the price of anarchy.

1 Introduction

The discrepancy in strategic games between the social welfare in a Nash equilib-
rium and in a social optimum has been long recognized by the economists. One
of the flagship examples is Cournot competition, a strategic game involving firms
that simultaneously choose the production levels of a homogeneous product. The
payoff functions in this game describe the firms’ profit in the presence of some
production costs, under the assumption that the price of the product depends
negatively on the total output. It is well-known, see, e.g., [1, pages 174–175], that
the price in the social optimum is strictly higher than in the Nash equilibrium,
which shows that the competition between the producers of a product drives its
price down.

In computer science the above discrepancy led to the introduction of the
notions of the price of anarchy [2] and the price of stability [3] that measure
the ratio between the social welfare in a worst and, respectively, a best Nash
equilibrium and a social optimum. This originated a huge research effort aiming
at determining both ratios for specific strategic games that possess (pure) Nash
equilibria.

? A full version with all proofs is available at the authors’ homepages.



These two notions are descriptive in the sense that they refer to an exist-
ing situation. In contrast, we propose a notion that measures the discrepancy
between the social welfare in a Nash equilibrium and a social optimum, which
is normative, in the sense that it refers to a modified situation. On an abstract
level, the approach that we propose here is discussed in [4], in chapter “How to
Promote Cooperation”, from where we cite (see page 134): “An excellent way to
promote cooperation in a society is to teach people to care about the welfare of
others.”

Our approach draws on the concept of altruistic games (see, e.g., [5] and
more recent [6]). In these games each player’s payoff is modified by adding a
positive fraction α of the social welfare in the considered joint strategy to the
original payoff. The selfishness level of a game is defined as the infimum over
all α ≥ 0 for which such a modification yields that a social optimum is realized
in a pure Nash equilibrium.

Intuitively, the selfishness level of a game can be viewed as a measure of
the players’ willingness to cooperate. A low selfishness level indicates that the
players are open to align their interests in the sense that a small share of the social
welfare is sufficient to motivate them to choose a social optimum. In contrast, a
high selfishness level suggests that the players are reluctant to cooperate and a
large share of the social welfare is needed to stimulate cooperation among them.
An infinite selfishness level means that cooperation cannot be achieved through
such means.

Often the selfishness level of a strategic game provides better insights into
the game under consideration than other measures of inefficiency, such as the
price of stability or the price of anarchy. To illustrate this point, we elaborate
on our findings for the public goods game with n players. In this game, every
player i chooses an amount si ∈ [0, b] that he wants to contribute to a public
good. A central authority collects all individual contributions, multiplies their
sum by c > 1 (here we assume for simplicity that n ≥ c) and distributes the
resulting amount evenly among all players. The payoff of player i is thus pi(s) :=
b− si + c

n

∑
j sj .

In the (unique) Nash equilibrium, every player attempts to “free ride” by
contributing 0 to the public good (which is a dominant strategy), while in the
social optimum every player contributes the full amount of b. As we will show,
the selfishness level of this game is (1 − c

n )/(c − 1). This bound suggests that
the temptation to free ride (i) increases as the number of players grows and
(ii) decreases as the parameter c increases. Both phenomena were observed by
experimental economists, see, e.g., [5, Section III.C.2]. In contrast, the price of
stability (which coincides with the price of anarchy) for this game is c, which is
rather uninformative.

In this paper, we define the selfishness level by taking pure Nash equilibrium
as the solution concept. This is in line with how the price of anarchy and price
of stability were defined originally [2, 3]. However, the definition applies equally
well to other solution concepts and other forms of games.



Our Contributions. In this paper, we study the selfishness level of some selected
classical and fundamental strategic games. These games are often used to illus-
trate the consequences of selfish behaviour and the effects of competition. To
this aim, we first derive a characterization result that allows us to determine the
selfishness level of a strategic game. Our characterization shows that the selfish-
ness level is determined by the maximum appeal factor of unilateral profitable
deviations from specific social optima, which we call stable. Intuitively, the ap-
peal factor of a single player deviation refers to the ratio of the gain in his payoff
over the resulting loss in social welfare.

We show that the selfishness level of a finite game can be an arbitrary real
number that is unrelated to the price of stability. A nice property of our selfish-
ness level notion is that, unlike the price of stability and the price of anarchy, it
is invariant under positive linear transformations of the payoff functions.

We then use the above characterization result to analyze the selfishness level
of several strategic games. In particular, we show that the selfishness level of finite
ordinal potential games is finite. We also derive explicit bounds on the selfishness
level of fair cost sharing games and congestion games with linear delay functions.
These bounds depend on the specific parameters of the underlying game, but
are independent of the number of players. Moreover, our bounds are tight.

Further, we show that the selfishness level of the Prisoner’s Dilemma with
n players is 1/(2n − 3) and that of the public goods game with n players is
max{0, (1− c

n )(c− 1)}. Finally, the selfishness level of Cournot competition (an
example of an infinite ordinal potential game), Tragedy of the Commons, and
Bertrand competition turns out to be infinite.

Related Work. There are only few articles in the algorithmic game theory litera-
ture that study the influence of altruism in strategic games [7–11]. In these works,
altruistic player behavior is modeled by altering each player’s perceived payoff
in order to account also for the welfare of others. The models differ in the way
they combine the player’s individual payoff with the payoffs of the other players.
All these studies are descriptive in the sense that they aim at understanding the
impact of altruistic behavior on specific strategic games.

Closest to our work are the articles [10] and [8]. Elias et al. [10] study the
inefficiency of equilibria in network design games (which constitute a special
case of the cost sharing games considered here) with altruistic (or, as they call
it, socially-aware) players. As we do here, they define each player’s cost function
as his individual cost plus α times the social cost. They derive lower and upper
bounds on the price of anarchy and the price of stability, respectively, of the
modified game. In particular, they show that the price of stability is at most
(Hn + α)/(1 + α), where n is the number of players.

Chen et al. [8] introduce a framework to study the robust price of anarchy,
which refers to the worst-case inefficiency of other solution concepts such as
coarse correlated equilibria (see [12]) of altruistic extensions of strategic games.
In their model, player i’s perceived cost is a convex combination of (1−ᾱi) times
his individual cost plus ᾱi times the social cost, where ᾱi ∈ [0, 1] is the altruism
level of i. If all players have a uniform altruism level ᾱi = ᾱ, this model relates



to the one we consider here by setting α = ᾱ/(1 − ᾱ) for ᾱ ∈ [0, 1). Although
not being the main focus of the paper, the authors also provide upper bounds of
2/(1 + ᾱ) and (1− ᾱ)Hn + ᾱ on the price of stability for linear congestion games
and fair cost sharing games, respectively.

Note that in all three cases the price of stability approaches 1 as α goes to∞.
This seems to suggest that the selfishness level of these games is ∞. However,
this is not the case as outlined above.

Other models of altruism were proposed in [7, 9]. Chen and Kempe [9] define
the perceived cost of a player as (1 − β) times his individual cost plus β/n
times the social cost, where β ∈ [0, 1]. Caragiannis et al. [7] define the perceived
cost of player i as (1 − ξ) times his individual cost plus ξ times the sum of the
costs of all other players (i.e., excluding player i), where ξ ∈ [0, 1]. Both models
are equivalent to the model the we consider here by using the transformations
α = β/((1− β)n) for β ∈ [0, 1) and α = ξ/(1− 2ξ) for ξ ∈ [0, 12 ).

In network congestion games, researchers studied the effect of imposing tolls
on the edges of the network in order to reduce the inefficiency of Nash equi-
libria; see, e.g., [13]. From a high-level perspective, these approaches can also
be regarded as being normative. Conceptually, our selfishness level notion is re-
lated to the Stackelberg threshold introduced by Sharma and Williamson [14].
The authors consider network routing games in which a fraction β ∈ [0, 1] of the
flow is first routed centrally and the remaining flow is then routed selfishly. The
Stackelberg threshold refers to the smallest value β that is needed to improve
upon the social cost of a Nash equilibrium flow.

2 Selfishness Level

A strategic game (in short, a game) G = (N, {Si}i∈N , {pi}i∈N ) is given by
a set N = {1, . . . , n} of n > 1 players, a non-empty set of strategies Si for
every player i ∈ N , and a payoff function pi for every player i ∈ N with
pi : S1 × · · · × Sn→ R. The players choose their strategies simultaneously and
every player i ∈ N aims at choosing a strategy si ∈ Si so as to maximize his
individual payoff pi(s), where s = (s1, . . . , sn).

We call s ∈ S1 × · · · × Sn a joint strategy , denote its ith element by si,
denote (s1, . . . , si−1, si+1, . . . , sn) by s−i and similarly with S−i. Further, we
write (s′i, s−i) for (s1, . . . , si−1, s

′
i, si+1, . . . , sn), where we assume that s′i ∈ Si.

Sometimes, when focussing on player i we write (si, s−i) instead of s.

A joint strategy s a Nash equilibrium if for all i ∈ {1, . . . , n} and s′i ∈
Si, pi(si, s−i) ≥ pi(s

′
i, s−i). Further, given a joint strategy s we call the sum

SW (s) :=
∑n

i=1 pi(s) the social welfare of s. When the social welfare of s is
maximal we call s a social optimum .

Given a strategic game G := (N, {Si}i∈N , {pi}i∈N ) and α ≥ 0 we define the
game G(α) := (N, {Si}i∈N , {ri}i∈N ) by putting ri(s) := pi(s) + αSW (s). So
when α > 0 the payoff of each player in the G(α) game depends on the social
welfare of the players. G(α) is then an altruistic version of the game G.



Suppose now that for some α ≥ 0 a pure Nash equilibrium of G(α) is a social
optimum of G(α). Then we say that G is α-selfish . We define the selfishness
level of G as

inf{α ∈ R+ | G is α-selfish}. (1)

Here we adopt the convention that the infimum of an empty set is ∞. Further,
we stipulate that the selfishness level of G is denoted by α+ iff the selfishness
level of G is α ∈ R+ but G is not α-selfish (equivalently, the infimum does not
belong to the set). We show below (Theorem 2) that pathological infinite games
exist for which the selfishness level is of this kind; none of the other studied
games is of this type.

The above definitions refer to strategic games in which each player i maxi-
mizes his payoff function pi and the social welfare of a joint strategy s is given
by SW (s). These definitions obviously apply to strategic games in which every
player i minimizes his cost function ci and the social cost of a joint strategy s is
defined as SC(s) :=

∑n
i=1 ci(s). The definition also extends in the obvious way

to other solution concepts (e.g., mixed or correlated equilibria) and other forms
of games (e.g., subgame perfect equilibria in extensive games).

Note that the social welfare of a joint strategy s inG(α) equals (1+αn)SW (s),
so the social optima of G and G(α) coincide. Hence we can replace in the above
definition the reference to a social optimum of G(α) by one to a social optimum
of G.

Intuitively, a low selfishness level means that the share of the social welfare
needed to induce the players to choose a social optimum is small. This share can
be viewed as an ‘incentive’ needed to realize a social optimum. Let us illustrate
this definition on three simple examples.

Example 1. Prisoner’s Dilemma

C D
C 2, 2 0, 3
D 3, 0 1, 1

C D
C 6, 6 3, 6
D 6, 3 3, 3

Consider the Prisoner’s Dilemma game G (on the left) and the resulting game
G(α) for α = 1 (on the right). In the latter game the social optimum, (C,C), is
also a Nash equilibrium. One can easily check that for α < 1, (C,C) is also a
social optimum of G(α) but not a Nash equilibrium. So the selfishness level of
this game is 1.

Example 2. Battle of the Sexes

F B
F 2, 1 0, 0
B 0, 0 1, 2

Here each Nash equilibrium is also a social optimum, so the selfishness level
of this game is 0.

Example 3. Game with a bad Nash equilibrium
The following game results from equipping each player in the Matching Pennies
game with a third strategy E (for edge):



H T E
H 1,−1 −1, 1 −1,−1
T −1, 1 1,−1 −1,−1
E −1,−1 −1,−1 −1,−1

Its unique Nash equilibrium is (E,E). It is easy to check that the selfishness
level of this game is ∞.

Recall that, given a finite game G that has a Nash equilibrium, its price of
stability is the ratio SW (s)/SW (s′) where s is a social optimum and s′ is a
Nash equilibrium with the highest social welfare in G. So the price of stability of
G is 1 iff its selfishness level is 0. However, in general there is no relation between
these two notions.

Theorem 1. For every finite α > 0 and β > 1 there is a finite game whose
selfishness level is α and whose price of stability is β.

Further, in contrast to the price of stability (and to the price of anarchy ,
defined as the ratio SW (s)/SW (s′) where s is a social optimum and s′ is a Nash
equilibrium with the lowest social welfare in G) the notion of the selfishness level
is invariant under simple uniform payoff transformations. Given a game G and
a value a we denote by G + a (respectively, aG) the game obtained from G by
adding to each payoff function the value a (respectively, by multiplying each
payoff function by a).

Proposition 1. Consider a game G and α ≥ 0.

1. For every a, G is α-selfish iff G+ a is α-selfish,
2. For every a > 0, G is α-selfish iff aG is α-selfish.

This result allows us to better frame the notion of selfishness level. Namely,
suppose that the original n-players game G was set up by a designer who has a
fixed budget SW (s) for each joint strategy s and that the selfishness level of G
is α <∞. Then we should scale G(α) by the factor a := 1/(1 + αn) so that for
each joint strategy s its social welfare in the original game G and aG(α) is the
same.

By the above proposition, α is the smallest non-negative real such that aG(α)
has a Nash equilibrium that is a social optimum. The game aG(α) can then be
viewed as the intended transformation of G. That is, each payoff function pi of
the game G is transformed into the payoff function

ri(s) :=
1

1 + αn
pi(s) +

α

1 + αn
SW (s).

Note that the selfishness level is not invariant under a multiplication of the
payoff functions by a value a ≤ 0. Indeed, for a = 0 each game aG has the
selfishness level 0. For a < 0 take the game G from Example 3 whose selfishness
level is ∞. In the game aG the joint strategy (E,E) is both a Nash equilibrium
and a social optimum, so the selfishness level of aG is 0.

Theorem 2. There exists a game whose selfishness level is 0+, i.e., it is α-
selfish for every α > 0, but it is not 0-selfish.



3 A Characterization Result

We now characterize the games with a finite selfishness level. To this end we
shall need the following notion. We call a social optimum s stable if for all
i ∈ N and s′i ∈ Si the following holds: if (s′i, s−i) is a social optimum, then
pi(si, s−i) ≥ pi(s

′
i, s−i). In other words, a social optimum is stable if no player

is better off by unilaterally deviating to another social optimum.
It will turn out that to determine the selfishness level of a game we need to

consider deviations from its stable social optima. Consider a deviation s′i of player
i from a social stable optimum s. If player i is better off by deviating to s′i, then
by definition the social welfare decreases, i.e., SW (si, s−i)−SW (s′i, s−i) > 0. If
this decrease is small, while the gain for player i is large, then strategy s′i is an
attractive and socially acceptable option for player i. We define player i’s appeal
factor of strategy s′i given the social optimum s as

AFi(s
′
i, s) :=

pi(s
′
i, s−i)− pi(si, s−i)

SW (si, s−i)− SW (s′i, s−i)
.

In what follows we shall characterize the selfishness level in terms of bounds
on the appeal factors of profitable deviations from a stable social optimum.

Theorem 3. Consider a strategic game G := (N, {Si}i∈N , {pi}i∈N ).

1. The selfishness level of G is finite iff a stable social optimum s exists for
which α(s) := maxi∈N, s′i∈Ui(s) AFi(s

′
i, s) is finite, where Ui(s) := {s′i ∈ Si |

pi(s
′
i, s−i) > pi(si, s−i)}.

2. If the selfishness level of G is finite, then it equals mins∈SSO α(s), where
SSO is the set of stable social optima.

3. If G is finite, then its selfishness level is finite iff it has a stable social op-
timum. In particular, if G has a unique social optimum, then its selfishness
level is finite.

4. If β > α ≥ 0 and G is α-selfish, then G is β-selfish.

4 Examples

We now use the above characterization result to determine or compute an upper
bound on the selfishness level of some selected games. First, we exhibit a well-
known class of games (see [15]) for which the selfishness level is finite.

Potential Games. Given a game G := (N, {Si}i∈N , {pi}i∈N ), a function P :
S1×· · ·×Sn→ R is called an ordinal potential function for G if for all i ∈ N ,
s−i ∈ S−i and si, s

′
i ∈ Si, pi(si, s−i) > pi(s

′
i, s−i) iff P (si, s−i) > P (s′i, s−i). A

game that possesses an ordinal potential function is called an ordinal potential
game .

Theorem 4. Every finite ordinal potential game has a finite selfishness level.

In particular, every finite congestion game (see [16]) has a finite selfishness
level. We derive below explicit bounds for two special cases of these games.



Fair Cost Sharing Games. In a fair cost sharing game, see, e.g., [17], players
allocate facilities and share the cost of the used facilities in a fair manner. For-
mally, a fair cost sharing game is given by G = (N,E, {Si}i∈N , {ce}e∈E), where
N = {1, . . . , n} is the set of players, E is the set of facilities, Si ⊆ 2E is the
set of facility subsets available to player i, and ce ∈ R+ is the cost of facility
e ∈ E. It is called a singleton cost sharing game if for every i ∈ N and for every
si ∈ Si: |si| = 1. For a joint strategy s ∈ S1 × · · · × Sn let xe(s) be the number
of players using facility e ∈ E, i.e., xe(s) = |{i ∈ N | e ∈ si}|. The cost of a
facility e ∈ E is evenly shared among the players using it. That is, the cost of
player i is defined as ci(s) =

∑
e∈si ce/xe(s). The social cost function is given

by SC(s) =
∑

i∈N ci(s).
We first consider singleton cost sharing games. Let cmax = maxe∈E ce and

cmin = mine∈E ce refer to the maximum and minimum costs of the facilities,
respectively.

Proposition 2. The selfishness level of a singleton cost sharing game is at most
max{0, 12cmax/cmin − 1}. Moreover, this bound is tight.

This result should be contrasted with the price of stability of Hn and the
price of anarchy of n for cost sharing games [17]. Cost sharing games admit an
exact potential function and thus by Theorem 4 their selfishness level is finite.
However, one can show that the selfishness level can be arbitrarily large (as
cmax/cmin →∞) even for n = 2 and two facilities.

We next derive a bound for arbitrary fair cost sharing games with non-
negative integer costs. Let L be the maximum number of facilities that any
player can choose, i.e., L := maxi∈N,si∈Si

|si|.

Proposition 3. The selfishness level of a fair cost sharing game with non-
negative integer costs is at most max{0, 12Lcmax − 1}. Moreover, this bound is
tight.

Remark 1. We can bound the selfishness level of a fair cost sharing game with
non-negative rational costs ce ∈ Q+ for every facility e ∈ E by using Proposi-
tion 3 and the following scaling argument: Simply scale all costs to integers, e.g.,
by multiplying them with the least common multiplier q ∈ N of the denomina-
tors. Note that this scaling does not change the selfishness level of the game by
Proposition 1. However, it does change the maximum facility cost and thus q
enters the bound.

Linear Congestion Games. In a congestion game G := (N,E, {Si}i∈N , {de}e∈E)
we are given a set of players N = {1, . . . , n}, a set of facilities E with a delay
function de : N → R+ for every facility e ∈ E, and a strategy set Si ⊆ 2E for
every player i ∈ N . For a joint strategy s ∈ S1 × · · · × Sn, define xe(s) as the
number of players using facility e ∈ E, i.e., xe(s) = |{i ∈ N | e ∈ si}|. The goal
of a player is to minimize his individual cost ci(s) =

∑
e∈si de(xe(s)). The social

cost function is given by SC(s) =
∑

i∈N ci(s). Here we call a congestion game
symmetric if there is some common strategy set S ⊆ 2E such that Si = S for all



i. It is singleton if every strategy si ∈ Si is a singleton set, i.e., for every i ∈ N
and for every si ∈ Si, |si| = 1. In a linear congestion game, the delay function
of every facility e ∈ E is of the form de(x) = aex + be, where ae, be ∈ R+ are
non-negative real numbers.

We first derive a bound on the selfishness level for symmetric singleton linear
congestion games. As it turns out, a bound similar to the one for singleton
cost sharing games does not extend to symmetric singleton linear congestion
games. Instead, the crucial insight here is that the selfishness level depends on
the discrepancy between any two facilities in a stable social optimum. We make
this notion more precise.

Let s be a stable social optimum and let xe refer to xe(s). Define the dis-
crepancy between two facilities e and e′ under s as

λ(xe, xe′) =
2aexe + be
ae + ae′

− 2ae′xe′ + be′

ae + ae′
. (2)

It can be shown that λ(xe, x
′
e) ∈ (−1, 1). Let λmax(s) be the maximum dis-

crepancy between any two facilities under s. Further, let λmax be the maximum
discrepancy over all stable social optima, i.e., λmax = maxs∈SSO λmax(s).

Let ∆max := maxe∈E(ae + be) and ∆min := mine∈E(ae + be). Further, let
amin be the minimum non-zero coefficient of a latency function, i.e., amin =
mine∈E:ae>0 ae.

Proposition 4. The selfishness level of a symmetric singleton linear congestion
game is at most max{0, 12 (∆max −∆min)/((1− λmax)amin)− 1

2}. Moreover, this
bound is tight.

Observe that the selfishness level depends on the ratio (∆max −∆min)/amin

and 1/(1−λmax). In particular, the selfishness level becomes arbitrarily large as
λmax approaches 1.

We next state a bound for the selfishness level of arbitrary congestion games
with linear delay functions and non-negative integer coefficients, i.e., de(x) =
aex + be with ae, be ∈ N for every e ∈ E. Let L be the maximum number of
facilities that any player can choose, i.e., L := maxi∈N,si∈Si |si|.

Proposition 5. The selfishness level of a linear congestion game with non-
negative integer coefficients is at most max{0, 12 (L∆max−∆min−1)}. Moreover,
this bound is tight.

For linear congestion games, the price of anarchy is known to be 5
2 , see [18, 19].

In contrast, our bound shows that the selfishness level depends on the maximum
number of facilities in a strategy set and the magnitude of the coefficients of the
delay functions.

Remark 2. We can use Proposition 5 and the scaling argument outlined in Re-
mark 1 to derive bounds on the selfishness level of congestion games with linear
delay functions and non-negative rational coefficients.



Prisoner’s Dilemma for n Players. We assume that each player i ∈ N =
{1, . . . , n} has two strategies, 1 (cooperate) and 0 (defect). We put pi(s) :=
1− si + 2

∑
j 6=i sj .

Proposition 6. The selfishness level of the n-players Prisoner’s Dilemma game
is 1

2n−3 .

Intuitively, this means that when the number of players in the Prisoner’s
Dilemma game increases, a smaller share of the social welfare is needed to resolve
the underlying conflict. That is, its ‘acuteness’ diminishes with the number of
players. The formal reason is that the appeal factor of each unilateral deviation
from the social optimum is inversely proportional to the number of players.

In particular, for n = 2 we get, as already argued in Example 1, that the
selfishness level of the original Prisoner’s Dilemma game is 1.

Public Goods. We consider the public goods game with n players. Every player
i ∈ N = {1, . . . , n} chooses an amount si ∈ [0, b] that he contributes to a public
good, where b ∈ R+ is the budget. The game designer collects the individual
contributions of all players, multiplies their sum by c > 1 and distributes the
resulting amount evenly among all players. The payoff of player i is thus pi(s) :=
b− si + c

n

∑
j∈N sj .

Proposition 7. The selfishness level of the n-players public goods game is

max
{

0,
1− c

n

c−1
}

.

In this game, every player has an incentive to “free ride” by contributing 0 to
the public good (which is a dominant strategy). The above proposition reveals
that for fixed c, in contrast to the Prisoner’s Dilemma game, this temptation
becomes stronger as the number of players increases. Also, for a fixed number
of players this temptation becomes weaker as c increases.

Cournot Competition. We consider Cournot competition for n firms with a linear
inverse demand function and constant returns to scale, see, e.g., [1, pages 174–
175]. So we assume that each player i ∈ N = {1, . . . , n} has a strategy set
Si = R+ and payoff function pi(s) := si(a − b

∑
j∈N sj) − csi for some given

a, b, c, where a > c ≥ 0 and b > 0.
The price of the product is represented by the expression a − b

∑
j∈N sj

and the production cost corresponding to the production level si by csi. In
what follows we rewrite the payoff function as pi(s) := si(d− b

∑
j∈N sj), where

d := a− c.

Proposition 8. The selfishness level of the n-players Cournot competition game
is ∞.

Intuitively, this result means that in this game no matter how much we
‘involve’ the players in sharing the social welfare we cannot achieve that they
will select a social optimum.



Tragedy of the Commons. Assume that each player i ∈ N = {1, . . . , n} has
the real interval [0, 1] as its set of strategies. Each player’s strategy is his
chosen fraction of a common resource. Let (see [20, Exercise 63.1]): pi(s) :=
max{0, si(1−

∑
j∈N sj)}. This payoff function reflects the fact that player’s en-

joyment of the common resource depends positively from his chosen fraction of
the resource and negatively from the total fraction of the common resource used
by all players. Additionally, if the total fraction of the common resource by all
players exceeds a feasible level, here 1, then player’s enjoyment of the resource
becomes zero.

Proposition 9. The selfishness level of the n-players Tragedy of the Commons
game is ∞.

Bertrand Competition. Next, we consider Bertrand competition, a game con-
cerned with a simultaneous selection of prices for the same product by two firms,
see, e.g., [1, pages 175–177]. The product is then sold by the firm that chose a
lower price. In the case of a tie the product is sold by both firms and the profits
are split. We assume that each firm has identical marginal costs c > 0 and no
fixed cost, and that each strategy set Si equals [c, ab ), where c < a

b . The payoff
function for player i ∈ {1, 2} is given by

pi(si, s3−i) :=


(si − c)(a− bsi) if c < si < s3−i
1
2 (si − c)(a− bsi) if c < si = s3−i

0 otherwise.

Proposition 10. The selfishness level of the Bertrand competition game is ∞.

5 Concluding Remarks and Extensions

We introduced the selfishness level of a game as a new measure of discrepancy
between the social welfare in a Nash equilibrium and in a social optimum. Our
studies reveal that the selfishness level often provides more refined insights than
other measures of inefficiency.

The definition of the selfishness level naturally extends to other solution
concepts and other forms of games. For example, for mixed Nash equilibria we
simply adapt our definitions by stipulating that a strategic game G is α-selfish if
the social welfare of a mixed Nash equilibrium of G(α) is equal to the optimum
social welfare of G(α). The selfishness level of G is then defined as before in (1).
For example, with this notion the selfishness level of the Matching Pennies game
is 0.

We can also consider subgame perfect equilibria and extensive games. We
leave for future work the study of such alternatives.
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