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Abstract. We investigate the impact ofStackelberg routingto reduce the price of
anarchy in network routing games. In this setting, anα fraction of the entire de-
mand is first routed centrally according to a predefinedStackelberg strategyand
the remaining demand is then routed selfishly by (nonatomic)players. Although
several advances have been made recently in proving that Stackelberg routing can
in fact significantly reduce the price of anarchy for certainnetwork topologies,
the central question of whether this holds true in general isstill open. We answer
this question negatively. We prove that the price of anarchyachievable via Stack-
elberg routing can be unbounded even for single-commodity networks. In light
of this negative result, we consider bicriteria bounds. We develop an efficiently
computable Stackelberg strategy that induces a flow whose cost is at most the
cost of an optimal flow with respect to demands scaled by a factor of 1+

√
1−α .

Finally, we analyze the effectiveness of an easy-to-implement Stackelberg strat-
egy, called SCALE. We prove bounds for a general class of latency functions that
includes polynomial latency functions as a special case. Our analysis is based on
an approach which is simple, yet powerful enough to obtain (almost) tight bounds
for SCALE in general networks.

1 Introduction

Over the past years, the impact of the behavior of selfish, uncoordinated users in con-
gested networks has been investigated intensively in the theoretical computer science
literature. In this context,network routing gameshave proved to be an appropriate
means of modeling selfish behavior in networks. The basic idea is to model the in-
teraction between the selfish network users as anoncooperative game. We are given a
directed graph with latency functions on the arcs and a set oforigin-destination pairs,
calledcommodities. Every commodity has ademandassociated with it, which specifies
the amount of flow that needs to be sent from the respective origin to the destination.

⋆ This work was supported by the European Regional Development Fund (ERDF).
⋆⋆ Research supported by European Commission project ARRIVALFP6-021235-2. This work

was done while the author was a postdoctoral fellow at TU Berlin.
⋆⋆⋆ Research supported by the Federal Ministry of Education andResearch (BMBF grant

03MOPAI1).
† Research supported by the DFG Research Center MATHEON “Mathematics for key technolo-

gies”.



We assume that every demand represents a large population ofplayers, each control-
ling an infinitesimal small amount of flow of the entire demand(such players are also
callednonatomic). The latency that a player experiences to traverse an arc isgiven by
a (non-decreasing) function of the total flow on that arc. We assume that every player
acts selfishly and routes his flow along a minimum-latency path from its origin to the
destination; this corresponds to a common solution conceptfor noncooperative games,
that of aNash equilibrium(hereNashor Wardrop flow). In a Nash flow no player can
improve his own latency by unilaterally switching to another path.

It is well known that Nash equilibria can beinefficientin the sense that they need
not achieve socially desirable objectives [2, 7]. In the context of network routing games,
a Nash flow in general does not minimize the total cost; or saiddifferently, selfish be-
havior may cause a performance degradation in the network. Koutsoupias and Papadim-
itriou [13] initiated the investigation of the efficiency loss caused by selfish behavior.
They introduced a measure to quantify the inefficiency of Nash equilibria which they
termed theprice of anarchy. The price of anarchy is defined as the worst-case ratio
of the cost of a Nash equilibrium over the cost of a system optimum. In recent years,
considerable progress has been made in quantifying the degradation in network perfor-
mance caused by the selfish behavior of noncooperative network users. In a seminal
work, Roughgarden and Tardos [21] showed that the price of anarchy for network rout-
ing games with nonatomic players and linear latency functions is 4/3; in particular, this
bound holds independently of the underlying network topology. The case of more gen-
eral families of latency functions has been studied by Roughgarden [16] and Correa,
Schulz, and Stier-Moses [3]. (For an overview of these results, we refer to the book by
Roughgarden [19].) Despite these bounds for specific classes of latency functions, it
is known that the price of anarchy for general latency functions is unbounded even on
simple parallel-arc networks [21].

Due to this large efficiency loss, researchers have proposeddifferent approaches to
reduce the price of anarchy in network routing games. One of the most prominent ap-
proaches is the use ofStackelberg routing[12, 18]. In this setting, it is assumed that
a fractionα ∈ [0,1] of the entire demand is controlled by a central authority, termed
Stackelberg leader, while the remaining demand is controlled by the selfish nonatomic
players, also called thefollowers. In a Stackelberg game, the Stackelberg leader first
routes the centrally controlled flow according to a predetermined policy, called the
Stackelberg strategy, and then the remaining demand is routed by the selfish follow-
ers. The aim is to devise Stackelberg strategies so as to minimize the price of anarchy
of the resulting combined flow.

Although Roughgarden [18] showed that computing thebestStackelberg strategy,
i.e., one that minimizes the price of anarchy of the induced flow, is NP-hard even for
parallel-arc networks and linear latency functions, several advances have been made
recently in proving that Stackelberg routing can indeed significantly reduce the price
of anarchy in network routing games. As an example, Roughgarden [18] showed that
for parallel-arc networks Stackelberg strategies exist that reduce the price of anarchy to
1/α, independentlyof the latency functions. That is, even if the Stackelberg leader con-
trols only a small constant fraction of the overall demand, the price of anarchy reduces
to a constant (while it is unbounded in the absence of any centralized control). More



recently, Swamy [23] obtained a similar result for single-commodity, series-parallel
networks and Fotakis [8] for parallel-arc networks and unsplittable flows. Despite these
positive results, a central question regarding the effectiveness of Stackelberg routing is
still open: Does there always exist a Stackelberg strategy such that the price of anar-
chy is bounded? This question has been posed explicitly by Roughgarden [17, Open
Problem 4].

Besides these efforts, researchers have also tried to characterize the effectiveness of
easy-to-implement Stackelberg strategies for specific classes of latency functions. One
of the simplest Stackelberg strategies is SCALE (see also [18]), which simply computes
an optimal flow for the entire demand and then scales this flow by α. The currently
best known bound for the price of anarchy induced by SCALE on multi-commodity
networks and linear latency functions is due to Karakostas and Kolliopoulos [11]. More
recently, Swamy [23] derived the first general bounds for polynomial latency functions.

Our Results.We investigate the impact of Stackelberg routing to reduce the price of an-
archy in network routing games with nonatomic players. Our contribution is threefold:

1. We show that there are single-commodity networks for which every Stackelberg
strategy induces a price of anarchy of at leastΩ(n), wheren is the number of nodes
of the network. The result holds independently of the fraction α ∈ (0,1) of the
centrally controlled demand. This settles the open question raised by Roughgar-
den [17].

2. In light of this negative result, we investigate the effectiveness of Stackelberg rout-
ing strategies compared to an optimum flow for a larger demand; i.e., we consider
bicriteria bounds. We develop an efficiently computable Stackelberg strategy in-
ducing a flow whose cost is at most the cost of an optimal flow with respect to
demands increased by a factor of 1+

√
1−α.

3. We give upper bounds on the efficiency of SCALE for a generalclass of latency
functions which, among others, contains polynomial latency functions with non-
negative coefficients. We also derive the first tight lower bounds for SCALE. Our
bound is tight for concave latency functions; for higher degree polynomials our
bounds are almost tight (though there remains a small gap forsmall values ofα).

Significance and Techniques.Our first result settles an important open question regard-
ing the applicability of Stackelberg routing in general networks. While most existing
results show that the performance degradation due to the absence of central control
is independentof the underlying network topology, our result shows that the network
topology matters in the context of Stackelberg routing. Ournegative result also carries
over to the unsplittable flow setting. However, due to lack ofspace, we omit the details
from this extended abstract.

One important application of Stackelberg routing is the routing of Internet traffic
within the domain of an Internet service provider, see also Sharma and Williamson [22].
Here, the Internet service provider centrally controls a fraction of the overall traffic
traversing its domain. In this setting, our second result provides the Internet service
provider with an efficient algorithm to route the centrally controlled traffic. The per-
formance of this routing algorithm is characterized by a smooth trade-off curve that



scales between the absence of centralized control (doubling the demands is sufficient)
and completely centralized control (no scaling is necessary). Additionally, our result
has a nice interpretation for the class of (practical relevant) M/M/1-latency functions
that model arc-capacities: In order to beat the cost of an optimal flow, it is sufficient
to scale all arc capacities by 1+

√
1−α. Our bound is a natural generalization of the

bicriteria bound by Roughgarden and Tardos [21] (see Correaet al. [4] for other related
results).

We introduce a general approach, which we termλ -approach, to prove upper bounds
on the price of anarchy of Stackelberg strategies for specific classes of latency func-
tions. This approach is simple, yet powerful enough to obtain (almost) tight bounds
for SCALE in general networks. For polynomial latency functions, our approach yields
upper bounds that significantly improve the bounds by Swamy [23]. For linear latency
functions, we derive an upper bound that coincides with a previous bound of Karakostas
and Kolliopoulos in [11]. Their analysis is based on a (rather involved) machinery pre-
sented in [15]. However, our analysis is much simpler; in particular, we do not rely on
the machinery in [15]. Moreover, we show that this bound alsoholds for concave la-
tency functions. We present a generalized Braess instance that shows that for the linear
case our bound is tight; a similar instance can be used to showthat for higher degree
polynomials our bounds are almost tight, leaving only a small gap for small values ofα.
We are confident that ourλ -approach will prove useful to derive upper bounds on the
price of anarchy also in other settings. For instance, theλ -approach can be applied to
prove upper bounds when flows are unsplittable; details willbe given in the full version
of the paper. So far, such upper bounds for general networks are only known for linear
latency functions (see Fotakis [8]).

Related Work.The idea of using Stackelberg strategies to improve the performance of a
system was first proposed by Korilis, Lazar, and Orda [12]. The authors identified nec-
essary and sufficient conditions for the existence of Stackelberg strategies that induce
a system optimum; their model differs from the one discussedhere. Roughgarden [18]
first formulated the problem and model considered here. He also proposed some natural
Stackelberg strategies such as SCALE and Largest-Latency-First (LLF). For parallel-
arc networks he showed that the price of anarchy for LLF is bounded by 4/(3+ α)
and 1/α for linear and arbitrary latency functions, respectively.Both bounds are tight.
He also showed that for certain types of Stackelberg strategies, which he termedweak
strategies (see Section 2 for a definition), the price of anarchy for multi-commodity net-
works can be unbounded [18]. However, this did not rule out the existence of effective
Stackelberg strategies in general. Moreover, he also proved that it is NP-hard to com-
pute the best Stackelberg strategy. Kumar and Marathe [14] investigated approximation
schemes to compute the best Stackelberg strategy. The authors gave a PTAS for the case
of parallel-arc networks.

Karakostas and Kolliopoulos [11] proved upper bounds on theprice of anarchy
for SCALE and LLF. Their bounds hold for arbitrary multi-commodity networks and
linear latency functions. Their analysis is based on a result obtained by Perakis [15]
to bound the price of anarchy for network routing games with asymmetric and non-
separable latency functions. Furthermore, Karakostas andKolliopoulos [11] showed
that their analysis for SCALE is almost tight. More recently, Swamy [23] obtained



upper bounds on the price of anarchy for SCALE and LLF for polynomial latency
functions. Swamy also proved a bound of 1+1/α for single-commodity, series-parallel
networks with arbitrary latency functions. Fotakis [8] studied LLF and a randomized
version of SCALE for the case of unsplittable flows. He provedupper and lower bounds
on the price of anarchy for linear latency functions. For parallel-arc networks, Fotakis
proved that LLF still achieves an upper bound of 1/α for arbitrary latency functions in
this case.

Correa and Stier-Moses [5] proved, besides some other results, that the use ofopt-
restricted strategies, i.e., strategies in which the Stackelberg leader sends no more flow
on every edge than the system optimum, does not increase the price of anarchy. Sharma
and Williamson [22] considered the problem of determining the smallest value ofα
such that the price of anarchy can be improved. They obtainedresults for parallel-
arc networks and linear latency functions. Kaporis and Spirakis [10] studied a related
question of finding the minimum demand that the Stackelberg leader needs to control
in order to enforce an optimal flow.

2 Model

In a network routing game we are given a directed networkG = (V,A) andk origin-
destination pairs(s1, t1), . . . ,(sk,tk) calledcommodities. For every commodityi ∈ [k], a
demandr i > 0 is given that specifies the amount of flow with originsi and destinationti .
Let Pi be the set of all paths fromsi to ti in G and letP = ∪iPi . A flow is a function
f : P → R+. The flow f is feasible(with respect tor) if for all i, ∑P∈Pi

fP = r i .
For a given flow f , we define the flow on an arca ∈ A as fa = ∑P∋a fP. Moreover,
each arca∈ A has an associated variablelatencydenoted byℓa(·). For eacha∈ A the
latency functionℓa is assumed to be nonnegative, nondecreasing and differentiable. If
not indicated otherwise, we also assume thatℓa is defined on[0,∞) and thatxℓa

(

x) is
a convex function ofx. Such functions are calledstandard[16]. The latency of a path
P with respect to a flowf is defined as the sum of the latencies of the arcs in the path,
denoted byℓP( f ) = ∑a∈Pℓa( fa). The triple(G, r, ℓ) is called aninstance. Thecostof a
flow f isC( f ) = ∑P∈P fPℓP( f ). Equivalently,C( f ) = ∑a∈A faℓa( fa). The feasible flow
of minimum cost is calledoptimaland denoted byo. A feasible flowf is aNash flow, or
selfish flow, if for every i ∈ [k] andP,P′ ∈ Pi with fP > 0, ℓP( f ) ≤ ℓP′( f ). In particular,
if f is a Nash flow, allsi -ti paths to whichf assigns a positive amount of flow have
equal latency. It is well-known that iff1 and f2 are Nash flows for the same instance,
thenC( f1) = C( f2), see e.g. [21].

In a Stackelberg network game we are given, in addition toG, r andℓ, a parameter
α ∈ (0,1). A (strong) Stackelberg strategyis a flow g feasible with respect tor ′ =
(α1r1, . . . ,αkrk), for someα1, . . . ,αk ∈ [0,1] such that∑k

i=1 αi r i = α ∑k
i=1 r i . If αi = α

for all i, g is called aweak Stackelberg strategy. Thus, both strong and weak strategies
route a fractionα of the overall traffic, but a strong strategy can choose how much
flow of each commodity is centrally controlled. For single-commodity networks the
two definitions coincide. A Stackelberg strategyg is calledopt-restrictedif ga ≤ oa for
all a ∈ A. Given a Stackelberg strategyg, let ℓ̃a(x) = ℓa(ga + x) for all a ∈ A and let
r̃ = r − r ′. Then a flowh is induced by gif it is a Nash flow for the instance(G, r̃, ℓ̃).
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Fig. 1.The graphGk, used in the proof of Theorem 1. Arcs are labeled with their type.

The Nash flowh can be characterized by the followingvariational inequality[6]: h is a
Nash flow induced byg if and only if for all flowsx feasible with respect to ˜r,

∑
a∈A

haℓa(ga +ha) ≤ ∑
a∈A

xaℓa(ga +ha). (1)

We will mainly be concerned with the cost of the combined induced flowg+ h,
given byC(g+h)= ∑a∈A(ga+ha)ℓa(ga+ha). In particular, we are interested in bound-
ing the ratioC(g+h)/C(o), called theprice of anarchy.

Due to lack of space, we omit some of the proofs from this extended abstract; details
will be given in the full version of the paper.

3 Limits of Stackelberg Routing

In this section, we prove that there does not exist a Stackelberg strategy that induces
a price of anarchy bounded by a function ofα only. More precisely, we show that for
any fixedα ∈ (0,1), the ratio between the cost of the flow induced by any Stackelberg
strategy and the optimum can be arbitrarily large, even in single-commodity networks.

Theorem 1. Let M> 0 andα ∈ (0,1). Then, there exists a single-commodity instance
I = (G, r, ℓ,α) such that, if g is any Stackelberg strategy forI inducing a Nash flow
h, and o is an optimal flow for the instance(G, r, ℓ), then C(g+h)≥ M ·C(o).

To prove the theorem we use the instanceGk = (Vk,Ak) depicted in Figure 1. For
a positive integerk, the graphGk has 4k+4 nodes. There is a single commodity(s,t),
with unit demand. Definer0 := (1−α)/2 andr1 := (1+ α)/2k. Note that the total
demand is equal tor0 + kr1. Every arc is of one of five differenttypes{A,B,C,D,E}
as indicated in Figure 1. The latency of an arc is determined by its type. Type B arcs
have constant latency 1, and type C arcs have constant latency 0. Arcs of type A have
the following latency function:

ℓ0(x) =

{

0, if x≤ r0

1− r0+r1−x
r1

, if x > r0.

Althoughℓ0(x) is not differentiable inr0, it can be approximated with arbitrarily small
error by standard functions.
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Fig. 2. The ith block of the graphGk.

For fixedL,τ > 0, let uL,τ(x) be any standard function satisfyinguL,τ(L) = 0 and
uL,τ(L+ τ) = M/τ. Type D arcs have latencyur0,δ/3k3(x), and type E arcs have latency
ur1,δ/3k3(x). We will fix the constantδ later in the proof.

Lemma 1. C(o) ≤ 1.

Proof. Let P0 be the path(s,s0, p1,q1, p2, . . . , pk,qk,t0,t), and fori ∈ [k], let Pi be the
path(s,si , ti , t). Consider the feasible flowf such thatfP0 = r0 and fPi = r1 for i ∈ [k].
The latency induced byf is 0 on arcs of type A, C, D, E and 1 on arcs of type B. So
C(o) ≤C( f ) = k · r1 = (1+ α)/2≤ 1. ⊓⊔

The following lemma will allow us to focus on the case where the combined flow
on type D and E arcs does not exceed a certain threshold value.

Lemma 2. For any Stackelberg strategy g inducing a Nash flow h, the following hold:

(i) If a is a type D arc andga +ha ≥ r0 + δ/3k3, thenC(g+h)≥ M ·C(o).
(ii) If a is a type E arc andga +ha ≥ r1 + δ/3k3, thenC(g+h)≥ M ·C(o).

Proof. We prove statement (i); the proof for (ii) is similar. We haveC(g+ h) ≥ (ga +
ha) · ℓa(ga +ha) = (ga +ha) ·ur0,δ/3k3(ga +ha) ≥ (r0 + δ/3k3) ·M/(δ/3k3) ≥ M. The
proof follows from Lemma 1. ⊓⊔

For the remainder of the proof we assume that there is no arc satisfying the condi-
tions of Lemma 2; otherwise the theorem follows immediately.

Lemma 3. For any Stackelberg strategy g inducing a Nash flow h, the following hold:

(i) For any arc a= (qi−1, pi), i ∈ [k], ga +ha ≥ r0− δ/k.
(ii) For any arc a= (s,si), i ∈ [k], ga +ha ≥ r1− δ/k.

We are now ready to conclude the proof of Theorem 1.

Proof (Theorem 1).For anyi ∈ [k], consider theith block in the graph (Figure 2). Let
gi ,hi be the Stackelberg and selfish flow on the arc(si ,ti), respectively. We have two
cases:

1. hi = 0: in this case, using Lemma 3, the flow on arc(pi ,qi) is at leastr0− δ/k+
r1− δ/k−gi. The latency on that same arc is thus at leastℓ0(r0 + r1−2δ/k−gi).



2. hi > 0: in this case, the Nash flow on pathP′
i = (s,si ,ti ,t) is strictly positive. Con-

sider the pathP′′
i = (s,si , pi ,qi ,ti ,t). By definition of a Nash flow, we getℓP′′

i
(g+

h) ≥ ℓP′
i
(g+ h). Notice that the two pathsP′

i ,P
′′
i share all their nonzero-latency

arcs except for(si , ti) (only present inP′
i ) and(pi ,qi) (only present inP′′

i ). Thus
ℓP′′

i
(g+h)≥ ℓP′

i
(g+h) impliesℓ(pi ,qi)(g+h)≥ ℓ(si ,ti )(g+h)= 1. As a consequence,

ℓ(pi ,qi)(g+h)≥ 1= ℓ0(r0 + r1)≥ ℓ0(r0 + r1−2δ/k−gi) sincegi andδ/k are non-
negative.

In both cases,ℓ(pi ,qi)(g+h)≥ ℓ0(r0 + r1−2δ/k−gi) ≥ 1− gi+2δ/k
r1

.

The latencyℓP0(g+h) on the pathP0 = (s,s0, p1,q1, . . . , pk,qk,t0,t) is at least

k

∑
i=1

ℓ(pi ,qi)(g+h)≥
k

∑
i=1

(

1− gi +2δ/k
r1

)

≥ k− α
r1

− 2δ
r1

=

(

1−α −4δ
1+ α

)

k.

The last inequality is a consequence of the fact that the total Stackelberg flow isα, so
∑i gi ≤ α.

Choosingδ < (1−α)/4, we can conclude thatℓP0(g+ h) = Ω(k). Together with
Lemma 1 and Lemma 3, this gives

C(g+h)≥ (r0− δ/k) · ℓP0(g+h)≥ (1
2 · (1−α)− δ ) ·Ω(k) = Ω(k) ·C(o).

Thus,C(g+h)/C(o) can be made arbitrarily large by picking a sufficiently largek. ⊓⊔
Remark 1.Suppose the Stackelberg leader (e.g., a navigation systemsprovider) is solely
interested in minimizing the travel time of his players (customers), i.e.,C1(g+ h) =

∑a∈Agaℓa(ga + ha). Our result also implies that even the ratioC1(g+ h)/C(o) can be
unbounded, independent of the Stackelberg strategyg.

4 A Bicriteria Bound for General Latency Functions

As we have seen in the previous section, no Stackelberg strategy controlling a constant
fraction of the traffic can reduce the price of anarchy to a constant, even if we consider
single-commodity networks. In light of this negative result, we therefore compare the
cost of a Stackelberg strategy on an instanceI = (G, r, ℓ,α) to the cost of an optimal
flow for the instanceI β = (G,β r, ℓ) in which the demand vector has been scaled up
by a factorβ > 1.

We propose the following simple Stackelberg strategy, which we termAugmented
SCALE (ASCALE):

1. Compute an optimal flowoβ for the instanceI β .
2. Define the Stackelberg flow byg := α

β oβ .

We prove that the resulting flow induced by the Stackelberg strategy ASCALE satisfies
C(g+h)≤C(oβ ) if we chooseβ = 1+

√
1−α. This result can be seen as a generaliza-

tion of the result by Roughgarden and Tardos that the cost of aNash flow is always less
than or equal to the cost of the optimal flow for an instance in which demands have been
doubled [21]. Our bound gives a smooth transition from absence of centralized control
(where doubling the demands is sufficient) to completely centralized control (where no
augmentation is necessary).



Theorem 2. If g is the ASCALE strategy, C(g+ h) ≤ 1
β−1 ·

(

1− α
β
)

·C(oβ ). Further-
more, this bound is tight.

Corollary 1. Letβ = 1+
√

1−α. If g is the ASCALE strategy, then C(g+h)≤C(oβ ).

For a given instanceI = (G, r, ℓ,α), the SCALE strategy is defined asg = αo,
whereo is an optimal flow for(G, r, ℓ). The next theorem shows that our result for
ASCALE has a consequence for the SCALE strategy as well.

Theorem 3. Let g= αo be the SCALE strategy for instanceI = (G, r, ℓ,α). Define a
modified instanceÎ = (G, r, ℓ̂,α) with latency functionŝℓa(x) = ℓa(x/β )/β for every
arc a, whereβ = 1+

√
1−α, and letĈ(·) denote the cost of a flow with respectℓ̂. Let

ĥ be the Nash flow induced byĝ = g in Î . Then,Ĉ(ĝ+ ĥ) ≤C(o).

5 Bounds for Specific Classes of Latency Functions

In this section, we first present a general approach, which wecall λ -approach, to an-
alyze the price of anarchy of opt-restricted Stackelberg strategies. We then use theλ -
approach to derive bounds on the price of anarchy of the SCALEstrategy for a general
class of latency functions, including polynomial latency functions with nonnegative co-
efficients.

λ -Approach. We start by proving an upper bound on the cost of the combined flow
induced by an opt-restricted Stackelberg strategy.

Lemma 4. For any opt-restricted strategy g, C(g+h)≤ ∑a∈Aoaℓa(ga +ha).

Proof. The proof follows immediately by applying the variational inequality (1) with
x = o−g. ⊓⊔

For any latency functionℓa and nonnegative numbersga, λ , we define the following
nonnegative value:

ω(ℓa;ga,λ ) := sup
oa,ha≥0

oa

ga +ha
· ℓa(ga +ha)−λ ℓa(oa)

ℓa(ga +ha)
. (2)

(We assume by convention 0/0= 0.) In order to bound the price of anarchy, we use the
variational inequality (Lemma 4) and bound the cost of the induced flow on every arc
by someλ -fraction of the optimal cost plus someω-fraction of the cost of the induced
flow itself:

C(g+h)≤ ∑
a∈A

λ ·oaℓa(oa)+ ω(ℓa;ga,λ ) · (ga+ha)ℓa(ga +ha). (3)

Now, the idea is to determine aλ that provides the tightest bound possible. Choos-
ing λ = 1, the above approach resembles the one that was previously used by Correa,
Schulz, and Stier-Moses [3] to bound the price of anarchy of network routing games;



however, optimizing over the parameterλ provides an additional means to obtain bet-
ter bounds. The idea of introducing the scaling parameterλ was first introduced in
the context of bounding the price of anarchy in atomic splittable network games (see
Harks [9]).

For a given opt-restricted strategygwe further defineω(g,λ )= maxa∈A ω(ℓa;ga,λ ).
Before we state the main theorem, we need one additional definition. Given an opt-
restricted strategyg, thefeasibleλ -regionis defined asΛ(g) := {λ ∈R+ |ω(g,λ ) < 1}.
Notice that everyλ ∈ Λ(g) induces a bound on the price of anarchy.

Theorem 4. Let λ ∈ Λ(g). Then C(g+h)≤ λ
1−ω(g,λ )C(o).

Proof. The proof follows immediately from (3), Lemma 4 and the definition of ω . ⊓⊔

Bounds for SCALE.In the following, we will analyze the SCALE strategy defined by
g = αo. Let Ld, d ≥ 1, be a class of continuous, nondecreasing, and standard latency
functions satisfyingℓ(cz) ≥ cdℓ(z) for all c∈ [0,1]. Ld contains, among others, poly-
nomials with nonnegative coefficients and degree at mostd. This characterization has
been used before by Correa et al. [3].

Lemma 5. Assumeλ ∈ [0,1] and latency functions inLd. Then, we have

ω(αo,λ ) ≤ max

{

1
α

(1−λ ),
d

d+1
· 1

((d+1)λ )1/d

}

.

Proof. By the definition ofω = ω(ℓa;αoa,λ ):

ω = sup
oa,ha≥0

oa

α oa +ha
· ℓa(α oa +ha)−λ ℓa(oa)

ℓa(α oa +ha)
.

We consider two cases: (i)α oa+ha ≥ oa. Defineµ := oa
α oa+ha

∈ [0,1]. We have

ω = sup
oa,ha≥0,µ∈[0,1]

µ · ℓa(α oa +ha)−λ ℓa(µ (α oa +ha))

ℓa(α oa +ha)

≤ max
µ∈[0,1]

µ (1−λ µd) =
d

d+1
· 1

((d+1)λ )1/d
.

where the last inequality follows from the definition ofLd. The second case (ii)α oa+
ha ≤ oa leads to

ω ≤ sup
oa,ha≥0

oa

α oa +ha
· ℓa(α oa +ha)−λ ℓa(α oa +ha)

ℓa(α oa +ha)

≤ sup
oa,ha≥0

oa

α oa +ha
(1−λ )≤ 1

α
(1−λ ),

where the first inequality is valid since latencies are nondecreasing. ⊓⊔

Lemma 6. There is a uniqueλ ∈ (0,1), call it λd, such that1α (1−λ )= d
d+1 · 1

((d+1)λ )1/d .

Then:λd = zd
d/(d+1), where zd ≥ 1 is the unique solution to the equation zd+1− (d+

1)z+ αd = 0.



Proof. Substitutingλ = zd
d/(d+1) in the starting equation and rewriting yieldszd+1−

(d + 1)z+ αd = 0. To verify that this equation has indeed exactly one solution larger
than 1, use for example Descartes’ rule of signs. ⊓⊔

Theorem 5. The price of anarchy of the SCALE strategy for latency functions in the
classLd is at most

(d+1)zd −αd
(d+1)zd−d

,

where zd ≥ 1 is the unique solution of the equation zd+1− (d+1)z+ αd = 0.

Proof. We will use Theorem 4 withλ = λd. However, in order to apply the theorem,
we first need to upper boundω(αo,λd). Using Lemma 5 and Lemma 6, we know that

ω(αo,λd) ≤
d

d+1
· ((d+1)λd)

−1/d =
d

d+1
·z−1

d < 1.

This impliesλd ∈ Λ(αo) and we can invoke Theorem 4 to obtain a bound on the price
of anarchy given by

λd

1−ω(αo,λd)
≤ zd

d/(d+1)

1− d
d+1z−1

d

=
zd+1
d

(d+1)zd −d
=

(d+1)zd −αd
(d+1)zd −d

.

⊓⊔

The bound thus obtained gives an improvement with respect tothe previously best
bounds obtained by Swamy [23].

For the class ofL1 latency functions, which, in particular, contains continuous,
nondecreasing, standard, and concave latencies, the abovetheorem reads as stated in
Corollary 2 below. The same bound has been proven by Karakostas and Kolliopou-
los [11] for the special case of affine latencies.

Corollary 2. The price of anarchy of the SCALE strategy for latency functions inL1

is at most
(

(1+
√

1−α)2
)

/
(

2(1+
√

1−α)−1
)

.

A lower bound for polynomial latency functions of degreed can be obtained by
considering generalized Braess graphs [1, 20] (details omitted).

Theorem 6. Let n≥ 2 be an integer and let c= (1− (n− 1)α/n)d. Then, the price
of anarchy of the SCALE strategy for latency functions in theclassLd is at least
(nc1+1/d +(n−1)αc)/((n−1)c+n−d).

Note that the theorem does not fixn, so it is possible to optimizen based onα. For
functions inL1 the stated lower bound pointwise matches the upper bound of Corollary
2 for infinitely many values ofα. More precisely, the upper bound is matched for all
values ofα such that 1/

√
1−α is an integer. To the best of our knowledge, this is the

first tight bound for values ofα 6= 0,1.
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