Introduction to Modern Cryptography

6th lecture:

Collision-Resistant Hash Functions

quite a few of these slides are copied from or heavily inspired by the University College London MSc InfoSec 2010 course given by Jens Groth Thank you very much!

last time:

- Message Authentication
 Codes (MACs)
- CCA security

6th lecture (today):

 Collision-resistant hash functions

	secret key	public key
confidentiality	private-key encryption	public-key encryption
authentication	message authentication codes (MAC)	digital signatures

Hash Tables

- used in data structures to store associative arrays
- try to minimize collisions!

Merkle-Damgård Construction

Ralph C. Merkle

- co-inventor of public-key crypto
- Merkle puzzles, Merkle trees
- new ideas are hard to publish
- now interested in nanotechnology and <u>cryonics</u>

Ivan Bjerre Damgård

- most publishing cryptographer in the world
- my PhD advisor
- amazing person
- plays the <u>fiddle</u>

Birthday Attacks on Hash Functions

In a class of N students with random birthdays $b_1, ..., b_N \leftarrow \{1,2,...,365\}$. How large does N need to be such that

Pr[exists $i \neq j : b_i = b_i$] > 1/2?

Birthday Attacks on Hash Functions

- In a class of N students with random birthdays
 b₁, ..., b_N ← {1,2,...,365}. How large does N need to be such that
 Pr[exists i≠j:b_i=b_j] > 1/2 ?
- Answer: $N \ge \sqrt{365} \approx 23$ (surprisingly low)

Birthday Attacks on Hash Functions

- In a class of N students with random birthdays
 b_I, ..., b_N ← {1,2,...,365}. How large does N need to be such that
 Pr[exists i≠j:b_i=b_j] > 1/2 ?
- Answer: $N \ge \sqrt{365} \approx 23$ (surprisingly low)
- Task: Find a generic collision-attack on the hash function $H: \{0,1\}^* \rightarrow \{0,1\}^n$

Finding Meaningful Collisions

- It is {hard, difficult, challenging, impossible} to {imagine, believe} that we will {find, locate, hire} another {employee, person} having similar {abilities, skills, character} as Alice. She has done a {great, super} job
- $4 \times 2 \times 3 \times 2 \times 3 \times 2 = 288$ possibilities
- prepare $2^{n/2}$ of those and $2^{n/2}$ of bad ones

SHA-256

- detailed specification can be found here
- H(0) =6a09e667 bb67ae85 3c6ef372 a54ff53a
 510e527f 9b05688c 1f83d9ab 5be0cd19
- first 32 bits of fractional parts of square roots of 2,3,5,7,11,13,17,19

 $512 \text{ bits} = 16 \times 32 \text{ bit words}$

256 bits = 8 x 32 bit words

256 bits = 8 x 32 bit words

64 rounds

Message schedule

- $W_0 = M_0$
- •
- $W_{15} = M_{15}$
- $W_{16} = W_0 + \sigma_0(W_1) + W_9 + \sigma_1(W_{14})$
- •
- $W_{63} = W_{47} + \sigma_0(W_{48}) + W_{56} + \sigma_1(W_{61})$

- $\sigma_0(W) = ROTR^7(W) \oplus ROTR^{18}(W) \oplus SHR^3(W)$
- $\sigma_1(W) = ROTR^{17}(W) \oplus ROTR^{19}(W) \oplus SHR^{10}(W)$

Single SHA-256 round

- $K_0 = 428a2f98$
- $K_1 = 71374491$
- •
- $K_{63} = c67178f2$

One iteration in a SHA-2 family compression function. The blue components \Box perform the following operations:

$$\begin{array}{l} \operatorname{Ch}(E,F,G) = (E \wedge F) \oplus (\neg E \wedge G) \\ \operatorname{Ma}(A,B,C) = (A \wedge B) \oplus (A \wedge C) \oplus (B \wedge C) \\ \Sigma_0(A) = (A \ggg 2) \oplus (A \ggg 13) \oplus (A \ggg 22) \\ \Sigma_1(E) = (E \ggg 6) \oplus (E \ggg 11) \oplus (E \ggg 25) \end{array}$$

The bitwise rotation uses different constants for SHA-512. The given numbers are for SHA-256. The red \prod is an addition modulo 2^{32} .

64 rounds

SHA-256

- SHA-256: $\{0,1\}^* \rightarrow \{0,1\}^{256}$ for input messages of length $|\mathsf{M}| < 2^{64}$, i.e. M of size at most 2 billion GigaBytes
- believed to be hard to find a collision

Number Of Hashes to Find Collision

	Output bits	Birthday	Shortcut
MD4	128	2^64	2^2
RIPEMD	128	2^64	2^18
MD5	160	2^80	2^21
RIPEMD-160	160	2^80	
SHA-0	160	2^80	2^34
SHA-I	160	2^80	2^5 I
SHA-224	224	2^112	
SHA-256	256	2^128	

Number Of Hashes to Find Collision

	Output bits	Birthday	Shortcut
MD4	128	2^64	2^2
RIPEMD	128	2^64	2^18
MD5	160	2^80	2^21
RIPEMD-160	160	2^80	
SHA-0	creating a rogue Certification Authority certificate		2^34
SHA-I			2^51
SHA-224	224	2^112	
SHA-256	256	2^128	

MACs from Hash Functions

NMAC-SHA-256

HMAC-SHA-256

HMAC_K(M) = H(K⊕opad, H(K⊕ipad, M))
 ipad = 3636...36, opad = 5c5c...5c

HMAC vs NMAC

- HMAC can be seen as variant of NMAC
- as secure if H(x⊕ipad), H(x⊕opad) is pseudorandom