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1 What are zero-knowledge proofs?

Zero-knowledge proofs are proofs that yield nothing beyond the validity of the assertion.

Figure 1: Cave

An analogy [4] of such a proof can be given with
help of the special cave of figure 1. Imagine you
know a secret password that opens a special door
that connects the two passages of the cave. Chris
will give a bonus to anyone that can convince him
that they know the password. However, once he
knows the password, he won’t give out the bonus
anymore. You take Chris into the special cave, leave
him at the splitting point and run into either one of
the passages without him looking. Chris will scream
”left” or ”right” at random and that’s the exit you
need to come out of. The first time the probability
that this happens by chance is 1

2 . You repeat this
n times and convince Chris that the probability you
are lying is only 1

2n . Since Chris learns nothing, this
method could be performed any number of times, to have as many classmates as possible convincing Chris.

Now imagine a cave that instead of two passages has 2n passages. Again you run into a passage at
random and Chris screams a passage number at random. If you indeed come out of the right exit, then Chris
is immediately convinced.

2 Interactive Proofs

In order to give the formal definition of zero-knowledge proofs, it is first necessary to introduce the notion of
an interactive proof. The Prover (P) has infinite computing power, while the verifier (V) is polynomial time
bounded. Both are ordinary probabilistic Turing machines that are in addition equipped with communication
tapes allowing a machine to send and receive messages from the other one. L is some binary language. The
prover claims that a certain statement of a certain language x ∈ L is true. If the pair (P,V) rejects x ∈ L
with negligible probability (completeness) and accepts x /∈ L with negligible probability (soundness), then
it is an interactive proof system.

3 Formal Definition of Zero-Knowledge Proofs

Now we have all the pieces to formally define a zero-knowledge proof [2]: fixing an interactive machine (for
example the prover), we look at what can be computed by an arbitrary adversary (for example the verifier)
that interacts with the fixed machine on a common input from a predetermined set S.

Now an interactive strategy A is zero-knowledge on the set S, if, for every feasible (interactive) strategy
B∗, there exists a feasible (non-interactive) computation C∗ s.t. the following two probability ensembles are
computationally indistinguishable:

• {(A,B∗)(x)}x∈S
def
= the output of B∗ after interacting with A on common input x ∈ S; and

• {(C∗)(x)}x∈S
def
= the output of C∗ on input x ∈ S

Here the first ensemble is the execution of an interactive protocol, the second represents a stand-alone
procedure (”the simulator”). This means that anything that could be extracted from A was also already in
C. So nothing was gained from the interaction. This notion is called computational zero-knowledge and the
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one used in practice in cryptography. Another notion is perfect zero-knowledge, where the two ensembles
are exactly equal.

4 Commitment Schemes

A commitment scheme means that a player in a protocol is able to choose a value from some set and commit
to his choice such that he can no longer change his mind. An informal example of such a scheme, is a game
with two players P and V, where P wants to commit to a bit b. He writes b down on a piece of paper, puts
it in a box and locks it using a padlock. He then passes the box to V. Now when P wants to he can pass the
key to V to open the padlock. In this way P is bound to his original choice and he hides his choice until he
decided to give the key.

5 Formal example

Imagine a scheme where a prover (P) wants to prove to be the owner of a public/private key pair to a
verifier (V). Now V can choose a random message M, encrypt it using the public key and send the resulting
ciphertext to P. P decrypts this message and sends the result M’ back. If M equals M’ then V accepts P’s
proof. The problem with this example is that it assumes V follows the protocol, while V could be asking the
decryption of messages that it eavesdropped before. This can be solved by changing the protocol. Instead of
sending back M’, P sends a commitment message with M’. He then receives the original message M (forcing
the verifier to know M). If M = M’, he opens the commitment. Now the verifier accepts the identity of the
prover iff the commitment is correctly opened and M’ = M. [1]

This scheme forces the Verifier to behave in the correct way. In fact, it has been shown that using zero-
knowledge protocols as sub-protocols it is possible to transform any protocol that is secure assuming players
follow the rules into one that is secure even if players deviate from the protocol. For more information refer
to [3].

6 Applications of Zero-Knowledge

The biggest impact of zero-knowledge is in the design of efficient protocols for particular problems. By
for example giving the user the solution to a hard problem and the user identifies himself by providing a
zero-knowledge proof that he knows this solution. An example of this is in [5], where the computation is
done on a smart card and thus severely restricted.
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