Motivatio	

History & Implementation 00 0

1/28

The Cramer-Shoup Cryptosystem

Eileen Wagner

October 22, 2014

The Cramer-Shoup system is an asymmetric key encryption algorithm, and was the first efficient scheme proven to be secure against adaptive chosen ciphertext attack using standard cryptographic assumptions. [2]

Outline

1 Motivation

- What we've seen so far
- Stronger notions of security
- 2 The Encryption Scheme
 - Cramer-Shoup
 - Proof of Security
 - Features
- 3 History & Implementation
 - People
 - Implementation

100						
INVI	ot	ΠV	E	π	n	

History & Implementation 00 0 Conclusion

Outline

1 Motivation

- What we've seen so far
- Stronger notions of security
- 2 The Encryption Scheme
 - Cramer-Shoup
 - Proof of Security
 - Features
- 3 History & Implementation
 - People
 - Implementation
- 4 Conclusion

Motivation ●00 ○00		
What we've seen so far		

Public-key encryption

Diffie-Hellman key exchange

http://en.wikipedia.org/ wiki/File:Diffie-Hellman_ Key_Exchange.svg

5 / 28

Motivation ○●○ ○○○		
	000	
What we've seen so far		

ElGamal encryption

$\overbrace{ Gen: \ (q,g) \leftarrow \mathcal{G}(1^n) }^{Alice}$		Bob
${\it G}=\langle g angle$ a group, $ {\it G} =q$	pk = (a, a, b)	$Dec_{\mathit{sk}}(\mathit{c}_1, \mathit{c}_2) = \mathit{c}_2/\mathit{c}_1^{\scriptscriptstyle X}$
$\mathit{sk} = \mathit{x} \leftarrow \mathbb{Z}_q$	$\frac{\rho\kappa = (g, q, n)}{(\sigma^r, b^r, m)}$	$=h^rm/(g^r)^{\times}$
$h := g^{\times}$	(g , n m)	= m
for $m \in G$: get $r \leftarrow \mathbb{Z}_q$		
$Enc_{pk}(m) = (g^r, h^r m)$		

6 / 28

Motivation		
000		
	00	
	000	
What we've seen so far		

Important results

How secure are our schemes?

Motivation	The Encryption Scheme	Conclusion
000		
	00	
	000	
What we've seen so far		

Important results

How secure are our schemes?

- If the Decisional Diffie-Hellman problem is hard, then ElGamal is CPA-secure.
- If the RSA-assumption holds, then padded RSA is CCA-secure.

Motivation	The Encryption Scheme	Conclusion
000		
	00	
What we've seen so far		

Important results

How secure are our schemes?

- If the Decisional Diffie-Hellman problem is hard, then ElGamal is CPA-secure.
- If the RSA-assumption holds, then padded RSA is CCA-secure.

Decisional Diffie-Hellman Problem

$$|\Pr[\mathcal{A}(G,q,g,g^x,g^y,g^z)=1] - \Pr[\mathcal{A}(G,q,g,g^x,g^y,g^{xy})=1]| \leq \mathsf{negl}(n)$$

Motivation ○○○ ●○○		
Stronger notions of security		

Malleability

An encryption algorithm is malleable if it is possible for an adversary to transform a ciphertext into another ciphertext which decrypts to a related plaintext.

Motivation ○○○ ●○○		
Stronger notions of security		

Malleability

An encryption algorithm is malleable if it is possible for an adversary to transform a ciphertext into another ciphertext which decrypts to a related plaintext.

For example, in ElGamal, given (c_1, c_2) an adversary can query $(c_1, t \cdot c_2)$, which is a valid decryption for *tm*.

Motivation		
000	00 000	
Stronger notions of security		

Adaptive chosen ciphertext attacks

An interactive chosen-ciphertext attack in which the adversary sends a number of ciphertexts to be decrypted, then uses the results of these decryptions to select subsequent ciphertexts.

Motivation		
000	00 000	
Stronger notions of security		

Adaptive chosen ciphertext attacks

An interactive chosen-ciphertext attack in which the adversary sends a number of ciphertexts to be decrypted, then uses the results of these decryptions to select subsequent ciphertexts.

 \rightarrow CCA2-security is equivalent to non-malleability [1]

Motivation		
000	00 000	
Stronger notions of security		

Adaptive chosen ciphertext attacks

An interactive chosen-ciphertext attack in which the adversary sends a number of ciphertexts to be decrypted, then uses the results of these decryptions to select subsequent ciphertexts.

 \rightarrow CCA2-security is equivalent to non-malleability [1] A CCA1-attack is also called a lunchtime attack.

Motivation ○○○ ○○●		
Stronger notions of security		

Recall: OAEP for RSA

Optimal asymmetric encryption padding

http://en.wikipedia.org/ wiki/File: Oaep-diagram-20080305.png

Outline

1 Motivation

- What we've seen so far
- Stronger notions of security
- 2 The Encryption Scheme
 - Cramer-Shoup
 - Proof of Security
 - Features
- **3** History & Implementation
 - People
 - Implementation

4 Conclusion

The Encryption Scheme	

ElGamal encryption

$ \begin{array}{c} \underline{Alice} \\ Gen: (q,g) \leftarrow \mathcal{G}(1^n) \\ G = \langle g \rangle \text{ a group, } G = q \\ sk = x \leftarrow \mathbb{Z}_q \\ h := g^x \\ for m \in G: \text{ get } r \leftarrow \mathbb{Z}_q \\ Enc_{pk}(m) = (g^r, h^r m) \end{array} $	$pk = (g, q, h)$ $(g^r, h^r m)$	$ \underbrace{Bob} $ $ Dec_{sk}(c_1, c_2) = c_2/c_1^x $ $ = h^r m/(g^r)^x $ $ = m $

12 / 28

	The Encryption Scheme	
Cramer-Shoup		

Cramer-Shoup encryption

Alice		
$Gen:\ (q,g_1,g_2) \gets \mathcal{G}(1^n)$		Bob
$sk = (x_1, x_2, y_1, y_2, z) \leftarrow \mathbb{Z}_q$	$pk = (g_1, g_2, g_2, g_1, g_2, g_2, g_2)$	$\alpha := H(u_1, u_2, e)$
$c := g_1^{x_1} g_2^{x_2}, d := g_1^{y_1} g_2^{y_2}$	(μ_1, μ_2, e, v)	$u_1^{x_1+y_1\alpha}u_2^{x_2+y_2\alpha}$
$h := g_1^z$	(a_1, a_2, c, v)	\int verified, v
for $m \in G$: get $r \leftarrow \mathbb{Z}_q$		$^{-}$ abort, otherwise
$u_1 := g_1^r, u_2 := g_2^r, e := h^r m$		$Dec_{1}(\mu_{1},\mu_{2},\mu_{3},\nu) = e/\mu^{2}$
$\alpha := H(u_1, u_2, e), v := c^r d^{r\alpha}$		$Dec_{sk}(u_1, u_2, e, v) = e/u_1$
$Enc_{pk}(m) = (u_1, u_2, e, v)$		
		13/28

	The Encryption Scheme ⊙ ⊙⊙ ⊙⊙⊙	
Cramer-Shoup		

Cramer-Shoup encryption

Correctness:

$$u_1^{x_1+y_1\alpha} u_2^{x_2+y_2\alpha} = u_1^{x_1} u_2^{x_2} u_1^{y_1\alpha} u_2^{y_2\alpha} = g_1^{rx_1} g_2^{rx_2} g_1^{ry_1\alpha} g_2^{ry_2\alpha} = (g_1^{x_1} g_2^{x_2})^r (g_1^{y_1} g_2^{y_2})^{r\alpha} = c^r d^{r\alpha} = v$$

14 / 28

	The Encryption Scheme ⊙● ○○	
Cramer-Shoup		

Cramer-Shoup encryption

Correctness:

- $u_1^{x_1+y_1\alpha} u_2^{x_2+y_2\alpha} = u_1^{x_1} u_2^{x_2} u_1^{y_1\alpha} u_2^{y_2\alpha} = g_1^{rx_1} g_2^{rx_2} g_1^{ry_1\alpha} g_2^{ry_2\alpha} = (g_1^{x_1} g_2^{x_2})^r (g_1^{y_1} g_2^{y_2})^{r\alpha} = c^r d^{r\alpha} = v$
- 2 Since $u_1^z = h^r$, $\text{Dec}_{sk}(u_1, u_2, e, v) = e/u_1^z = e/h^r = m$

	The Encryption Scheme ○○ ●○ ○○○	
Proof of Security		
Theorem		

Cramer-Shoup is CCA2-secure

The Cramer-Shoup cryptosystem is CCA2-secure assuming that (1) we have a universal one-way hash function H, and (2) the Decisional Diffie-Hellman Problem is hard in the group G.

	The Encryption Scheme ○○ ●○ ○○○	
Proof of Security		
Theorem		

Cramer-Shoup is CCA2-secure

The Cramer-Shoup cryptosystem is CCA2-secure assuming that (1) we have a universal one-way hash function H, and (2) the Decisional Diffie-Hellman Problem is hard in the group G.

Proof by reduction: Assuming that there is an adversary that can break the cryptosystem, and that the hash family is universal one-way, we can use this adversary to solve the Decisional Diffie-Hellman Problem.

	The Encryption Scheme	
	00	
Proof of Security		

Proof of Security

	The Encryption Scheme ○○ ○○ ●○○	
Features		

Comparison

One of the few CCA2-secure cryptosystems that do not require zero-knowledge proofs or the random oracle

	The Encryption Scheme ○○ ●○○	
Features		
Comparison		

- One of the few CCA2-secure cryptosystems that do not require zero-knowledge proofs or the random oracle
- Computationally efficient, esp. when using hybrid encryption

	The Encryption Scheme ○○ ●○○	
Features		
Comparison		

- One of the few CCA2-secure cryptosystems that do not require zero-knowledge proofs or the random oracle
- Computationally efficient, esp. when using hybrid encryption
- Intractability assumptions are minimal (only DDH & hash)

	The Encryption Scheme ○○ ○●○	
Features		
<u> </u>		

The ciphertext is about four times plaintext (not a big deal in most applications) and takes about twice as much computation as ElGamal.

The Encryption Scheme ○○ ○○ ○○● History & Implementation 00 0 Conclusion

Cramer-Shoup encrypt

Alice		
$Gen \colon (q,g_1,g_2) \gets \mathcal{G}(1^n)$		Bob
$sk = (x_1, x_2, y_1, y_2, z) \leftarrow \mathbb{Z}_q$	$pk = (g_1, g_2, g_2, d_1, d_2, d_2, d_2, d_3, d_4, d_4)$	$\alpha := H(u_1, u_2, e)$
$c := g_1^{x_1} g_2^{x_2}, d := g_1^{y_1} g_2^{y_2}$	(u_1, u_2, e, v)	$u_1^{x_1+y_1\alpha}u_2^{x_2+y_2\alpha}$
$h := g_1^z$	(a_1, a_2, c, v)	$=\int$ verified, v
for $m \in G$: get $r \leftarrow \mathbb{Z}_q$		abort, otherwise
$u_1 := g_1^r, u_2 := g_2^r, e := h^r m$		$Dec_{e\nu}(u_1, u_2, e, v) = e/u_1^z$
$\alpha := H(u_1, u_2, e), v := c^r d^{r\alpha}$		
$Enc_{pk}(m) = (u_1, u_2, e, v)$	1	

History & Implementation $\circ \circ$

Conclusion

Outline

1 Motivation

- What we've seen so far
- Stronger notions of security
- 2 The Encryption Scheme
 - Cramer-Shoup
 - Proof of Security
 - Features
- 3 History & Implementation
 - People
 - Implementation

History & Implementation $\overset{\bullet \circ}{\circ}$

Conclusion

Ronald Cramer

1968*, Dutch Professor at the Centrum Wiskunde & Informatica (CWI) in Amsterdam and the University of Leiden ETH Zurich, Institute for Theoretical Computer Science

History & Implementation $\overset{\bullet \circ}{\circ}$

Conclusion

Ronald Cramer

1968*, Dutch Professor at the Centrum Wiskunde & Informatica (CWI) in Amsterdam and the University of Leiden ETH Zurich, Institute for Theoretical Computer Science hangs around in bars

History & Implementation $\circ \bullet$

Conclusion

People

born ?, USA Professor at the Courant Institute of Mathematical Sciences (NYU) IBM Zurich Research Laboratory

History & Implementation $\circ \bullet$

Conclusion

People

born ?, USA

Professor at the Courant Institute of Mathematical Sciences (NYU) IBM Zurich Research Laboratory on RateMyProfessors, he has an average rating of 1.4/5

History & Implementation $\circ \circ$

Conclusion

Implementation

Schneier on Cramer-Shoup

"If, in a few years, Cramer-Shoup still looks secure, cryptographers may look at using it instead of other defenses they are already using. But since IBM is going to patent Cramer-Shoup, probably not." [3]

Outline

1 Motivation

- What we've seen so far
- Stronger notions of security
- 2 The Encryption Scheme
 - Cramer-Shoup
 - Proof of Security
 - Features
- **3** History & Implementation
 - People
 - Implementation
- 4 Conclusion

Motiva	

History & Implementation

Conclusion

Summary

	Conclusion

- The Cramer-Shoup system is an asymmetric key encryption algorithm based on the ElGamal scheme
- First efficient scheme proven to be secure against adaptive chosen ciphertext attacks

	Conclusion
00	
000	

thank you!

References

Mihir Bellare and Amit Sahai.

Non-malleable encryption: Equivalence between two notions, and an indistinguishability-based characterization.

In *Advances in cryptology—CRYPTO'99*, pages 519–536. Springer, 1999.

Ronald Cramer and Victor Shoup.

A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack.

In *Advances in Cryptology—CRYPTO'98*, pages 13–25. Springer, 1998.

Bruce Schneier.

Cramer-Shoup cryptosystem.

Crypto-Gram Newsletter, 15.09.98.