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* Cryptography relies on adversarial computational power
 Backwards unreliable secrecy

* As soon as we have quantum computers:
* Shor's Algorithm: Integer factorisation in polynomial time!

=

e
[

—

Can’t we obtain perfect
security ?

One-Time Pad 'l
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When Classical Cryptography fails...

Quantum Cryptography
* Perfect Security
* Relies only on the laws of nature

Post-quantum Cryptography
* Quantum Computational Security

* Relies on primitives that are equally hard for classical and quantum
computers to solve

* Lattice-Based Cryptography



QKD 2PC and more

* Quantum Key Distribution (QKD): Two parties (Alice and Bob)
communicate with perfect secrecy in the presence of an
eavesdropper (Eve) [1,3,4]

* Two-Party Cooperation (2PC): Two parties that don’t trust each
other cooperate in a secure way

* How to encrypt or authenticate a quantum state

* Implementations
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Quantum Channel

* Eve has complete control over the
channel
PPublic classical authenticated channel
* She can intercept or measure the
sent qubits

* No cloning theorem: Forbidden to Quantum channel |
clone of an unknown quantum
state (Wooters and Zurek and
Dieks 1982)

* Eve can block the channel by
sending random qubits and
prevent communication over the
channel



Quantum Key Distribution

* Alice and Bob use the public quantum channel to agree on a private
secure key

* Eve has no information about the key

* Having a private key they can use any other classical encryption
scheme to communicate through the public classical channel

* If they use OTP they can communicate with perfect secrecy!
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* Two-state quantum-mechanical
system
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Quantum Bits (qubits)

* Two-state quantum-mechanical
system

* Polarisation of photon

* rectilinear / diagonal polarization
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Quantum Bits (qubits)

* Two-state quantum-mechanical Il New From THE CREATORS OF Doc™ 17's...

SCHRODINEER'S

system
* Polarisation of photon

* rectilinear / diagonal polarization
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Measuring Qubits
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Measuring Qubits | Sexrep

* Measuring a qubit:
* opening the box
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* Measuring a qubit:
* opening the box

* filter the photon through one of the
modes
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the two states: ver [ Photons
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Measuring Qubits

1. Measuring the qubit in the “wrong
basis”

2. No information gain! (we getoor1
with P=0.5)

3. It changes the state to one of the
states corresponding to the new
basis

Rectilinear
polarization
made |

Diagenal
polarization
mode

Established bit value

Photons




BB84 QKD Scheme

Alice chooses a random bit (0,1) and basis ( + or X)
She sends the qubit to Bob with the appropriate polarization
Bob measures the qubit with a random basis

N W oN R

Alice and Bob compare the string of bases they used and only keep
those bits where they used the same basis

Error estimation and correction

o v

Privacy amplification
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BB84 QKD in Action

- Alice chooses a
bit, basis
And sends the
polarized photon
to Bob

Palarization filter

Alice

Unpalarized

Detection
filter

Mlice's bit sequence:
Alice's hlter scheme:
Bob's detection scheme:

Bob's bit measurements:

Retained bit sequence [key):
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- Alice chooses a
bit, basis
And sends the
polarized photon
to Bob

Detection

.
Palarization filter

Alice
Tra n smitted photon

Unpalarized + h | I
Lt

Mlice's bit sequence:

Detection
filter

Alice's hlter scheme:
Bob's detection scheme:

Bob's bit measurements:

Retained bit sequence [key):
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~ Alice chooses a measures fche
bit, basis e photon with
And sends the A a randpm
polarized photon basis

to Bob

Palarization filter

Alice

|+ e
i :'.._..I‘:_.- 5
Transmitted photon
Unpalarized F + h | -
: N

Mlice's bit sequence:

Detection
filter

Alice's hlter scheme:
Bob's detection scheme:

Bob's bit measurements:

Retained bit sequence [key):

-Confirm bases used
-Error estimation
-Privacy Amplification
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- Alice chooses a measures fche
bit, basis . photon with
And sends the a random
polarized photon

to Bob

Palarization filter

Transmitted photon

Unpolarized | {
e II
Detection
filter

Alice's bit sequence:

Alice's hlter scheme:
Bob's detection scheme:
Bob's bit measurements:

Retained bit sequence [key):

This scheme can be proven
to be perfectly secure!

-Confirm bases used
-Error estimation
-Privacy Amplification
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Detecting an eavesdropper

* |If Eve measures a state in
the wrong basis she will
change the state of the
photon

* This might introduce
errors that can be
detected by Alice and Bob

* If too manK errors are
detected they know that
there was an
eavesdropper and abort




Applications

e Commercial QKD systems
already exist

* 2007 Voting in Geneva [5]

* Approximately 4 commercial
companies

* and 5 Quantum Key
Distribution Networks




Too good to be true?

* Distances: ~200km using optic fiber
and much less through free space (air)

* Expensive equipment

* Imperfect implementations, at least two successful attacks



Conclusions

e Quantu

m Cryptography only relies on laws of nature

* Post-quantum cryptography relies on primitive that are difficult for
quantum and classical computers

* Quantu
public o

* QKD sc
althoug

m Key Distribution allows two parties to share a key using a
uantum channel

nemes are perfectly secure, possible and work in practice

n the implementation of them so far is not perfect
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