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Stochastic Process {Xi}

De�nition (Stochastic Process)
A discrete stochastic process is a sequence of RVs:

. . . , X−3, X−2, X−1, X0, X1, X2, . . .

• Characterized by its joint probability mass function:

PX1,X2...,Xn(x1, x2 . . . , xn)

• Arbitrary dependence between RVs
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Markov Process

Markov Process {Xi}

Stochastic process with the Markov property

De�nition (Markov Process)
A stochastic process is a Markov process if for n = 1, 2, . . .

P(Xn+1 = xn+1 | Xn = xn, . . . , X1 = x1)

= P(Xn+1 = xn+1 | Xn = xn)

For all x1, x2, . . . , xn, xn+1 ∈ X.
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Markov Process

Markov Process {Xi}

Stochastic process with the Markov property

De�nition (Markov Process)
A stochastic process is a Markov process if for n = 1, 2, . . .

P(Xn+1 = xn+1 | Xn = xn, . . . , X1 = x1 )

= P(Xn+1 = xn+1 | Xn = xn )

For all x1, x2, . . . , xn, xn+1 ∈ X.

Random variable only depends on its direct predecessor
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Markov Process

Time Invariant Markov Process I

De�nition (Time Invariance)
AMarkov process is time invariant if for n = 1, 2, . . .,

P(Xn+1 = a | Xn = b) = P(X2 = a | X1 = b)

for all a, b ∈ X.

De�ned by:
1 It’s initial state
2 A probability transition matrix P

• P = [Pij], i, j ∈ {1, 2, 3, ...,m}

• Where Pij = Pr{Xn+1 = j|Xn = i}

Entropy Rate of a Stochastic Process Timo Mulder, Jorn Peters



Stochastic Processes Entropy Rate of Stochastic Processes Finaly. . .

Markov Process

Time Invariant Markov Process II

Example

P(Xn+1 = b|Xn = a)

= P(X2 = b|X1 = a)

= P(X9 = b|X8 = a)

etc.
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Markov Process

Stationary Distribution

Given PXt(·) the probability mass function at time t+ 1 is
de�ned as

PXt+1(α) =

n∑
k=1

P(xk)P(Xt+1 = α | Xt = xk)

=

n∑
k=1

P(xk)Pxkα

If the probability mass at time t and time t+ 1 are the same then
the process is a stationary process. In that case µ is the stationary
distribution where µi = PX(i).
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Markov Process

Stationary Stochastic Process

More precise:

De�nition
A stochastic process is stationary if the joint distribution of any
subset of the sequence of RVs is invariant of shifts in the time
index.

That is,

Pr{X1 = x1, X2 = x2, . . . , Xn = xn}

= Pr{X1+l = x1, X2+l = x2, . . . , Xn+l = xn}

for every n and every shift l and for all x1, x2, ..., xn ∈ X.
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Markov Process

Stationary Stochastic Process

In particular this means that for any stationary stochastic process
we have

P(Xn = a) = P(X1 = a), ∀n, a.
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Markov Process

Stationary Distribution I

• In our example we can �nd the stationary distribution by
solving

µTP = µT

• Thus the stationary distribution is related to a left
eigenvector of the probability transition matrix P where the
eigenvalue equals 1
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Markov Process

Irreducible and aperiodic Markov process

Figure: Taken from Moser, 2013
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Markov Process

Irreducible and aperiodic Markov process

Given a time invartiant Markov process {Xi} that is irreducible
and aperiodic.

Remark
{Xi} has a unique stationary distribution.

Remark
Independent of the starting distribution PX1(·). PXk(·) will
converge to the stationary distribution µ as k→∞.
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Markov Process

Stationary Distribution II
Example
Let us show that in the example µ = [35 ,

2
5 ]

PXk(·) k = 1

k = 2 k = 3 k = 4

PXk(S) 1

1
2 = 0.5 5

8 = 0.625 19
32 = 0.59375

PXk(R) 0

1
2 = 0.5 3

8 = 0.375 13
32 = 0.40625

PXk(·)

k = 5 · · · k = ∞

PXk(S)

77
128 = 0.6015625 · · · 3

5 = 0.6

PXk(R)

51
128 = 0.3984375 · · · 2

5 = 0.4

Table: Convergence to stationary distribution when k→∞.
(Taken from Moser, 2013)
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Entropy Rate

The entropy rate of a state in the example is
H(Xt) = H(

α
α+β ,

β
α+β) = h(

α
α+β)

This is not the entropy a the stochastic process.

So what is the entropy of a stochastic process?
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Entropy Rate: Some Intuition
If {Xi} is i.i.d. it makes sense to say that H({Xi}) = H(X1).
→ Entropy is average bits per symbol.

However,

Example
{Yi} is a source with memory such that PY1(0) = PY1(1) = 1

2 .
furthermore assume that

PY2|Y1(0 | 0) = 0, PY2|Y1(1 | 0) = 1

PY2|Y1(0 | 1) = 0, PY2|Y1(1 | 1) = 1

Then PY2(1) = 1 which means that H(Y2) = 0, H(Y2 | Y1) = 0,
H(Yn+1 | Yn) = 0 and H(Y1, . . . , Yn) = 1. This is not the entropy
of the process.
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Entropy Rate: De�nition

The entropy rate of a stochastic process strongly depends on the
memory.

De�nition (Entropy Rate of {Xi})
The entropy rate (the entropy per source symbol) of any
stochastic process {Xi} is de�ned as

H({Xi}) := lim
n→∞ 1

n
H(X1, X2, . . . , Xn)

if the limit exists.
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Entropy Rate: More Intuition
Example
Given a stochastic process {Xi}. Assume that {Xi} is i.i.d. Then
the entropy rate of {Xi} is

H({Xi}) = lim
n→∞ 1

n
H(X1, . . . , Hn) = lim

n→∞ 1

n
nH(X1) = H(X1)

Example
Given the stochastic process {Yi}. Then the entropy rate of {Yi} is

H({Yi} = lim
n→∞ 1

n
H(Y1, . . . , Yn) = lim

n→∞ 1

n
= 0
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Entropy Rate: A Related Quantity

We can also de�ne a related quantity for entropy rate:

H ′({Xi}) = lim
n→∞H(Xn | Xn−1, Xn−2, . . . , X1)

H({X1}) is the entropy rate per source symbol of n random
variables and H ′({Xi}) is the entropy rate of the last random
variable given the past.
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Theorem
For a stationary stochastic process the entropy rate H({Xi} always
exists and is identical to H ′({Xi}):

H({Xi}) = lim
n→∞ 1

n
H(X1, . . . , Xn)

= lim
n→∞H(Xn | Xn−1, . . . , X1) = H

′({Xi})

Furthermore,

1 H(Xn | Xn−1, . . . , X1) is nonincreasing in n;
2 1
nH(X1, . . . , Xn) is nonincreasing in n;

3 H(Xn | Xn−1, . . . , X1) 6
1
nH(X1, . . . , Xn), ∀n > 1.
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Entropy Rate: Markov Chains

For a stationary Markov chain, the entropy rate is easy to
calculate:

H({Xi}) = H
′({Xi})

= lim
n→∞H(Xn | Xn−1, . . . , X1)

= lim
n→∞H(Xn | Xn−1)

= H(X2 | X1)
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Finaly. . .

• Method to compute the entropy rate of a stochastic process;
• Using this a typical set for ‘ergodic sets’ can be constructed

which has uses in compression/encoding.
• Also stochastic processes are widely used in moddeling in

for example AI and the entropy can be used to �nd optimal
models.
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