A few methods of compression

Wicher Heldring
February 8, 2015

Abstract

This is a brief introduction of different methods of compression.

Contents

1 LZ77
1.1 LZSS . . .
1.2 LZS . .

2 LZW
21 LZMW . . .o
22 LZAP . . . e

3 Arithmetic codes

4 PAQ

1 LZ77

LZ77 (Lempel-Ziv 77) was released in 1977. This compression method is used in
the popular zip format. In LZ77 there are 2 types of units that describe a com-
pressed stream, the first is a literal, normally any byte character. The other is a
tuple of 2 integers where the first entry describes the distance and the second de-
scribes the length. For instance a decompression of A, (—1,4) would be AAAAA
since we go back distance or offset = -1 and then we read 4 (length) characters
and write them to the current output position. So A, (—1,4) = AA,(-1,3) =
AAA,(—1,2) = AAAA,(—1,1) = AAAAA. A sidenote is that LZ77 is not a
bijection, there are multiple ways to describe a given input stream. This means
that some compressors can give better results and efficiency than other com-
pressors. An example of this is if you are to compress AB...BC...ABC, there
would be 2 possible ways to compress this. A greedy compressor would com-
press this as ..., (pointer to A,2), C' while an other way to describe this stream
is ..., A, (pointer to B, 2). Depending on the implementation sometimes the sec-
ond option achieves a better compression ratio since the distance is shorter and
thus can be described in less bits.

The main advantage of LZ77 is the decompression is extremely fast, a lot of
LZ77 variants don’t improve a lot on compression ratio, but they do improve
on speed instead.

1.1 LZSS

In the original LZ77 algorithm suggested that you should encode every possible
match, so even matches with only length 1. However this is not a proper way
to do it since the implementing this means that you often use more bits to
encode a single match, than to just write it down as a literal. A variant of LZ77
is therefore LZSS (Lempel-Ziv-Storer-Szymanski). LZSS starts of by reading
one bit. The bit 0 means that a literal is next (8 bits of data), reading a
1 means that a distance-length pair is next. So a better representation of a
compression stream would be for instance (0, A), (0, B), (1,—2,2). Which will
be decompressed in ABAB. The distance-length pair can be encoded in a few
different ways. LZSS encodes this distance-length pair by reserving 12 bits for
distance and 4 bits for length. This means that we can encode lengths up to
24 42 = 18 since there are 4 bits and any match with length 1 or 0 is not worth
the trouble to encode: encoding a literal takes 9 bits while encoding a match
takes 16 + 1 = 17 bits, 1 for the flag and 16 for the distance-length pair.

1.2 LZS

LZSS uses a fixed-size distance-length pair. LZS (LempelZivStac) improves on
LZSS by using huffman codes do denote the length-distance pair. This pair is
encoded by first writing down the distance. If the distance is larger than 128,
write a 0 and then the length in 11 bits, otherwise write a 1 and then 7 bits

for the length. The length is encoded using a fixed Huffman tree which can be
found at https://tools.ietf.org/html/rfc2395#page-3.

2 LZW

LZW (Lempel-Ziv-Welch) uses references to a dictionary instead of a references
to previous data. To encode a given input stream, first a dictionary is initialized
with all the possible ASCII values mapping to themselves: [0,1,...,255] =
[chr(0), chr(1), ...,chr(255)]. Next when we read we try to match the input to
the longest string that we can find in the dictionary. After this add the longest
string + the next input symbol to the dictionary and write down the dictionary
entry of this longest string to the output stream. First use 9 bits to encode the
data but as soon as the length of the dictionary exceeds 9 bits = 512, then use
10 bits etc. If the dictionary size is over 16 bits we discard the current dictionary
and reinitialize it to the default ASCII table.

2.1 LZMW

LZMW (Lempel-Ziv-Miller-Wegman) is a variant of LZW that improves over
LZW in 2 ways. The first is that instead of reinitializing the dictionary when
it is full, it removes the least used phrase instead. Any deterministic way to
determine the least used phrase will work. However the initial 256 ASCII values
should never be deleted. The second improvement over LZW is that instead of
adding the longest match so far 4+ the first unknown character, we add the
concatenation of the previous and current match to the dictionary. This means
that instead of growing dictionary entries only letter by letter, we can add
complete words to the dictionary. Which means that if you are compressing
text that the dictionary are often words or series of words.

2.2 LZAP

LZAP (Lempel-Ziv All Prefixes) is also a variant of LZW that adds more entries
by appending all prefixes to the dictionary. For instance if we first read ’ABC’
that is in our dictionary and then 'DEF’; ’ABCD’, ’ABCDE’, ’"ABCDEF’ would
be added to our dictionary, instead of only ’ABCD’ in the case of LZW. This
means that overall we get a better compression ratio in most cases.

3 Arithmetic codes

Huffman codes have mostly been used in compression so far, arithmetic codes
are however increasingly used because they have a few advantages over huffman
codes. So to encode a given string for instance ’ABCDD’, the first thing is to
model the distribution and range. This would be the model of ’"ABCDD’.

Key | Probabilty | Range
A 0.2 0.0-0.2
B 0.2 0.2-04
C 0.2 0.4-0.6
D 0.4 0.6-1

The algorithm to encode a given input stream recursively is as follows.

Ly =0.0 fr(z) = low range in tabel above
Hy=1.0 fu(x) = high range in tabel above

Lyy1 =Ly + (Hn = Ly) * fL(mn)
Hn+1 - Ln + (Hn - Ln) * fH(xn)

Where z,, is the n’th input symbol in the input stream. So encoding ’ABCDD’
would be done like this.

Input symbol L, H,
A 0.0 0.2
B 0.24 0.28
C 0.256 | 0.264
D 0.2608 | 0.264
D 0.26272 | 0.264

Any float between 0.26272 and 0.264 would describe the string ’ABCDD” in this
model. So given a probability distribution this is an efficient way of encoding
this information.

4 PAQ

A whole different subset of compressors is the PAQ family. This tree of compres-
sors all follow the modeling way of compression. They try to predict the next
n bits given the previous m bytes of data. This distribution of what the next n
bits can be will then be encoded using arithmetic codes. The models however
are static and often PAQ algorithms first try to detect the kind of data it has
to compress before actually choosing the required model. New modern version
of PAQ are extremely slow, so slow that previous mentioned algorithms often
outperform them by 100x or more. This is because for most of these models
the only goal is to reach optimal compression speed. Thus the newer algorithms
use large neural networks for predicting this probability distribution. Another
disadvantage is that the decompresser has to do exactly the same amount of
work as the compressor. Since they bot contain the same prediction model for
the data and have to predict it to decompile the arithmetic codes.

References

Michael Dipperstein. LZSS (LZ77) Discussion and Implementation. http://
michael.dipperstein.com/1lzss/, 2014. [Online; accessed Jan-2015].

Matt Mahoney. Data compression explained. http://mattmahoney.net/dc/
dce.html, 2013. [Online; accessed Jan-2015].

David Salomon. Data Compression: The Complete Reference. Springer Science
& Business Media, 2007.

