# Information \& Communication Exercise Sheet \#3 

University of Amsterdam, Bachelor of Computer Science, January 2016<br>Lecturer: Christian Schaffner<br>Out: Tuesday, 11 January 2016<br>(due: Friday, 15 January 2016, 14:00, by email or in my ILLC post box)

## To be solved in Class

1. Huffman [CT, 5.38] Find the Huffman $D$-ary code for $\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)=\left(\frac{6}{25}, \frac{6}{25}, \frac{4}{25}, \frac{4}{25}, \frac{3}{25}, \frac{2}{25}\right)$ and the expected codeword length
(a) for $D=2$,
(b) for $D=4$.
2. Error Penalty Suppose that an engineer believes that a source $X$ can be described by the distribution $Q_{X}$ given by the following table:

$$
\begin{array}{c|ccc}
x & \mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\hline Q_{X}(x) & 1 / 2 & 1 / 4 & 1 / 4
\end{array}
$$

In fact, however, the source follows the distribution $P_{X}$ :

$$
\begin{array}{c|ccc}
x & \mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\hline P_{X}(x) & 1 / 4 & 1 / 2 & 1 / 4
\end{array}
$$

(a) Design a code for $X$ based on the wrong distribution $Q_{X}$.
(b) Design a code for $X$ based on the correct distribution $P_{X}$.
(c) Compute the expected number of bits per symbol used by each of these codes when $X$ is sampled from $P_{X}$. How big is the difference?
(d) Explain how this number relates to the Kullback-Leibler divergence

$$
D\left(P_{X} \| Q_{X}\right)=\sum_{x} P_{X}(x) \log \frac{P_{X}(x)}{Q_{X}(x)}
$$

3. Let $X, Y, Z$ be binary random variables such that $I(X ; Y)=0$ and $I(X ; Z)=0$.
(a) Does it follow that $I(X ; Y, Z)=0$ ? If yes, prove it. If no, give a counterexample.

Hint: Consider the case where $X$ and $Y$ are two independent uniform bits and $Z=X \oplus Y$.
(b) Does it follow that $I(Y ; Z)=0$ ? If yes, prove it. If no, give a counterexample.
4. For the Markov chain $X \leftrightarrow Y \leftrightarrow \hat{X}$, show that $H(X \mid \hat{X}) \geq H(X \mid Y)$.
5. [Cover-Thomas 2.32]. We are given the following joint distribution of $X \in\{1,2,3\}$ and $Y \in\{a, b, c\}$ :

$$
\begin{aligned}
& P_{X Y}(1, a)=P_{X Y}(2, b)=P_{X Y}(3, c)=1 / 6 \\
& P_{X Y}(1, b)=P_{X Y}(1, c)=P_{X Y}(2, a)=P_{X Y}(2, c)=P_{X Y}(3, a)=P_{X Y}(3, b)=1 / 12 .
\end{aligned}
$$

Let $\hat{X}(Y)$ be an estimator for $X($ based on $Y)$ and let $p_{e}=P(\hat{X} \neq X)$.
(a) Find an estimator $\hat{X}(Y)$ for which the probability of error $p_{e}$ is as small as possible.
(b) Evaluate Fano's inequality for this problem and compare.

## Homework

1. Let $X, Y, Z$ be arbitrary random variables, and let $f$ be any deterministic function acting on $\mathcal{Y}$. In the following, replace "?" by " $\geq$ " or " $\leq$ " to obtain the correct inequalities, and reason each time with the help of an entropy diagram. Hint: $H(f(Y) \mid Y)=0$.
(a) $H(f(Y)) ? H(Y)$

2 p.
(b) $H(X \mid f(Y)) ? H(X \mid Y)$
(c) $I(X ; Z \mid Y)=0$ implies $I(X ; Z) ? I(X ; Y)$ and $I(X ; Z) ? I(Y ; Z)$.
2. For each statement below, specify a (different) joint distribution $P_{X Y Z}$ of random variables $X, Y$ and $Z$ such that the inequalities hold.
(a) There exists a $y$, such that $H(X \mid Y=y)>H(X)$
(b) $I(X ; Y)>I(X ; Y \mid Z)$
(c) $I(X ; Y)<I(X ; Y \mid Z)$

Note that the distributions have to be different from the ones seen as examples during the lecture.
3. Bottleneck. Suppose a Markov chain starts in one of $n$ states, necks down to $k<n$ states, and then fans back to $m>k$ states. Thus $X_{1} \rightarrow X_{2} \rightarrow X_{3}$, i.e.,

$$
P_{X_{1} X_{2} X_{3}}\left(x_{1}, x_{2}, x_{3}\right)=P_{X_{1}}\left(x_{1}\right) \cdot P_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) \cdot P_{X_{3} \mid X_{2}}\left(x_{3} \mid x_{2}\right)
$$

for all $x_{1} \in\{1,2, \ldots, n\}, x_{2} \in\{1,2, \ldots, k\}, x_{3} \in\{1,2, \ldots, m\}$.
(a) Show that the (unconditional) dependence of $X_{1}$ and $X_{3}$ is limited by the bottleneck by proving that $I\left(X_{1} ; X_{3}\right) \leq \log k$.
(b) Evaluate $I\left(X_{1} ; X_{3}\right)$ for $k=1$, and explain why no dependence can survive such a bottleneck.
4. Let $A, B, C$ be random variables such that

$$
\begin{align*}
I(A ; B) & =0  \tag{1}\\
I(A ; C \mid B) & =I(A ; B \mid C)  \tag{2}\\
H(A \mid B C) & =0 \tag{3}
\end{align*}
$$

Which of the three relations $\leq, \geq$, = holds between the quantities $H(A)$ and $H(C)$ ? Prove your 3 p. answer.

