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e For (time-varying) DMC we can design the source encoder and channel coder
separately and still get optimum performance

e Not true for:

— (Correlated Channel and Source
— Multiple access with correlated sources

— Broadcast channel
ECE 534 by Natasha Devroye



http://www.ece.uic.edu/ECE534

| REDUNDAN
5. [

Book by David MacKay

Figure 1.5. A binary data
sequence of length 10000
transmitted over a binary
symmetric channel with noise
level f = 0.1. [Dilbert image
Copyright(©)1997 United Feature
Syndicate, Inc., used with
permission. |
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Received sequence r Likelihood ratio Jig I z — 8 Decoded sequence S

000 3 0
001 1 0
010 1 0
100 vl 0
101 At 1
110 At 1
011 At 1
111 3 1

Algorithm 1.9. Majority-vote
decoding algorithm for R3. Also
shown are the likelihood ratios
(1.23), assuming the channel is a
binary symmetric channel;

y=0=1/f
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Figure 1.11. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a repetition code and the
majority vote decoding algorithm.
The probability of decoded bit
error has fallen to about 3%; the
rate has fallen to 1/3.
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Figure 1.12. Error probability py
versus rate for repetition codes

over a binary symmetric channel
with f = 0.1. The right-hand
figure shows py, on a logarithmic
scale. We would like the rate to
be large and py, to be small.
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S t S t S t S t
0000 0000000 0100 0100110 1000 1000101 1100 1100011
0001 0001011 0101 0101101 1001 1001110 1101 1101000
0010 0010111 0110 0110001 1010 1010010 1110 1110100
0011 0011100 0111 0111010 1011 1011001 1111 1111111

Table 1.14. The sixteen codewords

{t} of the (7,4) Hamming code.

Any pair of codewords differ from

each other in at least three bits.
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Figure 1.17. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a (7,4) Hamming code. The
probability of decoded bit error is
about 7%.
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Figure 1.18. Error probability py,
versus rate R for repetition codes,
the (7,4) Hamming code and
BCH codes with blocklengths up
to 1023 over a binary symmetric
channel with f = 0.1. The
righthand figure shows p}, on a
logarithmic scale.
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Figure 1.19. Shannon’s
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noisy-channel coding theorem.
The solid curve shows the
Shannon limit on achievable
values of (R, py,) for the binary
symmetric channel with f = 0.1.
Rates up to R = C are achievable
with arbitrarily small py,. The
points show the performance of
some textbook codes, as in

figure 1.18.

Shannon limit (the solid curve) is
R=C/(1 - Hs(py)), where C and
Hs are defined in equation (1.35).

 The equation defining the



http://www.inference.phy.cam.ac.uk/mackay/itila/book.html

C' ~ 0.53. Let us consider what this means in terms of noisy disk drives. The
repetition code R3 could communicate over this channel with py, = 0.03 at a
rate R = 1/3. Thus we know how to build a single gigabyte disk drive with
pp = 0.03 from three noisy gigabyte disk drives. We also know how to make a
single gigabyte disk drive with py, ~ 107!° from sixty noisy one-gigabyte drives
(exercise 1.3, p.8). And now Shannon passes by, notices us juggling with disk
drives and codes and says:

“‘What performance are you trying to achieve? 107'°? You don’t
need sixty disk drives — you can get that performance with just
two disk drives (since 1/2 is less than 0.53). And if you want
pp = 10718 or 1072* or anything, you can get there with two disk

drives too!’
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C' ~ 0.53. Let us consider what this means in terms of noisy disk drives. The
repetition code R3 could communicate over this channel with py, = 0.03 at a
rate R = 1/3. Thus we know how to build a single gigabyte disk drive with
pp = 0.03 from three noisy gigabyte disk drives. We also know how to make a
single gigabyte disk drive with py, ~ 107!° from sixty noisy one-gigabyte drives
(exercise 1.3, p.8). And now Shannon passes by, notices us juggling with disk
drives and codes and says:

“‘What performance are you trying to achieve? 107'°? You don’t
need sixty disk drives — you can get that performance with just
two disk drives (since 1/2 is less than 0.53). And if you want
pp = 10718 or 1072* or anything, you can get there with two disk

drives too!’

[Strictly, the above statements might not be quite right, since, as we shall see,
Shannon proved his noisy-channel coding theorem by studying sequences of
block codes with ever-increasing blocklengths, and the required blocklength
might be bigger than a gigabyte (the size of our disk drive), in which case,
Shannon might say ‘well, you can’t do it with those tiny disk drives, but if you
had two noisy terabyte drives, you could make a single high-quality terabyte

drive from them’.|
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