Information Theory Exercise Sheet \#4 v2 (Process Convergence; Entropy Diagrams)

University of Amsterdam, Master of Logic, Fall 2015
Lecturer: Christian Schaffner
TA: Mathias Madsen

Out: Wednesday, 18 November 2015, updated: 20 Nov 2015
(due: Wednesday, 25 November 2015, 9:00)

1. Branching Process A random process repeatedly flips a fair coin to choose between the two words AB and ABC . A typical sample from this process is
```
ABCABCABABABCABCABCABCABCABABABCABABABCABC..
```

Compute the entropy rate of this process.
2. Convolutional Process Let $X_{1}, X_{2}, X_{3}, \ldots$ be fair coin flips, and define

$$
S_{n}=X_{n}+X_{n-1}
$$

A typical sample from this process is

$$
1,1,1,2,1,0,1,2,2,1,0,0,0,0,0,1,1,1,2,1,0,0,0,1,1,0,1,1,0, \ldots
$$

Find the stationary distribution that describes the long-run behavior of $S_{1}, S_{2}, S_{3}, \ldots$.
3. Entropy Diagrams Let A, B, C be random variables such that

$$
\begin{aligned}
I(A ; B) & =0 \\
I(A ; C \mid B) & =I(A ; B \mid C) \\
H(A \mid B, C) & =0
\end{aligned}
$$

Find the relationship between $H(A)$ and $H(C)$.
4. Guaranteed Corruption A channel takes 8-bit words as input and outputs 8 -bit words. For each input, the channel selects exactly one of the 8 bits at random and flips it.
Construct an error-correcting code for this channel which explicitly shows that zero-error communication is possible over this channel at a rate of 5 bits per word.
5. Increasing and Decreasing Uncertainty For each of the three properties below, construct a (different) joint distribution over the variables X, Y, Z which satisfies the property.
(a) $H(X \mid Y=y)>H(X)$ for some y.
(b) $H(X \mid Y=y)<H(X)$ for all y.
(c) $I(X ; Y)>I(X ; Y \mid Z)$.
(d) $I(X ; Y)<I(X ; Y \mid Z)$.
6. Implications Let X, Y, Z be binary random variables such that $I(X ; Y)=$ 0 and $I(X ; Z)=0$.
(a) Does it follow that $I(X ; Y, Z)=0$? If yes, prove it. If no, give a counterexample.
(b) Does it follow that $I(Y ; Z)=0$? If yes, prove it. If no, give a counterexample.
7. Bottleneck Suppose that

$$
A \rightarrow B \rightarrow C
$$

form a Markov chain (that is, A is independent of C given B). Suppose further that B only takes b different values. Prove that $I(A ; C) \leq \log b$.

Homework is exercises $\{1,4,5\}$ or $\{1,7,5\}$.

