Information Theory Exercise Sheet \#7

(Channel Capacities)

University of Amsterdam, Master of Logic, Fall 2015
Lecturer: Christian Schaffner

TA: Mathias Madsen
Out: Wednesday, 9 December 2015
(due: Friday, 18 December 2015, 9:00)

1. Channel Capacities (Cover and Thomas, Ex. 7.34) Find the capacity and optimal input distribution of the following channels:
(a) The Z-channel with transition matrix

$$
P_{Y \mid X}=\left[\begin{array}{cc}
1 & 0 \\
1 / 2 & 1 / 2
\end{array}\right]
$$

and channel diagram

(b) The ternary channel with transition matrix

$$
P_{Y \mid X}=\left[\begin{array}{ccc}
2 / 3 & 1 / 3 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 2 / 3
\end{array}\right]
$$

2. Toggle channel (Cover and Thomas, Ex. 7.28) Suppose we are given two (possibly different) channels with capacities C_{1} and C_{2}. We then define a new "union channel" by allowing the transmitter at each time to choose between sending a signal through either channel 1 or channel 2. We assume that that the output alphabets of the two component channels are distinct and do not intersect.
(a) Letting C stand for the capacity of the union channel, show that

$$
2^{C}=2^{C_{1}}+2^{C_{2}}
$$

Use this result to calculate the capacity of the following channels:
(b) Two parallel BSCs:

(c) A BSC and a single symbol:

3. Noise alphabets (Cover and Thomas, Ex. 7.30) Consider an additivenoise channel where $\mathcal{X}=\{0,1,2,3\}$ and $Y=X+Z$ with addition over the integers $\mathbb{Z} . Z$ is uniformly distributed over three distinct integer values $\mathcal{Z}=\left\{z_{1}, z_{2}, z_{3}\right\}$.
(a) What is the maximum capacity over all choices of the \mathcal{Z} alphabet? Give distinct integer values z_{1}, z_{2}, z_{3} and a distribution on \mathcal{X} achieving this.
(b) What is the minimum capacity over all choices of the \mathcal{Z} alphabet? Give distinct integer values z_{1}, z_{2}, z_{3} and a distribution on \mathcal{X} achieving this.
4. Source and channel (Cover and Thomas, Ex. 7.31) We wish to encode a sequence $B_{1}, B_{2}, B_{3}, \ldots, B_{n}$ of i.i.d. Bernoulli(θ) variables,

$$
P_{B}(1)=1-P_{B}(0)=\theta
$$

for transmission over a binary symmetric channel with flip probability ε,

$$
B^{n} \longrightarrow X^{n}\left(B^{n}\right) \longrightarrow Y_{1}^{\frac{1-\varepsilon}{1-\varepsilon} 1} 0
$$

Find conditions on (θ, ε) under which the error probability $\operatorname{Pr}\left[\hat{B}^{n} \neq B^{n}\right]$ can be made to go to zero as $n \rightarrow \infty$.
5. Another Kind of Entropy. In this exercise we consider a different entropy notion. Let X and Y be random variables with joint probability distribution $P_{X Y}$. The guessing probability and the min-entropy of X are respectively defined as

$$
\operatorname{Guess}(X):=\max _{x} P_{X}(x) \quad \text { and } \quad H_{\min }(X):=-\log \operatorname{Guess}(X)
$$

The conditional guessing probability and the conditional min-entropy of X are respectively defined as

$$
\operatorname{Guess}(X \mid Y):=\sum_{y} P_{Y}(y) \operatorname{Guess}(X \mid Y=y)
$$

and

$$
H_{\min }(X \mid Y):=-\log \operatorname{Guess}(X \mid Y)
$$

(a) If X has no uncertainty (i.e. $H(X)=0$), what is $H_{\min }(X)$?
(b) If X is uniformly distributed over \mathcal{X}, what is $H_{\min }(X)$?
(c) Prove that $H_{\min }(X Y) \geq H_{\min }(X)$.
(d) Prove that $H_{\text {min }}(X) \geq H_{\text {min }}(X \mid Y)$.
(e) Prove that $H_{\min }(X \mid Y) \geq H_{\text {min }}(X Y)-\log |\mathcal{Y}|$.

Homework is exercises $1,2,3$, and 4.

