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Practicalities

• final grade consists of 50-50:

• average grade of the best 6 out of 7 weekly 
homework series

• final exam on Friday, Dec 18, 2015, 9:00-12:00

• details on course homepage:  
http://homepages.cwi.nl/~schaffne/courses/
inftheory/2015/
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We expect from you 

• be on time

• code of honor (do not 
cheat)

• focus

• ask questions!

You can expect from us 

• be on time

• make clear what goals are

• listen to you and respond to 
email requests

• keep website up to date

Why multitasking is bad for learning: https://medium.com/@cshirky/why-i-
just-asked-my-students-to-put-their-laptops-away-7f5f7c50f368

https://medium.com/@cshirky/why-i-just-asked-my-students-to-put-their-laptops-away-7f5f7c50f368


Questions ?
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“The fundamental problem of communication 
is that of reproducing at one point either 
exactly or approximately a message selected at 
another point.”  - C.E. Shannon, 1948

What is communication?

Alice Bob

I want to 
send 1001

I think Alice 
sent 1001



History of (wireless) communication

• Smoke signals

• 1861: Maxwell’s equations

• 1900: Marconi demonstrates wireless 
telegraph

• 1920s: Armstrong demonstrates FM radio

• mostly analog

• ad-hoc engineering, tailored to each 
application

http://en.wikipedia.org/wiki/Smoke_signal
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http://en.wikipedia.org/wiki/Guglielmo_Marconi
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History of (wireless) communication

• Smoke signals

• 1861: Maxwell’s equations

• 1900: Marconi demonstrates wireless 
telegraph

• 1920s: Edwin Howard Armstrong 
demonstrates  
FM radio

• mostly analog

• ad-hoc engineering, tailored to each 

http://en.wikipedia.org/wiki/Smoke_signal
http://en.wikipedia.org/wiki/Maxwell%27s_equations
http://en.wikipedia.org/wiki/Guglielmo_Marconi
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Big Open Questions

• mostly analog

• ad-hoc engineering, tailored to each 
application 

• is there a general methodology for 
designing communication systems?

• can we communicate reliably in noise?

• how fast can we communicate?



Claude Elwood Shannon
1916 - 2001

• Father of Information Theory
• Graduate of MIT 1940:  

“An Algebra for Theoretical Genetics’’
• 1941-1972: Scientist at Bell Labs
• 1958: Professor at MIT: 

• juggling, unicycling, chess
• ultimate machine

When he returned to MIT in 1958, he continued to threaten corridor-
walkers on his unicycle, sometimes augmenting the hazard by 
juggling. No one was ever sure whether these activities were part of 
some new breakthrough or whether he just found them amusing. He 
worked, for example, on a motorized pogo-stick, which he claimed 
would mean he could abandon the unicycle so feared by his 
colleagues ... 

http://www.youtube.com/watch?v=sBHGzRxfeJY
http://www.youtube.com/watch?v=cZ34RDn34Ws
http://www.youtube.com/watch?v=Lutv8c2Kd6Y


History of (wireless) communication

• BITS !

• arguably, first to really define and use 
“bits”

• "He's one of the great men of the century. 
Without him, none of the things we know 
today would exist. The whole digital 
revolution started with him."  
-Neil Sloane, AT&T Fellow
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• Introduced a new field: Information Theory

How fast can 
we 

communicate?

What is 
communication?

How much can 
we compress 
information?

What is 
information?
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Source coding 

• source = random 
variable

• ultimate data 
compression limit is the 
source’s entropy H

Channel coding 

• channel = conditional 
distributions

• ultimate transmission 
rate is the channel 
capacity C

Reliable communication possible  ⟺    H < C



Reactions to This Theory

• Engineers in disbelief

• stuck in analogue world

Information theory’s claims to fame

Source coding

• Source =  random variable
• Ultimate data compression limit is 

the source’s entropy Hmp3
jpg

Channel coding
• Channel =  conditional distributions
• Ultimate transmission rate is the 

channel capacity CGGGO
OOOO

ODDD
Turbo-codes

fading channel

Reliable communication possible ↔ H<C

Reactions?

• Engineers in disbelief

Error free 
communication in 

noise eh?

• Stuck in analog world

How to approach the predicted limits?

(Shannon says can transmit at rates up to say 4Mbps over a certain channel without error. How to do it?)
Shannon says: can transmit at rates up to say 4Mbps 
over a certain channel without error. How to do it?

How to approach the predicted limits?



It Took 50 Years To Do It

• 50‘s: algebraic codes

• 60‘s 70‘s: convolutional codes

• 80‘s: iterative codes (LDPC, 
turbo codes)

• 2009: polar codes

How to approach 
the predicted limits?
review article by [Costello Forney 2006]

http://arxiv.org/abs/cs/0611112


Applications of Information Theory

• Communication Theory

• Computer Science (e.g. in cryptography)

• Physics (thermodynamics)

• Philosophy of Science (Occam’s Razor)

• Economics (investments)

• Biology (genetics, bio-informatics)

http://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Thermodynamics
https://en.wikipedia.org/wiki/Occam%27s_razor


Topics Overview

• Entropy and Mutual Information

• Data Compression

• Coding Theory

• Entropy Diagrams

• Perfectly Secure Encryption

• Zero-Error Information Theory

• Channel-Coding Theorem

• Noisy-Channel Theorem



Questions ?
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Probability, Entropy, and Inference

This chapter, and its sibling, Chapter 8, devote some time to notation. Just
as the White Knight distinguished between the song, the name of the song,
and what the name of the song was called (Carroll, 1998), we will sometimes
need to be careful to distinguish between a random variable, the value of the
random variable, and the proposition that asserts that the random variable
has a particular value. In any particular chapter, however, I will use the most
simple and friendly notation possible, at the risk of upsetting pure-minded
readers. For example, if something is ‘true with probability 1’, I will usually
simply say that it is ‘true’.

2.1 Probabilities and ensembles

An ensemble X is a triple (x,AX ,PX), where the outcome x is the value
of a random variable, which takes on one of a set of possible values,
AX = {a1, a2, . . . , ai, . . . , aI}, having probabilities PX = {p1, p2, . . . , pI},
with P (x=ai) = pi, pi ≥ 0 and

∑
ai∈AX

P (x=ai) = 1.

The name A is mnemonic for ‘alphabet’. One example of an ensemble is a
letter that is randomly selected from an English document. This ensemble is
shown in figure 2.1. There are twenty-seven possible letters: a–z, and a space
character ‘-’.

i ai pi

1 a 0.0575
2 b 0.0128
3 c 0.0263
4 d 0.0285
5 e 0.0913
6 f 0.0173
7 g 0.0133
8 h 0.0313
9 i 0.0599
10 j 0.0006
11 k 0.0084
12 l 0.0335
13 m 0.0235
14 n 0.0596
15 o 0.0689
16 p 0.0192
17 q 0.0008
18 r 0.0508
19 s 0.0567
20 t 0.0706
21 u 0.0334
22 v 0.0069
23 w 0.0119
24 x 0.0073
25 y 0.0164
26 z 0.0007
27 – 0.1928

a
b
c
d
e
f
g

h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
–

Figure 2.1. Probability
distribution over the 27 outcomes
for a randomly selected letter in
an English language document
(estimated from The Frequently
Asked Questions Manual for
Linux ). The picture shows the
probabilities by the areas of white
squares.

Abbreviations. Briefer notation will sometimes be used. For example,
P (x=ai) may be written as P (ai) or P (x).

Probability of a subset. If T is a subset of AX then:

P (T ) = P (x∈T ) =
∑

ai∈T

P (x=ai). (2.1)

For example, if we define V to be vowels from figure 2.1, V =
{a, e, i, o, u}, then

P (V ) = 0.06 + 0.09 + 0.06 + 0.07 + 0.03 = 0.31. (2.2)

A joint ensemble XY is an ensemble in which each outcome is an ordered
pair x, y with x ∈ AX = {a1, . . . , aI} and y ∈ AY = {b1, . . . , bJ}.
We call P (x, y) the joint probability of x and y.

Commas are optional when writing ordered pairs, so xy ⇔ x, y.

N.B. In a joint ensemble XY the two variables are not necessarily inde-
pendent.

22

Example: Letter Frequencies

Book by David MacKay

http://www.inference.phy.cam.ac.uk/mackay/itila/book.html
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a
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–

x Figure 2.2. The probability
distribution over the 27×27
possible bigrams xy in an English
language document, The
Frequently Asked Questions
Manual for Linux.

Marginal probability. We can obtain the marginal probability P (x) from
the joint probability P (x, y) by summation:

P (x=ai) ≡
∑

y∈AY

P (x=ai, y). (2.3)

Similarly, using briefer notation, the marginal probability of y is:

P (y) ≡
∑

x∈AX

P (x, y). (2.4)

Conditional probability

P (x=ai | y = bj) ≡
P (x=ai, y = bj)

P (y = bj)
if P (y = bj) ̸= 0. (2.5)

[If P (y = bj) = 0 then P (x=ai | y = bj) is undefined.]

We pronounce P (x=ai | y = bj) ‘the probability that x equals ai, given
y equals bj ’.

Example 2.1. An example of a joint ensemble is the ordered pair XY consisting
of two successive letters in an English document. The possible outcomes
are ordered pairs such as aa, ab, ac, and zz; of these, we might expect
ab and ac to be more probable than aa and zz. An estimate of the
joint probability distribution for two neighbouring characters is shown
graphically in figure 2.2.

This joint ensemble has the special property that its two marginal dis-
tributions, P (x) and P (y), are identical. They are both equal to the
monogram distribution shown in figure 2.1.

From this joint ensemble P (x, y) we can obtain conditional distributions,
P (y |x) and P (x | y), by normalizing the rows and columns, respectively
(figure 2.3). The probability P (y |x=q) is the probability distribution
of the second letter given that the first letter is a q. As you can see in
figure 2.3a, the two most probable values for the second letter y given

Example: Letter Frequencies

Book by David MacKay

http://www.inference.phy.cam.ac.uk/mackay/itila/book.html


Example: Surprisal Values
from http://www.umsl.edu/~fraundorfp/egsurpri.html
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32 2 — Probability, Entropy, and Inference

What do you notice about your solutions? Does each answer depend on the
detailed contents of each urn?

The details of the other possible outcomes and their probabilities are ir-
relevant. All that matters is the probability of the outcome that actually
happened (here, that the ball drawn was black) given the different hypothe-
ses. We need only to know the likelihood, i.e., how the probability of the data
that happened varies with the hypothesis. This simple rule about inference is
known as the likelihood principle.

The likelihood principle: given a generative model for data d given
parameters θ, P (d |θ), and having observed a particular outcome
d1, all inferences and predictions should depend only on the function
P (d1 |θ).

In spite of the simplicity of this principle, many classical statistical methods
violate it.

2.4 Definition of entropy and related functions

The Shannon information content of an outcome x is defined to be

h(x) = log2
1

P (x)
. (2.34)

It is measured in bits. [The word ‘bit’ is also used to denote a variable
whose value is 0 or 1; I hope context will always make clear which of the
two meanings is intended.]

In the next few chapters, we will establish that the Shannon information
content h(ai) is indeed a natural measure of the information content
of the event x = ai. At that point, we will shorten the name of this
quantity to ‘the information content’.

i ai pi h(pi)

1 a .0575 4.1
2 b .0128 6.3
3 c .0263 5.2
4 d .0285 5.1
5 e .0913 3.5
6 f .0173 5.9
7 g .0133 6.2
8 h .0313 5.0
9 i .0599 4.1
10 j .0006 10.7
11 k .0084 6.9
12 l .0335 4.9
13 m .0235 5.4
14 n .0596 4.1
15 o .0689 3.9
16 p .0192 5.7
17 q .0008 10.3
18 r .0508 4.3
19 s .0567 4.1
20 t .0706 3.8
21 u .0334 4.9
22 v .0069 7.2
23 w .0119 6.4
24 x .0073 7.1
25 y .0164 5.9
26 z .0007 10.4
27 - .1928 2.4

∑

i

pi log2
1
pi

4.1

Table 2.9. Shannon information
contents of the outcomes a–z.

The fourth column in table 2.9 shows the Shannon information content
of the 27 possible outcomes when a random character is picked from
an English document. The outcome x = z has a Shannon information
content of 10.4 bits, and x = e has an information content of 3.5 bits.

The entropy of an ensemble X is defined to be the average Shannon in-
formation content of an outcome:

H(X) ≡
∑

x∈AX

P (x) log
1

P (x)
, (2.35)

with the convention for P (x) = 0 that 0 × log 1/0 ≡ 0, since
limθ→0+ θ log 1/θ = 0.

Like the information content, entropy is measured in bits.

When it is convenient, we may also write H(X) as H(p), where p is
the vector (p1, p2, . . . , pI). Another name for the entropy of X is the
uncertainty of X.

Example 2.12. The entropy of a randomly selected letter in an English docu-
ment is about 4.11 bits, assuming its probability is as given in table 2.9.
We obtain this number by averaging log 1/pi (shown in the fourth col-
umn) under the probability distribution pi (shown in the third column).

Book by David MacKay

http://www.umsl.edu/~fraundorfp/egsurpri.html
http://www.inference.phy.cam.ac.uk/mackay/itila/book.html
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