

Figure 10.2. The jointly-typical set. The horizontal direction represents \mathcal{A}_{X}^{N}, the set of all input strings of length N. The vertical direction represents \mathcal{A}_{Y}^{N}, the set of all output strings of length N.
The outer box contains all conceivable input-output pairs. Each dot represents a jointly-typical pair of sequences (\mathbf{x}, \mathbf{y}). The total number of jointly-typical sequences is about $2^{\text {NH(X,Y) }}$.
so the probability of hitting a jointly-typical pair is roughly

$$
2^{N H(X, Y)} / 2^{N H(X)+N H(Y)}=2^{-N I(X ; Y)} .
$$

Figure 10.4. (a) A random code.

Book by David MacKay

(b) Example decodings by the typical set decoder. A sequence that is not jointly typical with any of the codewords, such as \mathbf{y}_{a}, is decoded as $\hat{s}=0$. A sequence that is jointly typical with codeword $\mathbf{x}^{(3)}$ alone, \mathbf{y}_{b}, is decoded as $\hat{s}=3$. Similarly, \mathbf{y}_{c} is decoded as $\hat{s}=4$. A sequence that is jointly typical with more than one codeword, such as \mathbf{y}_{d}, is decoded as $\hat{s}=0$.

(b)

(a) A random code...

Figure 10.5. How expurgation works. (a) In a typical random code, a small fraction of the codewords are involved in collisions - pairs of codewords are sufficiently close to each other that the probability of error when either codeword is transmitted is not tiny. We obtain a new code from a random code by deleting all these confusable codewords.

(b) expurgated
(b) The resulting code has slightly fewer codewords, so has a slightly lower rate, and its maximal probability of error is greatly reduced.

Analogy

Imagine that we wish to prove that there is a baby in a class of one hundred babies who weighs less than 10 kg . Individual babies are difficult to catch and weigh. Shannon's method of solving the task is to scoop up all the babies and weigh them all at once on a big weighing machine. If we find that their average weight is smaller than 10 kg , there must exist at least one baby who weighs less than 10 kg - indeed there must be many! Shannon's method isn't guaranteed to reveal the existence of an underweight child, since it relies on there being a tiny number of elephants in the class. But if we use his method and get a total weight smaller than 1000 kg then our task is solved.

Figure 10.3. Shannon's method for proving one baby weighs less than

