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Figure 10.2. The jointly-typical
set. The horizontal direction
represents AN

X , the set of all input
strings of length N . The vertical
direction represents AN

Y , the set of
all output strings of length N .
The outer box contains all
conceivable input–output pairs.
Each dot represents a
jointly-typical pair of sequences
(x,y). The total number of
jointly-typical sequences is about
2NH(X,Y ).

10.3 Proof of the noisy-channel coding theorem

Analogy

Imagine that we wish to prove that there is a baby in a class of one hundred
babies who weighs less than 10 kg. Individual babies are difficult to catch and
weigh. Shannon’s method of solving the task is to scoop up all the babies

Figure 10.3. Shannon’s method for
proving one baby weighs less than
10 kg.

and weigh them all at once on a big weighing machine. If we find that their
average weight is smaller than 10 kg, there must exist at least one baby who
weighs less than 10 kg – indeed there must be many! Shannon’s method isn’t
guaranteed to reveal the existence of an underweight child, since it relies on
there being a tiny number of elephants in the class. But if we use his method
and get a total weight smaller than 1000 kg then our task is solved.

From skinny children to fantastic codes

We wish to show that there exists a code and a decoder having small prob-
ability of error. Evaluating the probability of error of any particular coding
and decoding system is not easy. Shannon’s innovation was this: instead of
constructing a good coding and decoding system and evaluating its error prob-
ability, Shannon calculated the average probability of block error of all codes,
and proved that this average is small. There must then exist individual codes
that have small probability of block error.

Random coding and typical-set decoding

Consider the following encoding–decoding system, whose rate is R ′.

1. We fix P (x) and generate the S = 2NR′ codewords of a (N,NR′) =
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10.2: Jointly-typical sequences 163

The jointly-typical set JNβ is the set of all jointly-typical sequence pairs
of length N .

Example. Here is a jointly-typical pair of length N = 100 for the ensemble
P (x, y) in which P (x) has (p0, p1) = (0.9, 0.1) and P (y |x) corresponds to a
binary symmetric channel with noise level 0.2.

x 1111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

y 0011111111000000000000000000000000000000000000000000000000000000000000000000000000111111111111111111

Notice that x has 10 1s, and so is typical of the probability P (x) (at any
tolerance β); and y has 26 1s, so it is typical of P (y) (because P (y =1) = 0.26);
and x and y differ in 20 bits, which is the typical number of flips for this
channel.

Joint typicality theorem. Let x,y be drawn from the ensemble (XY )N

defined by

P (x,y) =
N∏

n=1

P (xn, yn).

Then

1. the probability that x,y are jointly typical (to tolerance β) tends
to 1 as N → ∞;

2. the number of jointly-typical sequences |JNβ | is close to 2NH(X,Y ).
To be precise,

|JNβ | ≤ 2N(H(X,Y )+β); (10.3)

3. if x′ ∼ XN and y′ ∼ Y N , i.e., x′ and y′ are independent samples
with the same marginal distribution as P (x,y), then the probability
that (x′,y′) lands in the jointly-typical set is about 2−NI(X;Y ). To
be precise,

P ((x′,y′) ∈ JNβ) ≤ 2−N(I(X;Y )−3β). (10.4)

Proof. The proof of parts 1 and 2 by the law of large numbers follows that
of the source coding theorem in Chapter 4. For part 2, let the pair x, y
play the role of x in the source coding theorem, replacing P (x) there by
the probability distribution P (x, y).
For the third part,

P ((x′,y′) ∈ JNβ) =
∑

(x,y)∈JNβ

P (x)P (y) (10.5)

≤ |JNβ | 2−N(H(X)−β) 2−N(H(Y )−β) (10.6)

≤ 2N(H(X,Y )+β)−N(H(X)+H(Y )−2β) (10.7)
= 2−N(I(X;Y )−3β). ✷ (10.8)

A cartoon of the jointly-typical set is shown in figure 10.2. Two independent
typical vectors are jointly typical with probability

P ((x′,y′) ∈ JNβ) ≃ 2−N(I(X;Y )) (10.9)

because the total number of independent typical pairs is the area of the dashed
rectangle, 2NH(X)2NH(Y ), and the number of jointly-typical pairs is roughly
2NH(X,Y ), so the probability of hitting a jointly-typical pair is roughly

2NH(X,Y )/2NH(X)+NH(Y ) = 2−NI(X;Y ). (10.10)
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Figure 10.4. (a) A random code.
(b) Example decodings by the
typical set decoder. A sequence
that is not jointly typical with any
of the codewords, such as ya, is
decoded as ŝ = 0. A sequence that
is jointly typical with codeword
x(3) alone, yb, is decoded as ŝ = 3.
Similarly, yc is decoded as ŝ = 4.
A sequence that is jointly typical
with more than one codeword,
such as yd, is decoded as ŝ = 0.

(N,K) code C at random according to

P (x) =
N∏

n=1

P (xn). (10.11)

A random code is shown schematically in figure 10.4a.

2. The code is known to both sender and receiver.

3. A message s is chosen from {1, 2, . . . , 2NR′}, and x(s) is transmitted. The
received signal is y, with

P (y |x(s)) =
N∏

n=1

P (yn |x(s)
n ). (10.12)

4. The signal is decoded by typical-set decoding.

Typical-set decoding. Decode y as ŝ if (x(ŝ),y) are jointly typical and
there is no other s′ such that (x(s′),y) are jointly typical;
otherwise declare a failure (ŝ=0).

This is not the optimal decoding algorithm, but it will be good enough,
and easier to analyze. The typical-set decoder is illustrated in fig-
ure 10.4b.

5. A decoding error occurs if ŝ ̸= s.

There are three probabilities of error that we can distinguish. First, there
is the probability of block error for a particular code C, that is,

pB(C) ≡ P (ŝ ̸= s | C). (10.13)

This is a difficult quantity to evaluate for any given code.
Second, there is the average over all codes of this block error probability,

⟨pB⟩ ≡
∑

C
P (ŝ ̸= s | C)P (C). (10.14)
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⇒
(a) A random code . . . (b) expurgated

Figure 10.5. How expurgation
works. (a) In a typical random
code, a small fraction of the
codewords are involved in
collisions – pairs of codewords are
sufficiently close to each other
that the probability of error when
either codeword is transmitted is
not tiny. We obtain a new code
from a random code by deleting
all these confusable codewords.
(b) The resulting code has slightly
fewer codewords, so has a slightly
lower rate, and its maximal
probability of error is greatly
reduced.

2. Since the average probability of error over all codes is < 2δ, there must
exist a code with mean probability of block error pB(C) < 2δ.

3. To show that not only the average but also the maximal probability of
error, pBM, can be made small, we modify this code by throwing away
the worst half of the codewords – the ones most likely to produce errors.
Those that remain must all have conditional probability of error less
than 4δ. We use these remaining codewords to define a new code. This
new code has 2NR′−1 codewords, i.e., we have reduced the rate from R′

to R′−1/N (a negligible reduction, if N is large), and achieved pBM < 4δ.
This trick is called expurgation (figure 10.5). The resulting code may
not be the best code of its rate and length, but it is still good enough to
prove the noisy-channel coding theorem, which is what we are trying to
do here.

In conclusion, we can ‘construct’ a code of rate R′ − 1/N, where R′ < C − 3β,
with maximal probability of error < 4δ. We obtain the theorem as stated by
setting R′ = (R + C)/2, δ = ϵ/4, β < (C − R′)/3, and N sufficiently large for
the remaining conditions to hold. The theorem’s first part is thus proved. ✷

10.4 Communication (with errors) above capacity

✲

✻

C
R

pb

achievable

Figure 10.6. Portion of the R, pb

plane proved achievable in the
first part of the theorem. [We’ve
proved that the maximal
probability of block error pBM can
be made arbitrarily small, so the
same goes for the bit error
probability pb, which must be
smaller than pBM.]

We have proved, for any discrete memoryless channel, the achievability of a
portion of the R, pb plane shown in figure 10.6. We have shown that we can
turn any noisy channel into an essentially noiseless binary channel with rate
up to C bits per cycle. We now extend the right-hand boundary of the region
of achievability at non-zero error probabilities. [This is called rate-distortion
theory.]

We do this with a new trick. Since we know we can make the noisy channel
into a perfect channel with a smaller rate, it is sufficient to consider commu-
nication with errors over a noiseless channel. How fast can we communicate
over a noiseless channel, if we are allowed to make errors?

Consider a noiseless binary channel, and assume that we force communi-
cation at a rate greater than its capacity of 1 bit. For example, if we require
the sender to attempt to communicate at R=2 bits per cycle then he must
effectively throw away half of the information. What is the best way to do
this if the aim is to achieve the smallest possible probability of bit error? One
simple strategy is to communicate a fraction 1/R of the source bits, and ignore
the rest. The receiver guesses the missing fraction 1 − 1/R at random, and
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to R′−1/N (a negligible reduction, if N is large), and achieved pBM < 4δ.
This trick is called expurgation (figure 10.5). The resulting code may
not be the best code of its rate and length, but it is still good enough to
prove the noisy-channel coding theorem, which is what we are trying to
do here.

In conclusion, we can ‘construct’ a code of rate R′ − 1/N, where R′ < C − 3β,
with maximal probability of error < 4δ. We obtain the theorem as stated by
setting R′ = (R + C)/2, δ = ϵ/4, β < (C − R′)/3, and N sufficiently large for
the remaining conditions to hold. The theorem’s first part is thus proved. ✷

10.4 Communication (with errors) above capacity
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Figure 10.6. Portion of the R, pb

plane proved achievable in the
first part of the theorem. [We’ve
proved that the maximal
probability of block error pBM can
be made arbitrarily small, so the
same goes for the bit error
probability pb, which must be
smaller than pBM.]

We have proved, for any discrete memoryless channel, the achievability of a
portion of the R, pb plane shown in figure 10.6. We have shown that we can
turn any noisy channel into an essentially noiseless binary channel with rate
up to C bits per cycle. We now extend the right-hand boundary of the region
of achievability at non-zero error probabilities. [This is called rate-distortion
theory.]

We do this with a new trick. Since we know we can make the noisy channel
into a perfect channel with a smaller rate, it is sufficient to consider commu-
nication with errors over a noiseless channel. How fast can we communicate
over a noiseless channel, if we are allowed to make errors?

Consider a noiseless binary channel, and assume that we force communi-
cation at a rate greater than its capacity of 1 bit. For example, if we require
the sender to attempt to communicate at R=2 bits per cycle then he must
effectively throw away half of the information. What is the best way to do
this if the aim is to achieve the smallest possible probability of bit error? One
simple strategy is to communicate a fraction 1/R of the source bits, and ignore
the rest. The receiver guesses the missing fraction 1 − 1/R at random, and
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(a) A random code . . . (b) expurgated

Figure 10.5. How expurgation
works. (a) In a typical random
code, a small fraction of the
codewords are involved in
collisions – pairs of codewords are
sufficiently close to each other
that the probability of error when
either codeword is transmitted is
not tiny. We obtain a new code
from a random code by deleting
all these confusable codewords.
(b) The resulting code has slightly
fewer codewords, so has a slightly
lower rate, and its maximal
probability of error is greatly
reduced.
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Figure 10.2. The jointly-typical
set. The horizontal direction
represents AN

X , the set of all input
strings of length N . The vertical
direction represents AN

Y , the set of
all output strings of length N .
The outer box contains all
conceivable input–output pairs.
Each dot represents a
jointly-typical pair of sequences
(x,y). The total number of
jointly-typical sequences is about
2NH(X,Y ).

10.3 Proof of the noisy-channel coding theorem

Analogy

Imagine that we wish to prove that there is a baby in a class of one hundred
babies who weighs less than 10 kg. Individual babies are difficult to catch and
weigh. Shannon’s method of solving the task is to scoop up all the babies

Figure 10.3. Shannon’s method for
proving one baby weighs less than
10 kg.

and weigh them all at once on a big weighing machine. If we find that their
average weight is smaller than 10 kg, there must exist at least one baby who
weighs less than 10 kg – indeed there must be many! Shannon’s method isn’t
guaranteed to reveal the existence of an underweight child, since it relies on
there being a tiny number of elephants in the class. But if we use his method
and get a total weight smaller than 1000 kg then our task is solved.

From skinny children to fantastic codes

We wish to show that there exists a code and a decoder having small prob-
ability of error. Evaluating the probability of error of any particular coding
and decoding system is not easy. Shannon’s innovation was this: instead of
constructing a good coding and decoding system and evaluating its error prob-
ability, Shannon calculated the average probability of block error of all codes,
and proved that this average is small. There must then exist individual codes
that have small probability of block error.

Random coding and typical-set decoding

Consider the following encoding–decoding system, whose rate is R ′.

1. We fix P (x) and generate the S = 2NR′ codewords of a (N,NR′) =
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