Example: Letter Frequencies

i	a_{i}	p_{i}	
1	a	0.0575	a
2	b	0.0128	b
3	c	0.0263	c
4	d	0.0285	d
5	e	0.0913	e
6	f	0.0173	f
7	g	0.0133	g
8	h	0.0313	h
9	i	0.0599	i
10	j	0.0006	j
11	k	0.0084	k
12	1	0.0335	1
13	m	0.0235	m
14	n	0.0596	n
15	\bigcirc	0.0689	\bigcirc
16	p	0.0192	p
17	q	0.0008	q
18	r	0.0508	r
19	s	0.0567	S
20	t	0.0706	t
21	u	0.0334	u
22	v	0.0069	v
23	W	0.0119	W
24	x	0.0073	x
25	y	0.0164	y
26	z	0.0007	z
27	-	0.1928	-

Figure 2.1. Probability
distribution over the 27 outcomes for a randomly selected letter in an English language document (estimated from The Frequently Asked Questions Manual for Linux). The picture shows the probabilities by the areas of white squares.

Example: Surprisal Values

from http://www.umsl.edu/~fraundorfp/egsurpri.html

situation	probability $p=1 / 2^{\text {\#\#dits }}$	surprisal \#bits $=\ln _{2}[1 / \mathrm{p}]$
one equals one	1	0 bits
wrong guess on a 4-choice question	3/4	$\ln _{2}[4 / 3] \sim 0.415$ bits
correct guess on true-false question	1/2	$\mathrm{ln}_{2}[2]=1 \mathrm{bit}$
correct guess on a 4-choice question	1/4	$\mathrm{ln}_{2}[4]=2$ bits
seven on a pair of dice	$6 / 6^{2}=1 / 6$	$\ln 2[6] \sim 2.58$ bits
snake-eyes on a pair of dice	$1 / 6^{2}=1 / 36$	$\mathrm{In}_{2}[36] \sim 5.17$ bits
random character from the 8-bit ASCII set	1/256	$\ln 2\left[2^{8}\right]=8$ bits $=1$ byte
N heads on a toss of N coins	$1 / 2^{\mathrm{N}}$	$\ln _{2}\left[2^{N}\right]=N$ bits
harm from a smallpox vaccination	$\sim 1 / 1,000,000$	$\sim \ln _{2}\left[10^{6}\right] \sim 19.9$ bits
win the UK Jackpot lottery	1/13,983,816	~ 23.6 bits
RGB monitor choice of one pixel's color	$1 / 256^{3} \sim 5.9 \times 10^{-8}$	$\ln _{2}\left[2^{8 * 3}\right]=24$ bits
gamma ray burst mass extinction event TODAY!	$<1 /\left(10^{9 * 365) ~} \sim 2.7 \times 10^{-12}\right.$	hopefully > 38 bits
availability to reset 1 gigabyte of random access memory	$1 / 2^{8 \mathrm{E} 9} \sim 10^{-2.4 \mathrm{E} 9}$	8×10^{9} bits $\sim 7.6 \times 10^{-14} \mathrm{~J} / \mathrm{K}$
choices for 6×10^{23} Argon atoms in a 24.2 L box at 295 K	$\sim 1 / 2^{1.61 \mathrm{E} 25} \sim 10^{-4.8 \mathrm{E} 24}$	$\sim 1.61 \times 10^{25}$ bits $\sim 155 \mathrm{~J} / \mathrm{K}$
one equals two	0	∞ bits

i	a_{i}	p_{i}	$h\left(p_{i}\right)$
1	a	.0575	4.1
2	b	.0128	6.3
3	c	.0263	5.2
4	d	.0285	5.1
5	e	.0913	3.5
6	f	.0173	5.9
7	g	.0133	6.2
8	h	.0313	5.0
9	i	.0599	4.1
10	j	.0006	10.7
11	k	.0084	6.9
12	l	.0335	4.9
13	m	.0235	5.4
14	n	.0596	4.1
15	o	.0689	3.9
16	p	.0192	5.7
17	q	.0008	10.3
18	r	.0508	4.3
19	s	.0567	4.1
20	t	.0706	3.8
21	u	.0334	4.9
22	v	.0069	7.2
23	w	.0119	6.4
24	x	.0073	7.1
25	y	.0164	5.9
26	z	.0007	10.4
27	-	.1928	2.4
\sum	p_{i}	$\log _{2} \frac{1}{1}$	4.1
${ }_{i}$			

Table 2.9. Shannon information contents of the outcomes a-z.

Book by David MacKay

MacKay's Mnemonic

convex convec-smile

concave
conca-frown

Examples: Convex \& Concave Functions

Jensen's Inequality

Definition 1 The function $f: \mathcal{D} \rightarrow \mathbb{R}$ is convex if for all $x_{1}, x_{2} \in \mathcal{D}$ and for all $\lambda \in[0,1] \subset \mathbb{R}$:

$$
\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \geq f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) .
$$

The function f is strictly convex if equality only holds when $\lambda=0$ or $\lambda=1$, or when $x_{1}=x_{2}$. The function f is (strictly) concave if the function $-f$ is (strictly) convex.

Proposition 2 (Jensen's inequality) Let the function $f: \mathcal{D} \rightarrow \mathbb{R}$ be convex, and let $n \in \mathbb{N}$. Then for any $p_{1}, \ldots, p_{n} \in \mathbb{R}_{\geq 0}$ such that $\sum_{i=1}^{n} p_{i}=1$ and for any $x_{1}, \ldots, x_{n} \in \mathcal{D}$ it holds that

$$
\sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \geq f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) .
$$

If f is strictly convex and $p_{1}, \ldots, p_{n}>0$, then equality holds iff $x_{1}=\cdots=x_{n}$.
In particular, if X is a real random variable whose image \mathcal{X} is contained in \mathcal{D}, then

$$
E[f(X)] \geq f(E[X])
$$

and, if f is strictly convex, equality holds iff there is $c \in \mathcal{X}$ such that $X=c$ with probability 1.

Binary Entropy Function

Figure 1.3. The binary entropy function.

Decomposability of Entropy

$$
\begin{equation*}
H(\mathbf{p})=H\left(p_{1}, 1-p_{1}\right)+\left(1-p_{1}\right) H\left(\frac{p_{2}}{1-p_{1}}, \frac{p_{3}}{1-p_{1}}, \ldots, \frac{p_{I}}{1-p_{1}}\right) \tag{2.43}
\end{equation*}
$$

When it's written as a formula, this property looks regrettably ugly; nevertheless it is a simple property and one that you should make use of.

Generalizing further, the entropy has the property for any m that

$$
\begin{align*}
H(\mathbf{p})= & H\left[\left(p_{1}+p_{2}+\cdots+p_{m}\right),\left(p_{m+1}+p_{m+2}+\cdots+p_{I}\right)\right] \\
& +\left(p_{1}+\cdots+p_{m}\right) H\left(\frac{p_{1}}{\left(p_{1}+\cdots+p_{m}\right)}, \ldots, \frac{p_{m}}{\left(p_{1}+\cdots+p_{m}\right)}\right) \\
& +\left(p_{m+1}+\cdots+p_{I}\right) H\left(\frac{p_{m+1}}{\left(p_{m+1}+\cdots+p_{I}\right)}, \cdots, \frac{p_{I}}{\left(p_{m+1}+\cdots+p_{I}\right)}\right) . \tag{2.44}
\end{align*}
$$

Order These in Terms of Entropy

ECE 534 by Natasha Devroye

Order These in Terms of Entropy

ECE 534 by Natasha Devroye

Mutual Information and Entropy

Theorem: Relationship between mutual information and entropy.

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y) \\
I(X ; Y) & =H(Y)-H(Y \mid X) \\
I(X ; Y) & =H(X)+H(Y)-H(X, Y) \\
I(X ; Y) & =I(Y ; X) \quad \text { (symmetry) } \\
I(X ; X) & =H(X) \quad \text { ("self-information") }
\end{aligned}
$$

ECE 534 by Natasha Devroye

Chain Rule for Entropy

Theorem: (Chain rule for entropy): $\left(X_{1}, X_{2}, \ldots, X_{n}\right) \sim p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

$$
H\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)
$$

ECE 534 by Natasha Devroye

Chain Rule for Mutual Information

Theorem: (Chain rule for mutual information)

$$
I\left(X_{1}, X_{2}, \ldots, X_{n} ; Y\right)=\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X_{i-1}, X_{i-2}, \ldots, X_{1}\right)
$$

ECE 534 by Natasha Devroye

What are the Grey Regions?

ECE 534 by Natasha Devroye

