Example: Letter Frequencies

Figure 2.1. Probability distribution over the 27 outcomes for a randomly selected letter in an English language document (estimated from *The Frequently Asked Questions Manual for Linux*). The picture shows the probabilities by the areas of white squares.

Example: Surprisal Values

from http://www.umsl.edu/~fraundorfp/egsurpri.html

situation	probability p = 1/2#bits	surprisal #bits = In ₂ [1/p]
one equals one	1	0 bits
wrong guess on a 4-choice question	3/4	In ₂ [4/3] ~0.415 bits
correct guess on true-false question	1/2	In ₂ [2] =1 bit
correct guess on a 4-choice question	1/4	In ₂ [4] =2 bits
seven on a pair of dice	6/6 ² =1/6	In ₂ [6] ~2.58 bits
snake-eyes on a pair of dice	1/6 ² =1/36	In ₂ [36] ~5.17 bits
random character from the 8-bit ASCII set	1/256	In ₂ [2 ⁸] =8 bits =1 byte
N heads on a toss of N coins	1/2 ^N	In ₂ [2 ^N] =N bits
harm from a smallpox vaccination	~1/1,000,000	~ln ₂ [10 ⁶] ~19.9 bits
win the UK Jackpot lottery	1/13,983,816	~23.6 bits
RGB monitor choice of one pixel's color	1/256 ³ ~5.9×10 ⁻⁸	In ₂ [2 ^{8*3}] =24 bits
gamma ray burst mass extinction event TODAY!	<1/(10 ⁹ *365) ~2.7×10 ⁻¹²	hopefully >38 bits
availability to reset 1 gigabyte of random access memory	1/2 ^{8E9} ~10 ^{-2.4E9}	8×10 ⁹ bits ~7.6×10 ⁻¹⁴ J/K
choices for 6×10 ²³ Argon atoms in a 24.2L box at 295K	~1/2 ^{1.61E25} ~10 ^{-4.8E24}	~1.61×10 ²⁵ bits ~155 J/K
one equals two	0	∞ bits

i	a_i	p_{i}	$h(p_i)$
1	a	.0575	4.1
2	b	.0128	6.3
3	С	.0263	5.2
4	d	.0285	5.1
5	е	.0913	3.5
6	f	.0173	5.9
7	g	.0133	6.2
8	h	.0313	5.0
9	i	.0599	4.1
10	j	.0006	10.7
11	k	.0084	6.9
12	1	.0335	4.9
13	m	.0235	5.4
14	n	.0596	4.1
15	0	.0689	3.9
16	р	.0192	5.7
17	q	.0008	10.3
18	r	.0508	4.3
19	S	.0567	4.1
20	t	.0706	3.8
21	u	.0334	4.9
22	V	.0069	7.2
23	W	.0119	6.4
24	X	.0073	7.1
25	У	.0164	5.9
26	Z	.0007	10.4
27	-	.1928	2.4
$\sum_{i} p_i \log_2 \frac{1}{p_i} \qquad 4.1$			

Table 2.9. Shannon information contents of the outcomes a-z.

Book by David MacKay

MacKay's Mnemonic

convex convec-smile

concave conca-frown

Examples: Convex & Concave Functions

Jensen's Inequality

Definition 1 The function $f: \mathcal{D} \to \mathbb{R}$ is convex if for all $x_1, x_2 \in \mathcal{D}$ and for all $\lambda \in [0, 1] \subset \mathbb{R}$:

$$\lambda f(x_1) + (1 - \lambda)f(x_2) \ge f(\lambda x_1 + (1 - \lambda)x_2).$$

The function f is strictly convex if equality only holds when $\lambda = 0$ or $\lambda = 1$, or when $x_1 = x_2$. The function f is (strictly) concave if the function -f is (strictly) convex.

Proposition 2 (Jensen's inequality) Let the function $f: \mathcal{D} \to \mathbb{R}$ be convex, and let $n \in \mathbb{N}$. Then for any $p_1, \ldots, p_n \in \mathbb{R}_{\geq 0}$ such that $\sum_{i=1}^n p_i = 1$ and for any $x_1, \ldots, x_n \in \mathcal{D}$ it holds that

$$\sum_{i=1}^{n} p_i f(x_i) \ge f\left(\sum_{i=1}^{n} p_i x_i\right).$$

If f is strictly convex and $p_1, \ldots, p_n > 0$, then equality holds iff $x_1 = \cdots = x_n$. In particular, if X is a real random variable whose image \mathcal{X} is contained in \mathcal{D} , then

$$E[f(X)] \ge f(E[X]),$$

and, if f is strictly convex, equality holds iff there is $c \in \mathcal{X}$ such that X = c with probability 1.

Binary Entropy Function

Figure 1.3. The binary entropy function.

Decomposability of Entropy

$$H(\mathbf{p}) = H(p_1, 1-p_1) + (1-p_1)H\left(\frac{p_2}{1-p_1}, \frac{p_3}{1-p_1}, \dots, \frac{p_I}{1-p_1}\right). \tag{2.43}$$

When it's written as a formula, this property looks regrettably ugly; nevertheless it is a simple property and one that you should make use of.

Generalizing further, the entropy has the property for any m that

$$H(\mathbf{p}) = H\left[(p_1 + p_2 + \dots + p_m), (p_{m+1} + p_{m+2} + \dots + p_I) \right]$$

$$+ (p_1 + \dots + p_m) H\left(\frac{p_1}{(p_1 + \dots + p_m)}, \dots, \frac{p_m}{(p_1 + \dots + p_m)} \right)$$

$$+ (p_{m+1} + \dots + p_I) H\left(\frac{p_{m+1}}{(p_{m+1} + \dots + p_I)}, \dots, \frac{p_I}{(p_{m+1} + \dots + p_I)} \right).$$

$$(2.44)$$

Order These in Terms of Entropy

Order these in terms of entropy Order These in Terms of Entropy

Multiplication matient and $\operatorname{Entropy}_{p_{p(x,y)}}^{-\sum_{x\in\mathcal{X}}\sum_{y\in\mathcal{Y}}^{p(x,y)\log_2}} \operatorname{Log}_{p(X)}^{-\sum_{x\in\mathcal{X}}\sum_{y\in\mathcal{Y}}^{p(x,y)\log_2}} \operatorname{Log}_{p(X)}^{-\sum_{x\in\mathcal{X}}\sum_{y\in\mathcal{Y}}^{p(x,y)\log_2}} \operatorname{Log}_{p(X)}^{-\sum_{x\in\mathcal{X}}\sum_{y\in\mathcal{Y}}^{p(x,y)\log_2}} \operatorname{Log}_{p(X)}^{-\sum_{x\in\mathcal{X}}\sum_{y\in\mathcal{Y}}^{p(x,y)\log_2}} \operatorname{Log}_{p(X)}^{-\sum_{x\in\mathcal{X}}\sum_{y\in\mathcal{Y}}^{p(x,y)\log_2}} \operatorname{Log}_{p(X)}^{-\sum_{x\in\mathcal{X}}\sum_{y\in\mathcal{Y}}^{p(x,y)\log_2}} \operatorname{Log}_{p(X)}^{-\sum_{x\in\mathcal{X}}\sum_{y\in\mathcal{Y}}^{p(x,y)\log_2}} \operatorname{Log}_{p(X)}^{-\sum_{x\in\mathcal{X}}\sum_{y\in\mathcal{Y}}^{p(x,y)\log_2}} \operatorname{Log}_{p(X)}^{-\sum_{x\in\mathcal{X}}\sum_{y\in\mathcal{Y}}^{p(x,y)}} \operatorname{Log}_{p(X)}^{-\sum_{x\in\mathcal{X}}\sum_{x\in\mathcal{X}}^{p(x,y)}} \operatorname{Log}$

Theorem: Relationship between mutual information and entropy.

$$I(X;Y) = H(X) - H(X|Y)$$

 $I(X;Y) = H(Y) - H(Y|X)$
 $I(X;Y) = H(X) + H(Y) - H(X,Y)$
 $I(X;Y) = I(Y;X)$ (symmetry)
 $I(X;X) = H(X)$ ("self-information")

Chain rule for entropy Chain Rule for Entropy

Theorem: (Chain rule for entropy): $(X_1, X_2, ..., X_n) \sim p(x_1, x_2, ..., x_n)$

$$H(X_1, X_2, ..., X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, ..., X_1)$$

$$H(X_1,X_2,X_3) = H(X_1) + H(X_2|X_1) + H(X_3|X_1,X_2)$$

Chain rule for mutual information Chain Rule for Mutual Information

Theorem: (Chain rule for mutual information)

$$I(X_1, X_2, ..., X_n; Y) = \sum_{i=1}^{n} I(X_i; Y | X_{i-1}, X_{i-2}, ..., X_1)$$

What is the grey region? What are the Grey Regions?

