
Examples of Noisy Channels

• analogue telephone line over which two 
modems communicate digital information

• a teacher mumbling at the board

• radio communication link between 
“curiosity” on Mars and earth

• reproducing cells, where daughter cells 
contain DNA from the parents’ cell

• a disk drive

• …
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Discrete Channels

Def: A discrete channel is denoted by 
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4 1 — Introduction to Information Theory

transmitted message. We would prefer to have a communication channel for
which this probability was zero – or so close to zero that for practical purposes
it is indistinguishable from zero.

Let’s consider a noisy disk drive that transmits each bit correctly with
probability (1−f) and incorrectly with probability f . This model communi-
cation channel is known as the binary symmetric channel (figure 1.4).
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Figure 1.4. The binary symmetric
channel. The transmitted symbol
is x and the received symbol y.
The noise level, the probability
that a bit is flipped, is f .
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Figure 1.5. A binary data
sequence of length 10 000
transmitted over a binary
symmetric channel with noise
level f = 0.1. [Dilbert image
Copyright c⃝1997 United Feature
Syndicate, Inc., used with
permission.]

As an example, let’s imagine that f = 0.1, that is, ten per cent of the bits are
flipped (figure 1.5). A useful disk drive would flip no bits at all in its entire
lifetime. If we expect to read and write a gigabyte per day for ten years, we
require a bit error probability of the order of 10−15, or smaller. There are two
approaches to this goal.

The physical solution

The physical solution is to improve the physical characteristics of the commu-
nication channel to reduce its error probability. We could improve our disk
drive by

1. using more reliable components in its circuitry;

2. evacuating the air from the disk enclosure so as to eliminate the turbu-
lence that perturbs the reading head from the track;

3. using a larger magnetic patch to represent each bit; or

4. using higher-power signals or cooling the circuitry in order to reduce
thermal noise.

These physical modifications typically increase the cost of the communication
channel.

The ‘system’ solution

Information theory and coding theory offer an alternative (and much more ex-
citing) approach: we accept the given noisy channel as it is and add communi-
cation systems to it so that we can detect and correct the errors introduced by
the channel. As shown in figure 1.6, we add an encoder before the channel and
a decoder after it. The encoder encodes the source message s into a transmit-
ted message t, adding redundancy to the original message in some way. The
channel adds noise to the transmitted message, yielding a received message r.
The decoder uses the known redundancy introduced by the encoding system
to infer both the original signal s and the added noise.
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6 1 — Introduction to Information Theory

Received sequence r Likelihood ratio P (r | s = 1)
P (r | s = 0) Decoded sequence ŝ

000 γ−3 0
001 γ−1 0
010 γ−1 0
100 γ−1 0
101 γ1 1
110 γ1 1
011 γ1 1
111 γ3 1

Algorithm 1.9. Majority-vote
decoding algorithm for R3. Also
shown are the likelihood ratios
(1.23), assuming the channel is a
binary symmetric channel;
γ ≡ (1 − f)/f .

At the risk of explaining the obvious, let’s prove this result. The optimal
decoding decision (optimal in the sense of having the smallest probability of
being wrong) is to find which value of s is most probable, given r. Consider
the decoding of a single bit s, which was encoded as t(s) and gave rise to three
received bits r = r1r2r3. By Bayes’ theorem, the posterior probability of s is

P (s | r1r2r3) =
P (r1r2r3 | s)P (s)

P (r1r2r3)
. (1.18)

We can spell out the posterior probability of the two alternatives thus:

P (s = 1 | r1r2r3) =
P (r1r2r3 | s = 1)P (s = 1)

P (r1r2r3)
; (1.19)

P (s = 0 | r1r2r3) =
P (r1r2r3 | s = 0)P (s = 0)

P (r1r2r3)
. (1.20)

This posterior probability is determined by two factors: the prior probability
P (s), and the data-dependent term P (r1r2r3 | s), which is called the likelihood
of s. The normalizing constant P (r1r2r3) needn’t be computed when finding the
optimal decoding decision, which is to guess ŝ = 0 if P (s = 0 | r) > P (s = 1 | r),
and ŝ= 1 otherwise.

To find P (s = 0 | r) and P (s = 1 | r), we must make an assumption about the
prior probabilities of the two hypotheses s = 0 and s = 1, and we must make an
assumption about the probability of r given s. We assume that the prior prob-
abilities are equal: P (s = 0) = P (s = 1) = 0.5; then maximizing the posterior
probability P (s | r) is equivalent to maximizing the likelihood P (r | s). And we
assume that the channel is a binary symmetric channel with noise level f < 0.5,
so that the likelihood is

P (r | s) = P (r | t(s)) =
N∏

n=1

P (rn | tn(s)), (1.21)

where N = 3 is the number of transmitted bits in the block we are considering,
and

P (rn | tn) =
{

(1−f) if rn = tn
f if rn ̸= tn.

(1.22)

Thus the likelihood ratio for the two hypotheses is

P (r | s = 1)
P (r | s = 0)

=
N∏

n=1

P (rn | tn(1))
P (rn | tn(0))

; (1.23)

each factor P (rn|tn(1))
P (rn|tn(0)) equals (1−f)

f if rn = 1 and f
(1−f) if rn = 0. The ratio

γ ≡ (1−f)
f is greater than 1, since f < 0.5, so the winning hypothesis is the

one with the most ‘votes’, each vote counting for a factor of γ in the likelihood
ratio.
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1.2: Error-correcting codes for the binary symmetric channel 7

Thus the majority-vote decoder shown in algorithm 1.9 is the optimal decoder
if we assume that the channel is a binary symmetric channel and that the two
possible source messages 0 and 1 have equal prior probability.

We now apply the majority vote decoder to the received vector of figure 1.8.
The first three received bits are all 0, so we decode this triplet as a 0. In the
second triplet of figure 1.8, there are two 0s and one 1, so we decode this triplet
as a 0 – which in this case corrects the error. Not all errors are corrected,
however. If we are unlucky and two errors fall in a single block, as in the fifth
triplet of figure 1.8, then the decoding rule gets the wrong answer, as shown
in figure 1.10.

s 0 0 1 0 1 1 0

t
︷︸︸︷
0 0 0

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1
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0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
1 1 1
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0 0 0

n 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
r 0 0 0︸︷︷︸ 0 0 1︸︷︷︸ 1 1 1︸︷︷︸ 0 0 0︸︷︷︸ 0 1 0︸︷︷︸ 1 1 1︸︷︷︸ 0 0 0︸︷︷︸
ŝ 0 0 1 0 0 1 0

corrected errors ⋆
undetected errors ⋆

Figure 1.10. Decoding the received
vector from figure 1.8.

Exercise 1.2.[2, p.16] Show that the error probability is reduced by the use of The exercise’s rating, e.g.‘[2 ]’,
indicates its difficulty: ‘1’
exercises are the easiest. Exercises
that are accompanied by a
marginal rat are especially
recommended. If a solution or
partial solution is provided, the
page is indicated after the
difficulty rating; for example, this
exercise’s solution is on page 16.

R3 by computing the error probability of this code for a binary symmetric
channel with noise level f .

The error probability is dominated by the probability that two bits in
a block of three are flipped, which scales as f 2. In the case of the binary
symmetric channel with f = 0.1, the R3 code has a probability of error, after
decoding, of pb ≃ 0.03 per bit. Figure 1.11 shows the result of transmitting a
binary image over a binary symmetric channel using the repetition code.

s

✲

encoder t channel

f = 10%

✲

r decoder

✲

ŝ

Figure 1.11. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a repetition code and the
majority vote decoding algorithm.
The probability of decoded bit
error has fallen to about 3%; the
rate has fallen to 1/3.
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Noisy-Channel Coding

Def: A (M,n)-code for the channel                      
consists of
1. message set: 
2. encoding function:  
  codebook:

3. deterministic decoding function assigning a guess to 
  each possible received vector

The rate of a (M,n)-code denotes 
the transmitted bits per channel use

Encoder Decoder
m̃

noisy 
channel
PY |X

m 2 [M ]

(X , PY |X ,Y)

[M ] = {1, 2, . . . ,M}
e : [M ] ! Xn

{e(1), e(2), . . . , e(M)}

d : Yn ! [M ]

R :=

logM

n

x 2 Xn
y 2 Yn

e : [M ] ! Xn d : Yn ! [M ]
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Figure 1.12. Error probability pb

versus rate for repetition codes
over a binary symmetric channel
with f = 0.1. The right-hand
figure shows pb on a logarithmic
scale. We would like the rate to
be large and pb to be small.

The repetition code R3 has therefore reduced the probability of error, as
desired. Yet we have lost something: our rate of information transfer has
fallen by a factor of three. So if we use a repetition code to communicate data
over a telephone line, it will reduce the error frequency, but it will also reduce
our communication rate. We will have to pay three times as much for each
phone call. Similarly, we would need three of the original noisy gigabyte disk
drives in order to create a one-gigabyte disk drive with pb = 0.03.

Can we push the error probability lower, to the values required for a sell-
able disk drive – 10−15? We could achieve lower error probabilities by using
repetition codes with more repetitions.

Exercise 1.3.[3, p.16] (a) Show that the probability of error of RN , the repe-
tition code with N repetitions, is

pb =
N∑

n=(N+1)/2

(
N

n

)
fn(1 − f)N−n, (1.24)

for odd N .

(b) Assuming f = 0.1, which of the terms in this sum is the biggest?
How much bigger is it than the second-biggest term?

(c) Use Stirling’s approximation (p.2) to approximate the
(N

n

)
in the

largest term, and find, approximately, the probability of error of
the repetition code with N repetitions.

(d) Assuming f = 0.1, find how many repetitions are required to get
the probability of error down to 10−15. [Answer: about 60.]

So to build a single gigabyte disk drive with the required reliability from noisy
gigabyte drives with f = 0.1, we would need sixty of the noisy disk drives.
The tradeoff between error probability and rate for repetition codes is shown
in figure 1.12.

Block codes – the (7, 4) Hamming code

We would like to communicate with tiny probability of error and at a substan-
tial rate. Can we improve on repetition codes? What if we add redundancy to
blocks of data instead of encoding one bit at a time? We now study a simple
block code.
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1.2: Error-correcting codes for the binary symmetric channel 9

A block code is a rule for converting a sequence of source bits s, of length
K, say, into a transmitted sequence t of length N bits. To add redundancy,
we make N greater than K. In a linear block code, the extra N − K bits are
linear functions of the original K bits; these extra bits are called parity-check
bits. An example of a linear block code is the (7, 4) Hamming code, which
transmits N = 7 bits for every K = 4 source bits.

(a)

s
ss

t t

t

7 6

5

4s

3
21

(b)

1 0
0

0

1

01

Figure 1.13. Pictorial
representation of encoding for the
(7, 4) Hamming code.

The encoding operation for the code is shown pictorially in figure 1.13. We
arrange the seven transmitted bits in three intersecting circles. The first four
transmitted bits, t1t2t3t4, are set equal to the four source bits, s1s2s3s4. The
parity-check bits t5t6t7 are set so that the parity within each circle is even:
the first parity-check bit is the parity of the first three source bits (that is, it
is 0 if the sum of those bits is even, and 1 if the sum is odd); the second is
the parity of the last three; and the third parity bit is the parity of source bits
one, three and four.

As an example, figure 1.13b shows the transmitted codeword for the case
s = 1000. Table 1.14 shows the codewords generated by each of the 24 =
sixteen settings of the four source bits. These codewords have the special
property that any pair differ from each other in at least three bits.

s t

0000 0000000
0001 0001011
0010 0010111
0011 0011100

s t

0100 0100110
0101 0101101
0110 0110001
0111 0111010

s t

1000 1000101
1001 1001110
1010 1010010
1011 1011001

s t

1100 1100011
1101 1101000
1110 1110100
1111 1111111

Table 1.14. The sixteen codewords
{t} of the (7, 4) Hamming code.
Any pair of codewords differ from
each other in at least three bits.

Because the Hamming code is a linear code, it can be written compactly in
terms of matrices as follows. The transmitted codeword t is obtained from the
source sequence s by a linear operation,

t = GTs, (1.25)

where G is the generator matrix of the code,

GT =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
0 1 1 1
1 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1.26)

and the encoding operation (1.25) uses modulo-2 arithmetic (1+1 = 0, 0+1 =
1, etc.).

In the encoding operation (1.25) I have assumed that s and t are column vectors.
If instead they are row vectors, then this equation is replaced by

t = sG, (1.27)
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1.2: Error-correcting codes for the binary symmetric channel 9
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ŝ

Figure 1.17. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a (7, 4) Hamming code. The
probability of decoded bit error is
about 7%.

given by reading out its first four bits. If the syndrome is non-zero, then the
noise sequence for this block was non-zero, and the syndrome is our pointer to
the most probable error pattern.

The computation of the syndrome vector is a linear operation. If we define the
3× 4 matrix P such that the matrix of equation (1.26) is

GT =
[

I4

P

]
, (1.29)

where I4 is the 4 × 4 identity matrix, then the syndrome vector is z = Hr,
where the parity-check matrix H is given by H =

[
−P I3

]
; in modulo 2

arithmetic, −1 ≡ 1, so

H =
[

P I3

]
=

⎡

⎣
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1

⎤

⎦ . (1.30)

All the codewords t = GTs of the code satisfy

Ht =

⎡

⎣
0
0
0

⎤

⎦ . (1.31)

◃ Exercise 1.4.[1 ] Prove that this is so by evaluating the 3× 4 matrix HGT.

Since the received vector r is given by r = GTs + n, the syndrome-decoding
problem is to find the most probable noise vector n satisfying the equation

Hn = z. (1.32)

A decoding algorithm that solves this problem is called a maximum-likelihood
decoder. We will discuss decoding problems like this in later chapters.

Summary of the (7, 4) Hamming code’s properties

Every possible received vector of length 7 bits is either a codeword, or it’s one
flip away from a codeword.

Since there are three parity constraints, each of which might or might not
be violated, there are 2 × 2 × 2 = 8 distinct syndromes. They can be divided
into seven non-zero syndromes – one for each of the one-bit error patterns –
and the all-zero syndrome, corresponding to the zero-noise case.

The optimal decoder takes no action if the syndrome is zero, otherwise it
uses this mapping of non-zero syndromes onto one-bit error patterns to unflip
the suspect bit.
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Figure 1.18. Error probability pb

versus rate R for repetition codes,
the (7, 4) Hamming code and
BCH codes with blocklengths up
to 1023 over a binary symmetric
channel with f = 0.1. The
righthand figure shows pb on a
logarithmic scale.

Exercise 1.9.[4, p.19] Design an error-correcting code and a decoding algorithm
for it, estimate its probability of error, and add it to figure 1.18. [Don’t
worry if you find it difficult to make a code better than the Hamming
code, or if you find it difficult to find a good decoder for your code; that’s
the point of this exercise.]

Exercise 1.10.[3, p.20] A (7, 4) Hamming code can correct any one error; might
there be a (14, 8) code that can correct any two errors?
Optional extra: Does the answer to this question depend on whether the
code is linear or nonlinear?

Exercise 1.11.[4, p.21] Design an error-correcting code, other than a repetition
code, that can correct any two errors in a block of size N .

1.3 What performance can the best codes achieve?

There seems to be a trade-off between the decoded bit-error probability pb

(which we would like to reduce) and the rate R (which we would like to keep
large). How can this trade-off be characterized? What points in the (R, pb)
plane are achievable? This question was addressed by Claude Shannon in his
pioneering paper of 1948, in which he both created the field of information
theory and solved most of its fundamental problems.

At that time there was a widespread belief that the boundary between
achievable and nonachievable points in the (R, pb) plane was a curve passing
through the origin (R, pb) = (0, 0); if this were so, then, in order to achieve
a vanishingly small error probability pb, one would have to reduce the rate
correspondingly close to zero. ‘No pain, no gain.’

However, Shannon proved the remarkable result that the boundary be- ∗
tween achievable and nonachievable points meets the R axis at a non-zero
value R = C, as shown in figure 1.19. For any channel, there exist codes that
make it possible to communicate with arbitrarily small probability of error pb

at non-zero rates. The first half of this book (Parts I–III) will be devoted to
understanding this remarkable result, which is called the noisy-channel coding
theorem.

Example: f = 0.1

The maximum rate at which communication is possible with arbitrarily small
pb is called the capacity of the channel. The formula for the capacity of a
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Figure 1.19. Shannon’s
noisy-channel coding theorem.
The solid curve shows the
Shannon limit on achievable
values of (R, pb) for the binary
symmetric channel with f = 0.1.
Rates up to R = C are achievable
with arbitrarily small pb. The
points show the performance of
some textbook codes, as in
figure 1.18.

The equation defining the
Shannon limit (the solid curve) is
R = C/(1−H2(pb)), where C and
H2 are defined in equation (1.35).

binary symmetric channel with noise level f is

C(f) = 1 − H2(f) = 1 −
[
f log2

1
f

+ (1 − f) log2
1

1 − f

]
; (1.35)

the channel we were discussing earlier with noise level f = 0.1 has capacity
C ≃ 0.53. Let us consider what this means in terms of noisy disk drives. The
repetition code R3 could communicate over this channel with pb = 0.03 at a
rate R = 1/3. Thus we know how to build a single gigabyte disk drive with
pb = 0.03 from three noisy gigabyte disk drives. We also know how to make a
single gigabyte disk drive with pb ≃ 10−15 from sixty noisy one-gigabyte drives
(exercise 1.3, p.8). And now Shannon passes by, notices us juggling with disk
drives and codes and says:

‘What performance are you trying to achieve? 10−15? You don’t
need sixty disk drives – you can get that performance with just
two disk drives (since 1/2 is less than 0.53). And if you want
pb = 10−18 or 10−24 or anything, you can get there with two disk
drives too!’

[Strictly, the above statements might not be quite right, since, as we shall see,
Shannon proved his noisy-channel coding theorem by studying sequences of
block codes with ever-increasing blocklengths, and the required blocklength
might be bigger than a gigabyte (the size of our disk drive), in which case,
Shannon might say ‘well, you can’t do it with those tiny disk drives, but if you
had two noisy terabyte drives, you could make a single high-quality terabyte
drive from them’.]

1.4 Summary

The (7, 4) Hamming Code

By including three parity-check bits in a block of 7 bits it is possible to detect
and correct any single bit error in each block.

Shannon’s noisy-channel coding theorem

Information can be communicated over a noisy channel at a non-zero rate with
arbitrarily small error probability.
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C ≃ 0.53. Let us consider what this means in terms of noisy disk drives. The
repetition code R3 could communicate over this channel with pb = 0.03 at a
rate R = 1/3. Thus we know how to build a single gigabyte disk drive with
pb = 0.03 from three noisy gigabyte disk drives. We also know how to make a
single gigabyte disk drive with pb ≃ 10−15 from sixty noisy one-gigabyte drives
(exercise 1.3, p.8). And now Shannon passes by, notices us juggling with disk
drives and codes and says:

‘What performance are you trying to achieve? 10−15? You don’t
need sixty disk drives – you can get that performance with just
two disk drives (since 1/2 is less than 0.53). And if you want
pb = 10−18 or 10−24 or anything, you can get there with two disk
drives too!’

[Strictly, the above statements might not be quite right, since, as we shall see,
Shannon proved his noisy-channel coding theorem by studying sequences of
block codes with ever-increasing blocklengths, and the required blocklength
might be bigger than a gigabyte (the size of our disk drive), in which case,
Shannon might say ‘well, you can’t do it with those tiny disk drives, but if you
had two noisy terabyte drives, you could make a single high-quality terabyte
drive from them’.]

1.4 Summary

The (7, 4) Hamming Code

By including three parity-check bits in a block of 7 bits it is possible to detect
and correct any single bit error in each block.

Shannon’s noisy-channel coding theorem

Information can be communicated over a noisy channel at a non-zero rate with
arbitrarily small error probability.
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Figure 1.19. Shannon’s
noisy-channel coding theorem.
The solid curve shows the
Shannon limit on achievable
values of (R, pb) for the binary
symmetric channel with f = 0.1.
Rates up to R = C are achievable
with arbitrarily small pb. The
points show the performance of
some textbook codes, as in
figure 1.18.
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