The Source Coding Theorem

Mathias Winther Madsen
mathias.winther@gmail.com
Institute for Logic, Language, and Computation
University of Amsterdam

6 November 2015

The Convergence of Averages

Problem

Which of the following is more probable?

1. a sum of 4,000 in 1,000 dice rolls;
2. a sum of $4,000,000$ in $1,000,000$ dice rolls.

The Convergence of Averages

(Prelude to) The Weak Law of Large Numbers

$$
E\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=E[X], \quad \operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{\operatorname{Var}[X]}{n} .
$$

Sequence Probabilities

Problem

A source produces texts

$$
S=\left(X_{1}, X_{2}, \ldots, X_{10}\right),
$$

by sampling letters from the distribution

x	t	s	e
$P_{X}(x)$	$1 / 4$	$1 / 2$	$1 / 4$

1. What is P_{S} (stetsesses)?
2. What is the most probable sequence?

Sequence Probabilities

Sequence Probabilities

Sequence Probabilities

Sequence Probabilities

Typical Sequences

Definition

The entropy of a random variable X is

$$
H=E\left[\log \frac{1}{P_{X}(X)}\right]=-E\left[\log P_{X}(X)\right] .
$$

Definition

An ε-typical sequence is a sequence $s=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for which

$$
\left|\frac{1}{n} \log \frac{1}{P_{S}(s)}-H\right|<\varepsilon .
$$

Typical Sequences

The Law of Large Numbers

Eventually, almost all sequences are typical $\left(-\frac{1}{n} \log P_{S}(s) \approx H\right)$.
The Asymptotic Equipartition Property
Eventually, everything has the same probability $\left(P_{S}(s) \approx 2^{-n H}\right)$.

Shannon's Source Coding Theorem

Eventually, there are only $2^{H n}$ sequences worth caring about.

Typical Sequences

