The Source Coding Theorem

Mathias Winther Madsen mathias.winther@gmail.com

Institute for Logic, Language, and Computation University of Amsterdam

6 November 2015

The Convergence of Averages

Problem

Which of the following is more probable?

- 1. a sum of 4,000 in 1,000 dice rolls;
- 2. a sum of 4,000,000 in 1,000,000 dice rolls.

The Convergence of Averages

(Prelude to) The Weak Law of Large Numbers

$$E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}
ight] = E[X], \qquad Var\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}
ight] = \frac{Var[X]}{n}.$$

Problem

A source produces texts

$$S=(X_1,X_2,\ldots,X_{10}),$$

by sampling letters from the distribution

x	t	s	е
$P_X(x)$	1/4	1/2	1/4

- 1. What is $P_S(\text{stetsesses})$?
- 2. What is the most probable sequence?

Typical Sequences

Definition

The **entropy** of a random variable *X* is

$$H = E\left[\log\frac{1}{P_X(X)}\right] = -E\left[\log P_X(X)\right].$$

Definition

An ε -typical sequence is a sequence $s = (x_1, x_2, \dots, x_n)$ for which

$$\left|\frac{1}{n}\log\frac{1}{P_S(s)}-H\right| < \varepsilon.$$

Typical Sequences

The Law of Large Numbers

Eventually, almost all sequences are typical $(-\frac{1}{n}\log P_S(s) \approx H)$.

The Asymptotic Equipartition Property

Eventually, everything has the same probability $(P_S(s) \approx 2^{-nH})$.

Shannon's Source Coding Theorem

Eventually, there are only 2^{Hn} sequences worth caring about.

Typical Sequences

