
The Mathematical Theory of Information, and Applications

(Version 2.0)

Ronald Cramer∗ and Serge Fehr†

Abstract

These lecture notes introduce some basic concepts from Shannon’s information theory, such
as (conditional) Shannon entropy, mutual information, and Rényi entropy, as well as a number
of basic results involving these notions.

Subsequently, well-known bounds on perfectly secure encryption, source coding (i.e. data
compression), and reliable communication over unreliable channels are discussed. We also cover
and prove the elegant privacy amplification theorem. This provides a means to mod out the
adversary’s partial information and to distill a highly secret key. It is a key result in theoretical
cryptography, and a primary starting point for the very active subarea of unconditional security.

1 Introduction

We define several measures on the amount of randomness inherent to a random variable. Or, put in
another way, on the amount of uncertainty about the outcome of a process that involves randomness.
Depending on the application, one measure may be more adequate or more useful than another.

Our first goal is to define Shannon entropy and to prove some elementary properties of it, and
to develop the theory a bit further so as to include the concepts of conditional entropy, mutual
information and conditional mutual information, and prove some basic properties of these notions.
Based on these elementary properties, we can then easily state and prove Shannon’s pessimistic result
about perfectly secure encryption, which basically says that for perfectly secure encryption one needs
a key that is as least as long as the plaintext.

We then proceed to discuss two questions that are of fundamental importance to the theory and
practice of information. How much can information be compressed? And, how much information
can be reliably sent over an unreliable channel? We show that for both questions, it is the Shannon
entropy (and its related measures) that provide the right answers.

The last part of this note is dedicated to the privacy amplification theorem, a result that is
fundamental to the theory and practice of modern cryptography. In a nut shell, privacy amplification
enables to transform a weakly secure key X, about which an adversary has some partial information,
into a highly secure key K, about which the adversary has (essentially) no information at all. What
is surprising and makes privacy amplification very powerful is the fact that the extraction of the
secure key K from the weak key X works universally, independently of what kind of information the
adversary holds on X, as long as the amount of information he holds on X is bounded with respect
to some suitable information measure (which turns out to be the so-called Rényi entropy).

More information, motivation and background on most of the topics treated in this note can be
found in the book by Cover and Thomas: Elements of Information Theory [2], the survey article by
Wolf [4], and the IEEE-IT article Generalized Privacy Amplification by Bennett, Brassard, Crepeau
and Maurer [1].

∗CWI, Amsterdam, and Mathematical Institute, Leiden University. www.cwi.nl/∼cramer.
†CWI, Amsterdam. www.cwi.nl/∼fehr.

1

2 Preliminaries

N denotes the set of positive integers (excluding 0), and N0 denotes the set of non-negative integers,
i.e., N0 = N ∪ {0}. R denotes the set of real numbers, R>0 denotes the set of positive real numbers,
and R≥0 denotes the set of non-negative real numbers.

The notation log(·) refers to the binary logarithm function, i.e., the logarithm function with base
equal to 2, whereas the notation ln(·) refers to the natural logarithm function.

2.1 Probabilities and Random Variables

A (finite) probability space (U , P) consists of a finite, non-empty sample space U and a probability
measure P , which is a function P : U → R≥0 that satisfies∑

u∈U
P (u) = 1 .

An event A is a subset A of the sample space U . Its probability is defined as

P [A] =
∑
u∈A

P (u),

where by convention P [∅] = 0. If B is another event, we use the notation P [A,B] for P [A ∩ B]. For
events A and B with P [A] > 0, the conditional probability of B given A is defined as

P [B|A] =
P [A,B]
P [A]

.

Let (U , P) be a fixed probability space. A random variable X is a function X : U → X , where
we may assume X to be finite. The image and the range of a random variable X are given by the
image and the range of X in the function-theoretic sense. For x ∈ X , let X = x denote the event
{u ∈ U : X(u) = x}. The (probability) distribution of X is the function PX : X → [0, 1] defined as

PX(x) = P [X=x] .

A real random variable is one whose image is contained in R. If A is an event with P [A] > 0, then
the conditional probability distribution of X given A is given by

PX|A(x) =
P [X=x,A]

P [A]
,

Note that both (X , PX) and (X , PX|A) themselves form probability spaces.
If X and Y are two random variables defined on the same probability space, with respective ranges

X and Y, then the pair XY is a random variable with probability distribution PXY : X ×Y → [0, 1]
given by

PXY (x, y) = P [X=x, Y =y] .

We call PXY the joint distribution of X and Y . This naturally extends to three and more random
variables. If PXY = PX · PY , in the sense that PXY (x, y) = PX(x)PY (y) for all ∈ X and y ∈ Y, then
the random variables X and Y are independent. If PY (y) > 0, we often use the notation PX|Y (·|·)
defined by

PX|Y (x|y) = PX|Y=y(x),

where x ∈ X .
If f : X → Y is a surjective function, then the random variable f(X) is defined by composing the

map f with the map X. Its image is Y. Clearly, writing Y for f(X),

PY (y) =
∑

x∈X :f(x)=y

PX(x).

2

For example, 1/PX(X) denotes the real random variable obtained from X by composing with the
map 1/PX that assigns 1/PX(x) ∈ R to x ∈ X .

Let X be a real random variable. Then, the expectation of X is defined as

E[X] =
∑
x∈X

PX(x) · x.

Hoeffding’s inequality (here stated for binary random variables) states that for a list of independent
and identically distributed random variables, the average of the random variables is close to the
expectation, except with very small probability.

Proposition 1 (Hoeffding’s inequality) Let X1, . . . , Xn be independent and identically distributed
binary random variables with PXi(0) = 1 − µ and PXi(1) = µ, and thus E[Xi] = µ. Then, for any
δ > 0

P
[∑

iXi > (µ+ δ) · n
]
≤ exp(−2δ2n) .

In the remainder of these notes, when we speak of a random variable, we leave the underlying
probability space on which it is defined implicit. Unless otherwise stated, a collection of random
variables is defined on the same (implicit) probability space, so that their joint distribution is always
well-defined.

2.2 Jensen’s Inequality

In the following, let D be an interval in R and let f : D → R be a real-valued function on D.

Definition 1 The function f : D → R is convex if for all x1, x2 ∈ D and for all λ ∈ [0, 1] ⊂ R:

λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2).

The function f is strictly convex if equality only holds when λ = 0 or λ = 1, or when x1 = x2.
The function f is (strictly) concave if the function −f is (strictly) convex.

In other words “chords lie above the graph of the function.”

Lemma 1 Suppose D is open and the function f : D → R is such that for all x ∈ D the second order
derivative f ′′(x) exists and is non-negative (positive). Then f is convex (strictly convex).

Proof. This follows directly from the Taylor-series expansion of f in a neighborhood of x0. Let
x0, x ∈ D. Then, for some x∗ between x0 and x,

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x∗)

2
(x− x0)2.

Since f ′′(x∗) ≥ 0 by assumption, we have, for all x, x0 ∈ (a, b),

f(x) ≥ f(x0) + f ′(x0)(x− x0).

Now let x1, x2 ∈ D, and let λ ∈ [0, 1], as in the definition of convexity. If we set

x0 = λx1 + (1− λ)x2 and x = x1,

it follows that
f(x1) ≥ f(x0) + f ′(x0)[(1− λ)(x1 − x2)].

Keeping x0 as above but setting x = x2 instead, gives

f(x2) ≥ f(x0) + f ′(x0)[λ(x2 − x1)].

The claim now follows by multiplying the first inequality by λ, the second by 1 − λ, and by adding
up the results (and writing λx1 + (1− λ)x2 for x0). �

Examples of strictly convex functions on R are f(x) = x2 and f(x) = ex. The functions f(x) = log x
and f(x) =

√
x are examples of strictly concave functions on their respective domains R>0 and R≥0.

3

Proposition 2 (Jensen’s inequality) Let the function f : D → R be convex, and let n ∈ N. Then
for any p1, . . . , pn ∈ R≥0 such that

∑n
i=1 pi = 1 and for any x1, . . . , xn ∈ D it holds that

n∑
i=1

pif(xi) ≥ f
(n∑
i=1

pixi

)
.

If f is strictly convex and p1, . . . , pn > 0, then equality holds iff x1 = · · · = xn.
In particular, if X is a real random variable whose image X is contained in D, then

E[f(X)] ≥ f(E[X]),

and, if f is strictly convex, equality holds iff there is c ∈ X such that X = c with probability 1.

Proof. The proof is by induction. The case n = 1 is trivial, and the case n = 2 is identical to the
very definition of convexity. Suppose that we have already proved the claim up to n− 1 ≥ 2. Assume
without loss of generality that pn < 1. Then:

n∑
i=1

pif(xi) = pnf(xn) +
n−1∑
i=1

pif(xi) = pnf(xn) + (1− pn)
n−1∑
i=1

pi
1− pn

f(xi) ≥

pnf(xn) + (1− pn)f
(n−1∑
i=1

pi
1− pn

xi

)
≥ f

(
pnxn + (1− pn)

n−1∑
i=1

pi
1− pn

xi

)
,

which is equal to f(p1x1 + · · · + pnxn). That proves the claim. Note that the first inequality above
follows from the induction hypothesis (the case n−1) and the second follows from the case n = 2. As
to the strictness claim, if x1, . . . , xn are not all identical, then either x1, . . . , xn−1 are not all identical
and the first inequality is strict by induction hypothesis, or x1 = · · · = xn−1 6= xn so that the last
inequality is strict by definition. �

2.3 Bit Strings

For any n ∈ N, let {0, 1}n denote the n-fold Cartesian product of {0, 1}. For n = 0, this is defined to
be the set consisting of a special character ⊥ only, the empty string. Define

{0, 1}∗ =
⋃
n≥0

{0, 1}n,

the set of (finite) strings. For strings x = (x1, . . . , xn) and y = (y1, . . . , ym) in {0, 1}∗, the concatena-
tion x|y of x and y is defined to be the string

x|y = (x1, . . . , xn, y1, . . . , ym) ,

where, by definition, x|⊥ = x and ⊥|y = y. Note that (x|y)|z = x|(y|z) for all x, y, z ∈ {0, 1}∗. When
the meaning is clear from the context, we may also write xy instead of x|y, and for instance write
01001 instead of (0, 1, 0, 0, 1).

For x ∈ {0, 1}∗, the length `(x) of x is defined to be the unique integer n ∈ N0 such that x ∈ {0, 1}n.
It obviously holds that `(⊥) = 0 and

`(x|y) = `(x) + `(y)

for all x, y ∈ {0, 1}∗.
A string y ∈ {0, 1}∗ is called a prefix of x ∈ {0, 1}∗ if there exists z ∈ {0, 1}∗ such that x = y|z.

Similarly, y ∈ {0, 1}∗ is called a suffix of x ∈ {0, 1}∗ if there exists z ∈ {0, 1}∗ such that x = z|y.
Obviously, the empty string ⊥ is prefix and suffix of any x ∈ {0, 1}∗.

4

3 Measures of Uncertainty

3.1 Shannon Entropy

Definition 2 Let X be a random variable with image X . The (Shannon) entropy H(X) of X is
defined as

H(X) =
∑
x∈X

PX(x) · log
1

PX(x)
= −

∑
x∈X

PX(x) · logPX(x) ,

with the convention that the corresponding argument in the summation is declared 0 for x ∈ X with
PX(x) = 0 (which is justified by taking a limit).1

It is important to realize that the entropy of X is a function (solely) of the distribution PX of X.
However, it is customary to write H(X) instead of the formally correct H(PX).

The entropy of X can also be expressed as the expectation of the random variable log
(
1/PX(X)

)
:

H(X) = E
[
log

1
PX(X)

]
.

Proposition 3 Let X be a random variable with image X . Then

0 ≤ H(X) ≤ log(|X |).

Equality on the left-hand side holds iff there exists x ∈ X with PX(x) = 1 (and thus PX(x′) = 0 for
all x′ 6= x). Equality on the right-hand side holds iff PX(x) = 1/|X | for all x ∈ X .

Proof. The function f : R>0 −→ R, y 7→ log y is strictly concave on R>0. Thus, by Jensen’s inequality:

H(X) =
∑
x∈X

PX(x) · log
1

PX(x)
≤ log

(∑
x∈X 1

)
= log(|X |).

Furthermore, since we may restrict the sum to all x with PX(x) > 0, equality holds if and only if
log(1/PX(x)) = log(1/PX(x′)), and thus PX(x) = PX(x′), for all x, x′ ∈ X .

Finally, for the characterization of the lower bound, it is obvious that H(X) = 0 if PX(x) = 1
for some x, and, on the other hand, if H(X) = 0 then for any x with PX(x) > 0 it must be that
log(1/PX(x)) = 0 and hence PX(x) = 1. �

For a binary random variable X, meaning that the image X of X consists only of two values
X = {x0, x1}, with probabilities PX(x0) = p and PX(x1) = 1− p, we can write H(X) = h(p), where
h denotes the binary entropy function defined as

h(q) = −
(
q log(q) + (1− q) log(1− q)

)
for 0 < q < 1 and h(q) = 0 for q = 0 or q = 1.

3.2 Conditional Entropy

Let X be a random variable and A an event. Applying Definition 2 to the conditional probability
distribution PX|A naturally defines the entropy of X conditioned on the event A as

H(X|A) =
∑
x∈X

PX|A(x) · log
1

PX|A(x)
.

1Shannon once said: My greatest concern was what to call it. I thought of calling it information, but the word was
overly used, so I decided to call it uncertainty. When I discussed it with John von Neumann, he had a better idea. Von
Neumann told me: “You should call it entropy, for two reasons. In the first place, your uncertainty function has been
used in statistical mechanics under that name, so it already has a name. In the second place, and more important,
nobody knows what entropy really is, so in a debate you will always have the advantage.”

5

Definition 3 Let X and Y be random variables, with respective images X and Y. The conditional
entropy H(X|Y) of X given Y is defined as

H(X|Y) =
∑
y∈Y

PY (y) ·H(X|Y =y) ,

with the convention that the corresponding argument in the summation is 0 for y ∈ Y with PY (y) = 0.

Note that conditional entropy is not the entropy of a probability distribution but an expectation: the
average uncertainty about X when given Y .

Proposition 4 Let X and Y be random variables with respective images X and Y. Then

0 ≤ H(X|Y) ≤ H(X)

Equality on the left-hand side holds iff X is determined by Y , i.e., for all y ∈ Y, there is an x ∈ X
such that PX|Y (x|y) = 1. Equality on the right-hand side holds iff X and Y are independent.

The upper bound expresses that (on average!) additional information, i.e. knowing Y , can only
decrease the uncertainty.

Proof. The lower bound follows trivially from the definition and from Proposition 3, and so does the
characterization of when H(X|Y) = 0. For the upper bound, note that

H(X|Y) =
∑
y

PY (y)
∑
x

PX|Y (x|y) log
1

PX|Y (x|y)
=
∑
x,y

PXY (x, y) log
PY (y)

PXY (x, y)

and
H(X) =

∑
x

PX(x) log
1

PX(x)
=
∑
x,y

PXY (x, y) log
1

PX(x)

where in both expressions, we may restrict the sum to those pairs (x, y) with PXY (x, y) > 0. Using
Jensen’s inequality, it follows that

H(X|Y)−H(X) =
∑
x,y

PXY (x, y) log
PX(x)PY (y)
PXY (x, y)

≤ log
(∑
x,y

PX(x)PY (y)
)
≤ log

((∑
x

PX(x)
)(∑

y

PY (y)
))

= log 1 = 0 .

Note that in the second inequality, we replaced the summation over all (x, y) with PXY (x, y) > 0 by
the summation over all (x, y) ∈ X × Y.

For the first inequality, equality holds if and only if PXY (x, y) = PX(x)PY (y) for all (x, y) with
PXY (x, y) > 0, and for the second inequality, equality holds if and only if PXY (x, y) = 0 implies
PX(x)PY (y) = 0 for any x ∈ X and y ∈ Y. It follows that H(X|Y) = H(X) if and only if
PXY (x, y) = PX(x)PY (y) for all (x, y) ∈ X × Y. �

Proposition 5 (Chain Rule) Let X and Y be random variables. Then

H(XY) = H(X) +H(Y |X) .

In particular,
H(XY) ≤ H(X) +H(Y) .

The second property is called subadditivity of the entropy.

Proof. The inequality follows from H(Y |X) ≤ H(Y). The chain rule itself is a simple matter of
rewriting:

6

H(XY) = −
∑
x,y

PXY (x, y) logPXY (x, y)

= −
∑
x,y

PXY (x, y) log
(
PX(x)PY |X(y|x)

)
= −

∑
x,y

PXY (x, y) logPX(x)−
∑
x,y

PXY (x, y) logPY |X(y|x)

= −
∑
x

PX(x) logPX(x)−
∑
x

PX(x)
∑
y

PY |X(y|x) logPY |X(y|x)

= H(X) +H(Y |X) .

This was to be shown. �

Note that applying Definition 3 to the conditional distribution PXY |A naturally definesH(X|Y,A),
the entropy of X given Y and conditioned on the event A. Since the entropy is a function of
the distribution of a random variable, the chain rule also holds when conditioning on an event A.
Furthermore, it holds that

H(X|Y Z) =
∑
z

PZ(z)H(X|Y,Z=z) ,

which is straightforward to verify. With this observation, it is easy to see that the chain rule generalizes
as follows.

Corollary 1 Let X, Y and Z be random variables. Then

H(XY |Z) = H(X|Z) +H(Y |XZ) .

Inductively applying the (generalized) chain rule implies that for any sequence X1, . . . , Xn of random
variables:

H(X1 · · ·Xn) = H(X1) +H(X2|X1) + · · ·+H(Xn|Xn−1 · · ·X1) .

3.3 Mutual Information

Definition 4 Let X and Y be random variables. The mutual information I(X;Y) of X and Y is
defined as

I(X;Y) = H(X)−H(X|Y).

Thus, in a sense, mutual information reflects the reduction in uncertainty about X when given Y .
Note that the mutual information is symmetric and non-negative:

I(X;Y) = H(X)−H(X|Y) = H(X)−H(XY) +H(Y) = H(Y)−H(Y |X) ≥ 0,

with equality if and only if X and Y are independent. This follows immediately from the properties
of the conditional entropy.

Applying Definition 4 to the conditional distribution PXY |A naturally defines I(X;Y |A), the
mutual information of X and Y conditioned on the event A.

Definition 5 Let X,Y, Z be random variables. Then the conditional mutual information of X and
Y given Z is defined as

I(X;Y |Z) =
∑
z

PZ(z)I(X;Y |Z=z) ,

with the convention that the corresponding argument in the summation is 0 for z with PZ(z) = 0.

7

Obviously, I(X;Y |Z) is symmetric in X and Y , and

I(X;Y |Z) ≥ 0 .

Furthermore, the previous bounds H(X) ≥ 0, H(X|Y) ≥ 0, and I(X;Y) ≥ 0, can all be seen
as special cases of I(X;Y |Z) ≥ 0. These bounds, and any bound they imply, are called Shannon
inequalities. We will later see that there also exist non-Shannon inequalities.

It is important to realize that I(X;Y |Z) may be larger or smaller than (or equal to) I(X;Y).
The following is easy to verify (and is sometimes used as definition of I(X;Y |Z)).

Lemma 2 Let X,Y, Z be random variables. Then

I(X;Y |Z) = H(X|Z)−H(X|Y Z) .

By this, and then applying the (generalized) chain rule, we obtain:

Corollary 2 Let W,X, Y and Z be random variables. Then

I(WX;Y |Z) = I(X;Y |Z) + I(W ;Y |ZX) .

3.4 Entropy Diagrams

For two and three random variables, the relations between the different information-theoretic measures
can be nicely represented by means of a Venn-diagram-like entropy diagram. The case of two random
variables is illustrated in Figure 1 (left). From the diagram, one can for instance easily read off the
relations H(X|Y) ≤ H(X), I(X;Y) = H(X) + H(Y) − H(XY) etc. The case of three random
variables is illustrated in Figure 1 (right).

I(X;Y)H(X|Y) H(Y|X)

H(X) H(Y)

H(XY)

I(X;Y|Z)
H(X|YZ) H(Y|XZ)

H(X) H(Y)

H(XYZ)

R(X;Y;Z)

I(X;Z|Y) I(Y;Z|X)

H(Z|XY)

H(Z)

Figure 1: Entropy diagram for two (left) and three (right) random variables.

Also here, one can easily read off all the relations between the information-theoretic measures, like
for instance H(X|Y Z) = H(X)− I(X;Z)− I(X;Y |Z), which is a relation that is otherwise maybe
not immediately obvious. One subtlety with the entropy diagram for three random variables is that
the “area in the middle”, R(X;Y ;Z) = I(X;Y)− I(X;Y |Z), may be negative.

One may even consider an entropy diagram for four random variables, as illustrated in Figure 2,
but here one has to be very cautious because various areas in the diagram may be negative.

8

H(X) H(Y)

H(Z)

H(W)

Figure 2: Entropy diagram for four random variables.

3.5 Non-Shannon Inequalities

Let n be a positive integer. For any list X1, . . . , Xn of random variables, the values of all the
joint entropies H(X1), . . . ,H(Xn), H(X1X2), . . . ,H(Xn−1Xn), . . . H(X1 · · ·Xn) fix a point p in the
(2n−1)-dimensional space R2n−1, simply by assigning these values to the 2n−1 coordinates of p. Let
Γ∗n ⊂ R2n−1 be the set of all such points obtained by quantifying over all lists of random variables
X1, . . . , Xn (actually: their joint distributions) with arbitrary images. The question of interest is:
What does Γ∗n look like? Which points p ∈ R2n−1 can be obtained from a list X1, . . . , Xn of random
variables in the above way?

Obviously, Γ∗n is restricted by the Shannon inequalities, i.e., by the inequalities I(U ;V |W) ≥ 0,
where U , V and W may consist of arbitrary (and possibly empty and/or overlapping) collections of
the random variables X1, . . . , Xn.2 For example, any point p = (p1, p2, . . . , p2n−1) ∈ Γ∗n must satisfy
p1 + p2 − pn+1 ≥ 0, expressing that I(X1;X2) = H(X1) + H(X2) − H(X1X2) ≥ 0. Hence, if Γn
denotes the set of all points p ∈ R2n−1 for which the Shannon inequalities hold, then Γ∗n ⊆ Γn. But
what about the converse? It can been shown that Γ̄∗n, the closure of Γ∗n, is a convex cone, which
means that it is fully characterized by inequalities of the same linear form∑

i

λiH(Xi) +
∑
i<j

λi,jH(XiXj) + . . .+ λ1,...,nH(X1 · · ·Xn) ≥ 0

as the Shannon inequalities. But are the Shannon inequalities sufficient to specify Γ∗n or Γ̄∗n?
For n = 2 and 3, the answer is: yes. Indeed, it holds that Γ∗2 = Γ̄∗2 = Γ2 and Γ̄∗3 = Γ3. For n > 3,

the answer had long been unknown (and was finally solved by Zhang and Yeung in 1998). Below, we
show that for n > 3 there do exist non-Shannon inequalities, i.e., inequalities of the above linear form,
that do not follow from the Shannon inequalities, yet need to be satisfied for any list X1, . . . , Xn of
random variables.

Proposition 6 For any list of five random variables U, V,X, Y, Z:

H(XY) + 2I(U ;V) ≤ H(X) +H(Y) + I(U ;V |X) + I(U ;V |Y) + 2I(U ;V |Z) + I(UV ;Z) .

By letting X = Z we also get
2Note that I(U ; V |W) is determined by (a subset of) the values of H(U), H(V), H(W), H(UV), H(UW),H(V W)

and H(UV W).

9

Corollary 3 For any list of four random variables U, V,X, Y :

H(XY) + 2I(U ;V) ≤ H(X) +H(Y) + 3I(U ;V |X) + I(U ;V |Y) + I(UV ;X) .

Before we prove Proposition 6, we show that the inequality from Corollary 3, and thus also the inequal-
ity from Proposition 6, does not follow from the Shannon inequalities, and thus is non-Shannon. We
do this by assigning values to all the quantities H(U), H(V), H(X), H(Y), H(UV), . . . ,H(UV XY)
in such a way that all Shannon inequalities are satisfied, but the inequality from Corollary 3 is not.
A suitable assignment is as follows:

H(U) = H(V) = H(X) = H(Y) = 2 ,
H(UV) = H(UX) = H(UY) = H(V X) = H(V Y) = 3 ,
H(XY) = 4 , and
H(UV X) = H(UV Y) = H(UXY) = H(V XY) = H(UV XY) = 4 .

It is straightforward to verify that with this assignment, the inequality from Corollary 3 is violated
(with a gap of size 1). Also, it is straightforward to verify that this assignment is consistent with the
entropy diagrams in Figure 3. Since all the Shannon inequalities involving U, V,X, Y can be read out
from these diagrams (noting the symmetries between U and Y and between X and Y), it follows that
all Shannon inequalities are satisfied. We can thus conclude that the inequality from Corollary 3 is a
non-Shannon inequality and that Γ̄∗4 6= Γ4.3

H(X) or H(Y)

H(U) H(V)

1 0 1

1

1
0 0

H(U) or H(V)

H(X) H(Y)

1 0 1

1

0
1 1

H(UV)

H(X) H(Y)

0 1 0

0

-1
2 2

H(XY)

H(U) H(V)

0 0 0

1

1
1 1

H(VY)

H(X) H(U)

0 1 0

1

0
1 1

Figure 3: Entropy diagrams for the specific assignment.

Proof (of Proposition 6). First, we prove the inequality under the assumption that I(XY ;Z|UV) = 0.
Using the entropy diagram for 4 random random variables (as in Figure 2), and noting that the
assumption in particular implies that I(X;Z|UV) = 0, one can easily show that

I(U ;V) ≤ I(U ;V |X) + I(U ;V |Z) + I(X;Z) .

Due to the symmetry in X and Y , it also holds that

I(U ;V) ≤ I(U ;V |Y) + I(U ;V |Z) + I(Y ;Z) .

Finally, we can bound H(XY) as

H(XY) = H(XY |Z) + I(XY ;Z) ≤ H(X|Z) +H(Y |Z) + I(UV ;Z)
3The claim for Γ∗4 follows immediately; the claim for its closure follows from the smoothness of the entropy function.

10

where the inequality follows from the subadditivity of the (conditional) entropy, and from I(XY ;Z) ≤
I(UV ;Z), which follows from the assumption on I(XY ;Z|UV) as can easily be seen by means of the
entropy diagram for the three random variables XY , Z and UV . Adding up the three inequalities
results in the claimed inequality.

Now, the assumption on I(XY ;Z|UV) needs to be removed. The crucial observation is that in all
the terms in the inequality, Z only appears in combination with U and V , but never in combination
with X or Y . This allows us to re-define Z in such a way that the joint distribution of U , V and
Z does not change, and thus all the terms in the inequality do not change their value, and at the
same time I(XY ;Z|UV) vanishes, and thus the inequality holds by the above analysis. Formally, we
extend the probability space given by U, V,X, Y and introduce a new random variable Z ′, defined by
its conditional distribution

PZ′|UVXY (z|u, v, x, y) = PZ|UV (z|u, v)

for all z′, u, v, x, y. By construction: I(XY ;Z ′|UV) = 0, and therefore the inequality holds with Z
replaced by Z ′. Furthermore, again by construction: PZ′UV = PZUV , and therefore I(U ;V |Z ′) =
I(U ;V |Z) and I(UV ;Z ′) = I(UV ;Z). It follows that the inequality holds also for the original Z. �

4 Perfectly Secure Encryption

A classical encryption scheme consists of finite non-empty sets M, K, and C, and a function

e :M×K −→ C
such that for each k ∈ K, the function e(k, ·) :M−→ C is injective. For the purposes of the negative
result below we introduce a more general definition.

Definition 6 An encryption scheme for a random variable M , the message, consists of random
variables K and C, the key and the ciphertext, respectively, such that M and K are independent and

H(M |KC) = 0 .

The condition on the conditional entropy repeats, in the language of information theory, that there
is always unique decryption of the ciphertext. The definition also allows additional randomness in
the computation of the ciphertext, besides the secret key. Moreover, it doesn’t require that the secret
key is chosen with uniform distribution.

For an encryption scheme in the classical sense, given by M,K, C and e, K and C are given as
follows. K is the uniform distribution over K, and C is specified by C = e(K,M).

For an encryption scheme to be perfectly secure, we require that the ciphertext gives no informa-
tion whatsoever about the plaintext: the uncertainty about the plaintext is as large as it is without
knowing any ciphertext.

Definition 7 An encryption scheme K,C for message M is perfectly secure if

I(M ;C) = 0 .

An example of a perfectly secure encryption scheme is the one-time pad. In the one-time pad scheme,
the sets M,K, C are all identified with the same finite additive group G, for instance G = {0, 1}n
with the bit-wise XOR as group operation. The encryption function e is then simply defined as

e(k,m) = k +m ∈ G .
The key k is chosen according to the uniform distribution over K, independently from anything else.

Theorem 1 The one-time pad scheme is perfectly secure.

The main drawback of the one-time pad scheme is that the key is as large as the message that is to be
encrypted. Shannon’s pessimistic result states that this is inherent to any perfectly secure encryption
scheme:

Theorem 2 For any perfectly secure encryption scheme it holds that H(K) ≥ H(M).

Both claims can be proven easily by means of the entropy diagram for three random variables.

11

5 Data Compression

A trivial counting argument shows that it is possible to encode the elements of a set X by bit strings of
length n, where n = dlog(|X |)e. Thus, to store or to transmit an element x ∈ X , n bits of information
always suffice. However, it should be clear that if not all x ∈ X are equally likely, in the sense that
certain elements have a much higher probability than others, one should be able to exploit this and to
achieve codes with shorter average length. The idea is of course to use encodings of varying lengths,
assigning shorter codewords to the elements in X that have higher probabilities, and vice versa. The
question we answer in this section is: how short can such a code be (on average over the choice of x)?

A necessary condition on an encoding function mapping elements of X to bit strings of finite
length is that it is injective. However, if one transmits a sequence x1, . . . , xm ∈ X (or stores them
“sequentially”) by sending one long concatenation C(x1)| · · · |C(xm) of the bit strings C(xi) encoding
the xi’s, ambiguities may arise, namely in cases where it is possible to parse this long string in two
consistent but different ways. Indeed, injectivity of the encoding function per se does not rule out
that there exists a positive integer m′ and elements x′1, . . . , x

′
m′ ∈ X such that

C(x1)| · · · |C(xm) = C(x′1)| · · · |C(x′m′).

An code with the guarantee that the encoding of any sequence of elements can be uniquely parsed
is called uniquely decodable. Or, said in a different way, the encoding function C induces a map C∗

in the obvious way from the set of all finite length sequences of elements from X into the set of all
bit strings of finite length, and unique decodability means that C∗ is injective as well. Of course,
the problem of unique decodability of a list of codewords could be circumvented by introducing a
special separation symbol. However, such a symbol might not be available, and maybe even more
importantly, if an additional symbol is available, then one can do better by using a good uniquely
decodable encoding of X into strings made up of bits and the additional symbol.

One convenient way to guarantee unique decodability is to require code to be prefix-free. This
means that C(x) is not a prefix of C(x′) for any distinct x, x′ ∈ X . With a prefix-free encoding,
the elements x1, . . . , xm can be uniquely recovered from C(x1)| · · · |C(xm), simply by reading the
encoding from left to right one bit at a time: by prefix-freeness it will remain unambiguous as reading
continues when the current word terminates and the next begins. Thus, a prefix-free code is also
appealing from an efficiency point of view, as it allows to decode “on the fly”. For a general uniquely
decodable code one may possibly have to inspect all bits in the entire string before being able to even
recover the first word.

As argued, prefix-freeness is a nice feature, but it is also considerably more restrictive than mere
unique decodability; thus, it is natural to ask: how much do we lose (in terms of the average codeword
length) by requiring the encoding to be prefix-free rather than merely uniquely decodable? Surpris-
ingly, the answer is: nothing. Indeed, we will show below that the length of an optimal prefix-free
code and the length of an optimal uniquely decodable code coincide and are essentially given by the
Shannon entropy.

5.1 Uniquely Decodable and Prefix-Free Codes

Let X be a random variable with image X . We typically call X a source.

Definition 8 A source code, or simply a code, for X is an injective function C : X → {0, 1}∗.
Such a code C is called uniquely decodable if the naturally induced function C∗ : X ∗ → {0, 1}∗ with
(x1, . . . , xn) 7→ C(x1)| . . . |C(xn) is injective, where X ∗ =

⋃
n∈N Xn ∪ {⊥}. Furthermore, C is called

prefix-free if no c ∈ im(C) is prefix of a different c′ ∈ im(C).

We often refer to the set of codewords, C = im(C), as code and leave the actual encoding function C
implicit.

The following is easy to prove.

Lemma 3 If a code C is prefix-free and C 6= {⊥} then C is uniquely decodable.

12

Definition 9 The (average) length of a code C for a source X is defined as

`C(X) = E[`(C(X))] =
∑
x∈X

PX(x)`(C(x)) .

Furthermore, we define the minimal code length of a source X as

`p.f.
min(X) = min

C∈Cp.f.
`C(X) and `u.d.

min(X) = min
C∈Cu.d.

`C(X)

where Cp.f. is the set of all prefix-free and Cu.d. the set of all uniquely decodable codes C : X → {0, 1}∗.

We will soon see that `p.f.
min(X) = `u.d.

min(X), and thus we will just write `min(X) from now on. A code
C for which `C(X) = `min(X) is called optimal (for the source X).

5.2 Kraft’s Inequality and Shannon’s Theorem

The main theorem of this section shows that the minimal code length of a source X is essentially
given by its entropy.

Theorem 3 (Shannon) For any source X:

H(X) ≤ `min(X) ≤ H(X) + 1 .

The proof relies on the following theorem, known as Kraft’s inequality.

Theorem 4 (Kraft’s inequality) There exists a prefix-free code C = {c1, . . . , cm} with codeword
lenghts `(c1) = `1, . . . , `(cm) = `m ∈ N0 if and only if

m∑
i=1

1
2`i
≤ 1 .

We will see that the forward implication holds also for uniquely decodable codes; the backward
implication for uniquely decodable codes follows trivially from the original statement of Theorem 4
(unless m = 1 and `1 = 0) due to Lemma 3. This version of Kraft’s inequality is called McMillan
inequality. It follows that for every uniquely decodable code there exists a prefix-free code with the
very same codeword lengths, and thus in particular `p.f.

min(X) = `u.d.
min(X).

We will now first prove Shannon’s Theorem by using Kraft’s inequality, and after that we will
prove Kraft’s inequality.
Proof (of Theorem 3). For the lower bound, let us fix the following notation. For any x ∈ X , we
write `x = `(C(x)), and X̃ denotes the set of all x ∈ X with PX(x) > 0. We can thus write

H(X)− `C(X) = −
∑
x∈X̃

PX(x) logPX(x)−
∑
x∈X̃

PX(x)`x

=
∑
x∈X̃

PX(x) log
1

PX(x) · 2`x
≤
∑
x∈X̃

log
1

2`x
≤
∑
x∈X

log
1

2`x
≤ log(1) = 0 ,

using Jensen’s inequality and Kraft’s inequality.
For the upper bound, let us define for any x ∈ X

`x =
⌈

log
1

PX(x)

⌉
.

Note that ∑
x

1
2`x
≤
∑
x

PX(x) = 1

13

and thus by Kraft’s inequality, there exists a prefix-free code C such that `(C(x)) = `x for all x ∈ X .
This code satisfies

`C(X) =
∑
x

PX(x)`x ≤
∑
x

PX(x)
(

log
1

PX(x)
+ 1
)

= −
∑
x

PX(x) logPX(x) + 1 = H(X) + 1 .

This completes the proof. �

It remains to prove Kraft’s inequality. The forward direction can easily be proven by noting that
the codewords of a prefix-free code C correspond to (a subset of the) leaves in a binary tree, where
every codeword c ∈ C can be found at depth `(c) of the tree, and where the prefix-freeness ensures
that no c ∈ C is a descendant of another c′ ∈ C (see Figure 4 for an example).

0 1

0 0

0 0 0

1 1

1 1 1

0 01 1

C = {0000, 0001,001, 010, 011, 10, 1100, 1101, 111}

Figure 4: Example of a prefix-free code C as nodes in a binary tree.

For every d ∈ N0 and for every node in the tree (including but not restricted to the leaves) of
depth d, one can now assign weight 1/2d to that node. Noting that the weight of every node is
the sum of the weights of its two children, one can now inductively “work its way to the root” and
conclude that

∑
c 1/2`(c) is at most the weight of the root, which is 1.

In the proof given below, we prove a stronger statement, namely that the forward implication
of Theorem 4 holds not only for prefix-free but even for uniquely decodable codes. Note that the
implication holds trivially for the degenerated prefix-free code C = {⊥}.
Proof (of Theorem 4). We start with the (strengthened) forward implication. Let C be a uniquely
decodable code. We can write

S =
∑
c∈C

1
2`(c)

=
Lmax∑
`=Lmin

n`
2`

where Lmin = minc∈C `(c), Lmax = maxc∈C `(c), and n` = |{c ∈ C | `(c) = `}|. Furthermore, for any
k ∈ N,

Sk =
∑

c1,...,ck∈C

1
2`(c1)+...+`(ck)

=
kLmax∑
`=kLmin

n
(k)
`

2`

where n(k)
` is defined as n(k)

` =
∣∣{(c1, . . . , ck) ∈ Ck

∣∣ ∑
i `(ci) = `(c1| . . . |ck) = `

}∣∣. Note that

n
(k)
` =

∑
x∈{0,1}`

∣∣{(c1, . . . , ck) ∈ Ck
∣∣ c1| . . . |ck = x

}∣∣ ≤ ∑
x∈{0,1}`

1 = 2`

where the inequality follows from the unique decodability of C. Thus, we can conclude that

Sk ≤ (Lmax − Lmin) · k

14

for all k ∈ N, from which follows that S ≤ 1.
The backward implication, we prove by induction. The claim is trivial for m = 1 (and still easy

to see for m = 2). For the induction step, let m ≥ 1 and let `1 ≤ . . . ≤ `m ≤ `m+1 ∈ N be given. We
distinguish between the following two cases.

Case 1: `m = `m+1. We apply the induction hypothesis to `1, . . . , `m−1, `
′
m = `m − 1. Note

that 2−`
′
m = 2−`m + 2−`m+1 and hence the assumption (i.e. the bound on the sum) still holds. Let

C′ = {c1, . . . , cm−1, c
′
m} be the resulting prefix-free code. We now set C = {c1, . . . , cm−1, cm, cm+1}

where cm = c′m|0 and cm+1 = c′m|1. It is straightforward to verify that C is still prefix-free.
Case 2: `m < `m+1. It is easy to see that `1, . . . , `m, `′m+1 = `m still satisfies the bound on the

sum. Indeed,
m∑
i=1

1
2`i

=
µ

2`m

for some µ ∈ N which satisfies, by assumption, µ < 2`m ; therefore

m∑
i=1

1
2`i

+
1

2`
′
m+1

=
µ+ 1
2`m

≤ 1 .

By the analysis of case 1, there exists a prefix-free code C′ = {c1, . . . , cm, c′m+1} with codeword lengths
`1, . . . , `m, `

′
m+1. We now set C = {c1, . . . , cm, cm+1} where cm+1 = c′m+1|0 · · · 0, with sufficiently

many 0’s padded. Again, it is straightforward to verify that C is still prefix-free. �

5.3 The Huffman Code

The constructive proofs for Theorem 3 and 4 show how to explicitly construct a code C for a source
X such that `C(X) is off from the optimal `min(X) by at most 1. However, C obtained this way is in
general not optimal. In this section, we briefly describe a procedure for constructing an optimal prefix-
free code C, i.e., one that achieves `C(X) = `min(X). The construction is due to David Huffman,
and the resulting code C is called a Huffman code.

Let X be an arbitrary source with image X . We may assume without loss of generality that
PX(x) > 0 for all x ∈ X . Write m = |X |. The construction is recursively. In case m = 2, simply assign
the codewords 0 and 1 to the two elements in X . In case m > 2, construct C as follows recursively. Let
x, x′ ∈ X have minimal probabilities, i.e., for all y ∈ X it holds that PX(y) ≥ max{PX(x), PX(x′)}.
Reduce the number n of required code-words by “combining” x and x′, resulting in a new symbol
that occurs with probability PX(x) + PX(x′). This results in a new source with an image of size
m− 1. Take now the Huffman code for this new source, and consider the code-word assigned to the
new symbol, obtained by “combining” x and x′. Make two new words out of this one, by appending
a 0, and by appending a 1. Assign these two new codewords to x and x′. This results in the Huffman
code for X.

A somewhat more involved but much more informative description of the construction of Huffman
codes is as follows. Take the initial probabilities as leaves in a tree that is to be constructed. In the
first step, take the two nodes, i.e. leaves, with the smallest probabilities, and create an ancestor node
in the tree for them. Assign to this node the sum of the two smallest probabilities. Now repeat this
process, the list of nodes to which it is applied given by all the nodes with no ancestor (i.e., in the
first iteration, the remaining leaves and the newly created node). Continue until a root has been
created. Finally, the positions of the original leaves in the tree specify the corresponding codewords
(similar to Figure 4).

Proving optimality of the Huffman code by induction is not too difficult but a bit tedious, and
thus we do not do it here.

5.4 The Arithmetic Code

In this section, we present another explicit construction of a prefix-free code, known as arithmetic
(or Shannon-Fano-Elias) code. In contrast to the Huffman code, the arithmetic code is in general

15

not optimal, but it has other advantages as we will discuss in the subsequent section, which usually
makes it the better choice than the Huffman code for “real-life situations”.

Let X be an arbitrary source with image X . We may assume without loss of generality that
PX(x) > 0 for all x ∈ X , and that X = {1, . . . ,m}. Write px = PX(x) for any x ∈ X . The encoding
of an element x ∈ X is done as follows. The half-open interval [0, 1) ⊂ R is divided into m disjoint
half-open intervals I1 = [a1, b1), I2 = [a2, b2), . . ., Im = [am, bm) such that Ij has size bj − aj = pj
for any j ∈ X , and I1 ∪ . . .∪ Im = [0, 1). The encoding of an element x ∈ X is now defined to be the
standard binary representation of some number in the interval Ix.

There are different possibilities on how to decide which number in Ix to choose. One possibility
is to choose a number in Ix with the smallest binary representation, i.e., to let the encoding of x be
the shortest string c = (c1, . . . , c`) ∈ {0, 1}∗ \ {⊥} such that the number

∑`
i=1 ci ·2−i lies in Ix. Let

us call the resulting code AC0.

Proposition 7 For any source X, the arithmetic code AC0 has length

`AC0(X) ≤ H(X) + 1 .

Proof. It is easy to see that any inverval I = [a, b) ⊆ [0, 1) of size p = b − a contains a number that
has a binary representation c = (c1, . . . , c`) of length ` ≤ dlog(1/p)e ≤ − log p+ 1. Indeed, one of the
numbers 0 · 2−`, 1 · 2−`, 2 · 2−`, . . . , (2` − 1) · 2−` must lie in the interval I. It follows that

E
[
`
(
AC0(X)

)]
=
∑
x

PX(x)`
(
AC0(x)

)
≤
∑
x

PX(x)(− log px + 1) = H(X) + 1 ,

which was to be shown. �

The arithmetic code AC0 described above is in general not prefix-free. However, we can easily
make the code prefix-free by using a slightly different strategy for choosing c (actually: the number
c represents) from the interval Ix. Instead of choosing a number in Ix with the smallest binary
representation, c is chosen to be (the binary representation of) a number in the lower half of Ix with
a binary representation of size equal to ` = dlog(1/p)e+ 1. It follows from the proof of Proposition 7
that such a c exists. Let us denote this code by ACp.f.. It is easy to see that this modified code is
prefix-free. Furthermore, the bound from Proposition 7 increases only by one, i.e., it holds that

`ACp.f.(X) ≤ H(X) + 2 ,

as can easily be seen.

5.5 Encoding a Stream of Symbols

Consider the situation where the source is in fact a stream of symbols: X = X1 · · ·Xn, where all
Xi’s have the same image X . Think of X as an English text, where X consists of the letters of the
alphabet and some punctuation characters. Or, think of X as a picture file, where each Xi specifies
the color of a different pixel.

Of course, in principle, one can use the Huffman code (or the arithmetic code) for X to encode
the stream X1 · · ·Xn. However, unless for small values of n, this is infeasible: en- and decoding
requires an exponential amount of work (in n). Another, and more efficient, possibility is to encode
the stream X1 · · ·Xn symbol-wise, i.e., to encode each Xi individually by means of a prefix-free code
for Xi. If all Xi’s have the same distribution, then the same code can be used for all the Xi’s. The
prefix-freeness ensures unique decodability. The drawback with this solution is that even when the
optimal Huffman code is used to encode the Xi’s, the expected codeword length may be as large as
H(X1) + · · · + H(Xn) + n, compared to H(X1 · · ·Xn) + 1, which can be achieved with an optimal
code for X. Thus, even if the Xi’s are independent so that H(X1 · · ·Xn) = H(X1) + · · · + H(Xn),
there is a potential overhead of up to n− 1 bits.

We show how the arithmetic code can be generalized to a code that encodes a stream X1 · · ·Xn of
symbols in X in such a way that en- and decoding are (reasonably) efficient and the expected length

16

of the encoding has a small overhead. To encode (x1, . . . , xn) ∈ Xn, where we again assume that
X = {1, . . . ,m}, the following is done. First, as described in Section 5.4, the interval [0, 1) is divided
into m disjoint intervals I1, . . . , Im, where Ij has size PX1(j). But now, instead of (already) picking
a number in the interval Ix1 , inductively for each i ≥ 1 the interval Ix1···xi

is further divided up into
m disjoint intervals Ix1···xi1, . . . , Ix1···xim, where Ix1···xiηi+1 = [ax1···xiηi+1 , bx1···xiηi+1) has relative size
(bx1···xiηi+1 −ax1···xiηi+1)/(bx1···xi −ax1···xi) = PXi+1(ηi+1) for any 1 ≤ ηi+1 ≤ m; see Figure 5. In the
end, the encoding c of (x1, . . . , xn) is set to be the standard binary representation of a number in the
interval Ix1···xn

that has a minimal standard binary representation. Since this code is a generalization
of the code AC0 from Section 5.4, we also denote it by AC0.

0

…

0.4 0.7 0.9 1

0.52 0.61 0.67

Figure 5: Arithmetic coding of x = (2, 1, 3, ...) ∈ {1, 2, 3, 4}n with PXi
given by 4

10 , 3
10 , 2

10 and 1
10 .

If the decoder knows m, i.e., the number of symbols encoded, then decoding is (in principle)
straightforward: inductively for i ≥ 1 the decoder chooses xi so that Ix1···xi contains the number
represented by c. There are some computational/algorithmic issues which we do not discuss here,
but which can be solved. If the decoder does not know m, then he does not know when to stop. This
stopping problem can be solved by different means, but for simplicity we just assume here that the
decoder does know m.

The following is easy to prove.

Proposition 8 For any stream X1 · · ·Xn, the arithmetic code AC0 has length

`AC0(X1 · · ·Xn) ≤ H(X1) + . . .+H(Xn) + 1 .

If the Xi’s are independent, then this is close to optimal. However, if not then `AC0(X1 · · ·Xn)
may still be far off from the optimal value, which is essentially given by H(X1 · · ·Xn). This is not
too surprising since the arithmetic code as described above only considers the marginal distributions
PX1 up to PXn and completely ignores any possible relations between the Xi’s. This is wasteful in
many cases. For instance, in the English language the letter e is the most frequent letter, but if the
previous letter was a q, then the letter u is much more likely to appear than an e.

Based on this observation, it makes sense to consider the following improved version of the arith-
metic code. Instead of choosing Ix1···xiηi+1 to be of relative size PXi+1(ηi+1), it is chosen to be of
relative size PXi+1|Xi

(ηi+1|xi). It follows that this improved version of the arithmetic code, which we
call AC1, satisfies

`AC1(X1 · · ·Xn) ≤ H(X1) +H(X2|X1) +H(X3|X2) + . . .+H(Xn|Xn−1) + 1 .

Obviously, this can be further improved by taking not only the one previous but the two previous
symbols into account, or in general the ` previous symbols, and choosing Ix1···xiηi+1 to be of relative
size PXi+1|Xi···Xi−`+1(ηi+1|xi, . . . , xi−`+1) etc. Note that the larger one wants to choose ` to get better
compression, the better the source needs to be known by the encoder and the decoder, and the more
computationally involved en- and decoding becomes.

17

5.6 Encoding an Unknown Source

So far we have assumed that encoder and decoder know PX1···Xn
, or at least the PXi+1|Xi···Xi−`+1 ’s

for some fixed `, or good approximations thereof. In many scenarios, this is not the case, or worse:
these distributions are not even well defined. For instance, think of compressing a picture taken with
your digital camera; what is the distribution for the color assignment of the pixels?

If no good model for the source exists or is known, then the following can be done. The approach is
based on the assumption that the source X1, . . . , Xn to be encoded forms a stationary order-` Markov
chain (for some `), meaning that the conditional probability distribution function PXi+1|Xi···Xi−`+1 is
the same for every i; let us call this function D. Informally, this means that each symbol only depends
on the ` previous symbols but not on the actual position within the stream. This is true in many
natural scenarios, at least approximately. In this case, the encoder simply “computes” all values of the
function D = PXi+1|Xj ···Xi−`+1 by counting the frequency of each symbol, the frequency of each pair
of symbols, etc. within the actual stream x = (x1, . . . , xn) that should be encoded. The computed
conditional probability distribution function D is then used as model for the encoding of x, where
the encoding is done for instance by means of arithmetic encoding. Furthermore, the frequencies
are encoded using a prefix-free encoding and prepended to the actual encoding of x, so that also
the decoder can “compute” D. Encoding the frequencies of the (` + 1)-tuples of symbols requires
approximately |X |`+1 log(n) bits; thus, when |X |`+1 is small compared to n, this is an acceptable
overhead.

Another approach is to start with a “weak” model (like uniform distribution for the Xi’s), but let
the encoder and decoder adaptively update the model, based on the symbols and frequencies observed
so far. We do not discuss this in any more detail.

6 Guessing from Partial Information

Let X,Y be random variables. Suppose we are given Y . How much does that help us to guess the
outcome of X. The following version of Fano’s inequality gives an answer. Let guess : Y → X
denote the “guessing function”, and let the random variable X̂ = guess(Y) capture the guess made
at X given Y . Note that the optimal guessing strategy is to bet always on an element x of largest
probability given y; however, this will not be crucial below. Finally, let pe denote the (average) error
probability

pe = P [X 6= X̂] .

Theorem 5 (Fano’s inequality) Let X,Y be random variables. Then for any function guess

h(pe) + pe log(|X | − 1) ≥ H(X|Y) ,

and in particular if |X | = 2 then
h(pe) ≥ H(X|Y) .

Recall that h denotes the binary entropy function as defined in Section 3.1. Also, note that there
is equality if X represents the uniform distribution, and Y is absent (say by taking it equal to a
constant random variable).

Proof. Define E as the binary random variable that returns 0 if X = X̂, and 1 if X 6= X̂. Note that
PE(1) = pe and thus H(E) = h(pe). By using the chain rule

H(EX|Y) = H(X|Y) +H(E|XY) ,

but also
H(EX|Y) = H(E|Y) +H(X|EY) .

Clearly,
H(E|XY) = 0 ,

18

since given X and Y , it is uniquely determined if X = X̂ or not (for any fixed function guess). Also,

H(E|Y) ≤ H(E),

since conditioning does not increase entropy. Finally

H(X|EY) = PE(0) ·H(X|Y,E=0) + PE(1) ·H(X|Y,E=1) ≤ pe log(|X | − 1) ,

where the inequality follows from H(X|Y,E=0) = 0 and H(X|Y,E=1) ≤ log(|X | − 1). The former
holds because if E = 0, i.e., X = X̂, then X is uniquely determined by Y , and the latter holds
because if E = 1, i.e., X 6= X̂, then one value for X can be excluded and thus X can be one of at
most |X | − 1 values. Putting things together yields

H(E) + pe log(|X | − 1) ≥ H(X|Y),

which proves the claim. �

In the case where X is a bit string X = (X1, . . . , Xk), we may also consider the bit-error probability

p̄e =
1
k

k∑
i=1

P [Xi 6= X̂i] .

Corollary 4 For X distributed over the k-bit strings: h(p̄e) ≥ 1
kH(X|Y).

Proof. This follows immediately from Theorem 5 as follows. Writing pe,i = P [Xi 6= X̂i], we can write

h(p̄e) = h
(

1
k

∑
i pe,i

)
≥ 1
k

∑
i

h(pe,i) ≥
1
k

∑
i

H(Xi|Y) ≥ 1
k
H(X|Y)

where the first inequality is due to Jensen’s inequality, the second by Fano’s inequality (Theorem 5),
and the last one by the chain rule, noting that conditioning on more only reduces the entropy. �

7 Shannon’s Channel Coding Theorem

A channel with (finite) respective input and output sets X and Y is given by a conditional probability
distribution PY |X , which uniquely determines the distribution of the output of the channel when
x ∈ X is input into the channel as PY |X(·|x).

Definition 10 The capacity C of a channel given by PY |X is defined as

C = max
PX

I(X;Y) .

We will show below that the capacity of a channel measures exactly how many bits of information
on average can be reliably communicated per channel use.

Two simple examples are the binary symmetric channel (Figure 6, left) and the binary erasure
channel (Figure 6, right). It is not too hard to see that the capacity of the binary symmetric channel
with error probability ε is C = 1− h(ε), and the capacity of the binary erasure channel with erasure
probability ε is C = 1− ε.

0 //
ε

&&MMMMMMMMMMMMM 0

1 //
ε

88qqqqqqqqqqqqq
1

0 //

ε
++VVVVVVVVVVVV 0

⊥

1 //

ε
33hhhhhhhhhhhh 1

Figure 6: The binary symmetric channel (left), and the binary erasure channel (right).

19

A k-bit source is given by k binary random variables U1, . . . , Uk. An encoding scheme for a k-bit
source and a channel given by PY |X consists of an encoding function enc : {0, 1}k → Xn and a
decoding function dec : Yn → {0, 1}k. The random variables X1, . . . , Xn, Y1, . . . , Yn, and Û1, . . . , Ûk
are then determined as pictured in Figure 7.

Source→ U1,..., Uk → encode→ X1,..., Xn → channel→ Y1,..., Yn → decode→ Û1,..., Ûk

Figure 7: Communication over a noisy channel.

For the negative result below (Theorem 7) we additionally allow feedback, meaning that Xi+1 is
computed as a function not only of U1, . . . , Uk, but actually as a function of the complete “history”
U1, . . . , Uk, X1, . . . , Xi and Y1, . . . , Yi; thus, we assume that for each transmission the encoder learns
what the receiver has received and may adapt his encoding strategy accordingly. This makes the
negative result only stronger, and shows that feedback does not help to transmit more information
(although it may make it easier to transmit that amount of information).

Definition 11 The rate of an encoding scheme is defined as

R =
k

n
,

i.e., as the number of bits communicated per channel use.
The error probability and the bit-error probability of an encoding scheme, for a specific source,

are respectively defined as

pe = P [∃i : Ui 6= Ûi] and p̄e =
1
k

∑
i

P [Ui 6= Ûi] .

Note that obviously pe ≥ p̄e.

Theorem 6 (Channel-Coding Theorem - Part I) For any channel with capacity C, and for any
encoding scheme with rate R > C, the bit-error probability p̄e is bounded as

h(p̄e) ≥ 1− C

R
.

Proof. In the following, superscripts mean that we consider the coordinates from 1 up to (and
including) the superscript, e.g. Xm = (X1, . . . , Xm). By using the chain rule, we can write

H(XnY nUk) = H(Xn−1Y n−1Uk) +

=0︷ ︸︸ ︷
H(Xn|Xn−1Y n−1Uk) +

=H(Yn|Xn)︷ ︸︸ ︷
H(Yn|XnY n−1Uk)

= H(Xn−1Y n−1Uk) +H(Yn|Xn)
= · · ·
= H(Uk) +

n∑
i=1

H(Yi|Xi) .

But also, using again the chain rule,

H(XnY nUk) = H(Y nUk) +H(Xn|Y nUk) = H(Y nUk) ,

so that

H(Y nUk) = H(Uk) +
n∑
i=1

H(Yi|Xi) .

20

Now we can bound the information Y n gives about Uk as follows.

I(Uk;Y n) = H(Uk) +H(Y n)−H(Y nUk) = H(Y n)−
n∑
i=1

H(Yi|Xi)

≤
n∑
i=1

(
H(Yi)−H(Yi|Xi)

)
=

n∑
i=1

I(Xi;Yi) ≤ n · C = k · C
R

Therefore, for independent and uniformly distributed Ui’s:

H(Uk|Y n) = H(Uk)− I(Y n;Uk) ≥ k − k · C
R

= k
(

1− C

R

)
.

This already shows that from the point of view of the decoder, there is an inherent lower bound on
the entropy of U1, . . . , Uk per bit when R > C. The claim on the decoding error probability follows
from Corollary 4. �

Theorem 7 (Channel-Coding Theorem - Part II) For any channel with capacity C, and for
any R < C and pe > 0, there exists an encoding scheme with rate at least R and error probability at
most pe for any distribution of the source.

We only prove the special case of a binary symmetric channel with error probability ε, and thus
capacity C = 1− h(ε). The proof for the general case can be found in Cover and Thomas [2].

Proof. We start by proving the claim for a uniform source.
For the construction of the encoding scheme, we are only concerned with finding a “good” set

C ⊂ {0, 1}n of codewords; the encoding and decoding functions are then naturally given as follows.
enc may be an arbitrary bijective map enc : {0, 1}k → C, and dec is such that for any y ∈ {0, 1}n,
dec(y) equals the string u ∈ {0, 1}k such that enc(u) is the closest codeword to y (with some fixed
choice if there is an ambiguity).

We set k = dRne, where n will be chosen large enough. This guarantees the rate of the encoding
scheme to be at least R. We construct C ⊂ {0, 1}n by choosing each codeword at random and
independently from {0, 1}n.4 We show that the error probability, where the probability is also over
the random choice of C, of the resulting encoding scheme is upper bounded by pe (for a uniform
source). This then implies that there exists a specific encoding scheme with error probability upper
bounded by pe (for a uniform source).

We let c = c1 ∈ {0, 1}n denote the codeword sent over the channel, c′ ∈ {0, 1}n the string received,
and c2, . . . , c2k ∈ {0, 1}n the remaining codewords. Recall that c2, . . . , c2k ∈ {0, 1}n are random and
independent of c and c′ by construction. In the following, one should think of c as being fixed, the
bounds on the probabilities then in particular also hold for a random c. Note that c′ is obtained from
c by flipping every bit independently with probability ε. Therefore, the expected Hamming distance
dH(c, c′) between c and c′ is εn, and by the law of large numbers, dH(c, c′) is close to εn except with
arbitrary small probability for n large enough. In particular, for any α > 0,

dH(c, c′) ≤ (ε+ α)n

except with arbitrary small probability, for large enough n. Specifically, Hoeffding’s inequality shows
that the bound holds except with probability e−2α2n. On the other hand, from Lemma 4 below
which bounds the number of strings contained in a ball of given radius, it follows that for any fixed
i ∈ {2, . . . , n}, the probability that

dH(ci, c′) ≤ (ε+ α)n

is upper bounded by 2h(ε+α)n−n, and thus the probability that it holds for some non-specified i is
upper bounded by

(2k − 1) · 2h(ε+α)n−n ≤ 2k+h(ε+α)n−n ≤ 2Rn+1+h(ε+α)n−n = 2 · 2−(1−h(ε+α)−R)n

4Thus, we allow codewords to “collide”, and therefore, formally, C should actually be viewed as a multiset.

21

which is exponentially small in n if R < 1− h(ε+α), which can be achieved by a suitably small (but
positive) choice for α if R < 1 − h(ε) = C. Therefore, if R < C then the probability of incorrect
decoding can be made as small as pe by choosing n large enough.

The above probability holds for a randomly chosen set C = {c1, c2, . . . , c2k} of codewords where
the first codeword is transmitted, and thus also for a randomly chosen set of codewords where a
random codeword is transmitted. It follows that there exists a specific set of codewords with error
probability at most pe when a random codeword is transmitted; we call such a codeword set to be
good on average. It remains to argue that there exists a specific set of codewords that is good in the
worst-case, meaning with error probability at most pe for any codeword transmitted.

For given R and pe, let C′ be a set of codewords that is good on average, but constructed for
parameters R′ and p′e such that R < R′ < C and p′e = pe/2. Since R′ > R, for n large enough,
|C′| = 2dR

′ne ≥ 2 · 2dRne. Furthermore, the number of codewords in C′ for which the error probability
is larger than 2p′e is at most |C′|/2. This means there are at least 2dRne codewords in C′ which have
error probability at most 2p′e = pe. Thus, these codewords form a code with rate at least R and error
probability at most pe for any code word, and thus for any distribution on the source. �

It remains to prove the following claim.

Lemma 4 For any 0 ≤ δ ≤ 1
2 , any positive integer n and any n-bit string w ∈ {0, 1}n, the size of

the set Bδn(w) = {v ∈ {0, 1}n | dH(v, w) ≤ δn} is upper bounded by

|Bδn(w)| ≤ 2h(δ)n .

Proof. For the proof, note first that |Bδn(w)|, which does actually not depend on w and thus we may
simply write |Bδn|, is given by

|Bδn| =
bδnc∑
i=0

(
n

i

)
.

For simplicity, but actually without loss of generality, we may assume that δn is an integer. We can
write

1 = (δ + (1− δ))n =
n∑
i=0

(
n

i

)
δi(1− δ)n−i ≥

δn∑
i=0

(
n

i

)
δi(1− δ)n−i

= (1− δ)n
δn∑
i=0

(
n

i

)(δ

1− δ︸ ︷︷ ︸
≤1

)i
≥ (1− δ)n

δn∑
i=0

(
n

i

)(δ

1− δ

)δn
= δδn(1− δ)(1−δ)n · |Bδn| .

Taking logarithms finishes the proof. �

8 Almost Perfect Security

We have seen that information theory provides an adequate way to reason formally about perfectly
secure encryption. The central concept is that of no information (at all!).

A random variable Y gives no information on a random variable X if X and Y are independent,
or equivalently, if their mutual information I(X;Y) is equal to 0. On the other hand, Y gives
full information about X if the conditional entropy H(X|Y) of X given Y is equal to 0. Also,
H(X) = log |X | in case of the uniform distribution on X . Thus, if I(X;Y) = 0 and H(X) = log |X |,
then Y gives no information on X, and X has the uniform distribution. If Y captures the information
held by an adversary, and if X is a secret key, this would mean that from the point of view of the
adversary, the secret key is maximally unpredictable.

What happens if in the discussion above the quantities are bounded away from their “optimal
value” by a small ε? The answers to this question involves the concepts of practically no information
and almost random. These concepts lead us to more realistic notions of security, which we develop
below.

22

8.1 Statistical Distance and Indistinguishability

We first define what it means that two probability distributions are close, and then discuss a simple
but crucial consequence.

Definition 12 Let X and Y be random variables with the same image V. The statistical distance
∆[X;Y] between X and Y (actually: between PX and PY) is defined as

∆[X;Y] =
1
2

∑
v∈V

∣∣PX(v)− PY (v)
∣∣ .

Note that this distance is a function of PX and PY only; furthermore, the two distribution may also
be obtained from different probability spaces. The statistical distance is a distance measure in the
usual mathematical meaning, as becomes clear from the following lemma, which is straightforward
to prove.

Lemma 5 Let X, Y , Z be random variables with the same image V. Then

0 ≤ ∆[X;Y] ≤ 1, ∆[X;X] = 0, ∆[X;Y] = ∆[Y ;X], and ∆[X;Z] ≤ ∆[X,Y] + ∆[Y,Z] .

We will also make use of the following property.

Lemma 6 Let X and X ′ be random variables with image X , and Y with image Y. Then

∆[XY ;X ′Y] =
∑
y∈Y

PY (y) ∆[X;X ′ |Y =y] ,

where ∆[X;X ′ |Y =y] is naturally defined as ∆[X;X ′ |Y =y] = 1
2

∑
x

∣∣PX|Y (x|y)− PX′|Y (x|y)
∣∣.

We want to argue that the statistical difference is “the right” distance measure for random variables
(respectively probability distributions). One argument is that when we are given a “sample” v ∈ V,
chosen according to either the distribution PX or the distribution PY , then the advantage of correctly
distinguishing the two cases is at most ∆[X,Y].5 This follows from the following fact.

Proposition 9 Let X, Y be random variables with the same image V. Then for any W ⊂ V it holds
that

∆[X;Y] ≥ |PX(W)− PY (W)|,
with equality iff W is the set {v ∈ V : PX(v) > PY (v)} or its complement.

A short proof of this proposition can for instance be found in Shoup’s book [3].
Another argument for why the statistical difference is “the right” distance measure, is as follows.

Assume that X describes the behavior of the real world and Y the behavior of a hypothetical ideal
world, which is defined to behave perfectly as desired. The following proposition now guarantees that
we can think of these two worlds as co-existing in such a way that the real world looks exactly as
the ideal world, except with probability ∆[X;Y]. In particular, whatever happens in the real world
also happens in the ideal world, except with probability ∆[X;Y], and vice versa. For instance, if the
ideal world is such that some “bad” event never occurs, then that event occurs in the real world with
probability at most ∆[X;Y]. Thus, if ∆[X;Y] is “small” then we can conclude that the real world
behaves essentially like the ideal world.

Proposition 10 Let X and Y be random variables with the same image V and with respective dis-
tributions PX and PY (possibly with respect to different probability spaces). Then there exists a
joint probability distribution QXY (x, y) on V × V such that the marginal distributions QX(x) =∑
y∈V QXY (x, y) and QY (y) =

∑
x∈V QXY (x, y) satisfy

QX = PX and QY = PY ,

and such that
Q[X 6=Y] =

∑
x,y∈V

x6=y

QXY (x, y) ≤ ∆[X;Y] .

5Formally, a distinguishing strategy is given by a subset W ⊆ V; v ∈ W is then interpreted as that PX was used,
and v 6∈ W is interpreted as that PY was used. The advantage for a strategy W is then defined as |PX(W)− PY (W)|.

23

Proof. We actually define a probability distribution QXYE(x, y, e) on V × V × {0, 1}, by introducing
an extra binary random variable E. The claimed probability distribution will then be the marginal
distribution QXY (x, y) = QXYE(x, y, 0) +QXYE(x, y, 1). Set

QXYE(x, y, 1) =
{

0 if x 6= y
min{PX(x), PY (x)} else

and

QXYE(x, y, 0) =
max{PX(x)−PY (x), 0} ·max{PY (y)−PX(y), 0}

∆[X;Y]
.

In the analysis below, we will use a couple of times the fact that ∆[X;Y] can also be written as
∆[X;Y] =

∑
v max{PX(v)−PY (v), 0}, which follows easily from the definition of ∆[X;Y].

Consider an arbitrary x ∈ V. If PX(x) ≤ PY (x) then QXE(x, 1) = PX(x) and QXE(x, 0) = 0,
and thus QX(x) = PX(x). On the other hand, if PX(x) ≥ PY (x) then QXE(x, 1) = PY (x) and

QXE(x, 0) = (PX(x)− PY (x))

∑
y max{PY (y)−PX(y), 0}

∆[X;Y]
= PX(x)− PY (x) ,

and thus, also here: QX(x) = PX(x). The corresponding can be shown for QY , i.e., QY (y) = PY (y)
for all y ∈ V. Finally, it follows from the definition of E that if X 6= Y then E = 0, and therefore
Q[X 6=Y] ≤ QE(0) =

∑
x,y QXYE(x, y, 0) = ∆[X;Y] ·∆[X;Y]/∆[X;Y] = ∆[X;Y]. �

8.2 Almost Uniform Distributions

We know that if a random variable X with image X satisfies H(X) = log |X |, then X is necessarily
uniformly distributed (over X). Therefore, one expects that if H(X) is “almost” log |X |, then X
must be “close” to uniformly distributed. The following result shows that this is indeed the case,
where closeness is measured by means of the statistical distance.

Proposition 11 Let X be a random variable with image X , and let H(X) ≥ log |X | − δ. Then

∆[X;U] ≤ 2 ln 2 ·
√
δ

where U is uniformly distributed over X .

The proof, which is based on the so-called Kullback-Leibler distance, can be found in Cover and
Thomas [2]. 6

The corresponding also holds in case of two random variables X and Y : if H(X|Y) is “almost”
log |X |, then X is “close” to uniformly distributed and independent of Y .

Corollary 5 Let X and Y be a random variables with respective images X and Y, and let H(X|Y) ≥
log |X | − δ. Then

∆[XY ;UY] ≤ 2 ln 2 ·
√
δ

where U is uniformly distributed over X and independent of Y .

The claim follows from Lemma 6, and applying Proposition 11 and using Jensen’s inequality.
6Note that Cover and Thomas speak of variational distance instead of statistical distance. That coincides with what

some others call the L1-distance, and it is exactly a multiplicative factor of 2 larger than statistical distance.

24

9 Randomness Extraction and Privacy Amplification

9.1 More Measures of Uncertainty

Definition 13 Let X be a random variable with image X . The collision probability Col(X) of X is
defined as

Col(X) =
∑
x∈X

PX(x)2 .

and the Rényi-entropy (of order 2) or collision-entropy H2(X) of X is defined as

H2(X) = − log Col(X).

It should be clear that one can also define Col(X|A) and H2(X|A), the collision probability,
respectively the Rényi entropy, of X conditioned on the event A, by basing it on the conditional
probability distribution PX|A of X given A.

Definition 14 Let X and Y be random variables, with respective images X and Y. Then the condi-
tional collision probability and the conditional Rényi entropy of X given Y are defined as

Col(X|Y) =
∑
y∈Y

PY (y) · Col(X|Y =y) and

H2(X|Y) = − log Col(X|Y) ,

respectively.

Lemma 7 Let X, Y be random variables. Then

0 ≤ H2(X) ≤ H(X) ,

and hence
0 ≤ H2(X|Y) ≤ H(X|Y) .

This upper bound on Rényi entropy is an immediate consequence of Jensen’s inequality, as can easily
be verified. The (conditional) Rényi entropy is maximal, i.e. H2(X|Y) = log |X |, if and only if X is
uniformly random on X (and independent of Y). The following shows that if the (conditional) Rényi
entropy is close to maximal, and as such Col(X|Y) close to the minimum value 1/|X |, then X is close
to uniformly random in terms of statistical distance.

Proposition 12 Let X, Y be random variables, with respective images X and Y, and let U be
uniformly distributed over X , independent of X and Y . Then

∆[XY ;UY] ≤ 1
2

√
|X |Col(X|Y)− 1 .

Proof. First, we prove the claim for an “empty” Y . For that, we introduce the 2-distance

∆2[X;U] =
√∑
x∈X

(PX(x)− PU (x))2

and note that (independent of the uniformity of U)

∆[X;U] =
1
2

∑
x

|PX(x)− PU (x)| = 1
2
|X | 1
|X |

∑
x

√
(PX(x)− PU (x))2

≤ 1
2
|X |
√

1
|X |
∑
x(PX(x)− PU (x))2 =

1
2

√
|X | ·∆2[X;U] ,

25

where the inequality follows from Jensen’s inequality (with the 1/|X |’s as uniform weights/probabilities).
Furthermore (now using the uniformity of U),

∆2[X;U]2 =
∑
x

(
PX(x)− PU (x)

)2 =
∑
x

(
PX(x)2 − 2PX(x) 1

|X | + 1
|X |2

)
=
∑
x

PX(x)2 − 1
|X |

= Col(X)− 1
|X |

.

Substituting this into the above gives the claim for an “empty” Y .
The prove for the general claim now follows from Lemma 6 and Jensen’s inequality:

∆[XY ;UY] =
∑
y

PY (y)∆[X;U |Y =y] ≤ 1
2

∑
y

PY (y)
√
|X |Col(X|Y =y)−1 ≤ 1

2

√
|X |Col(X|Y)−1 .

This concludes the proof. �

9.2 Universal Hash Functions

An universal hash function family consists of a family G of functions g : X −→ R where X and R are
fixed non-empty finite sets. Let G be a random variable with uniform probability distribution on G.
By applying the function evalx : G → R, g 7→ g(x) to G, we obtain a new random variable evalx(G),
denoted by G(x), with image R; G(x) describes the value g(x) obtained by choosing g ∈ G at random
and applying it to x. For the function family to be universal, it is required that for any x 6= x′ ∈ X :

P [G(x) = G(x′)] ≤ 1
|R|

.

There are many constructions of such function families. Here are two examples of universal hash
function families that map n-bit strings to r-bit strings, i.e. X = {0, 1}n and R = {0, 1}r. In
the first example we simply take all the linear functions (described by matrices with r rows and
n columns): G = {x 7→ Ax |A ∈ {0, 1}r×n}. Note that for any x 6= x′ ∈ {0, 1}n, the function
evalx−x′ : {0, 1}r×n → {0, 1}r, A 7→ Ax − Ax′ = A(x − x′) is linear and surjective, and as such the
cardinality |eval−1

x−x′({y})| of the pre-image of y ∈ {0, 1}r is the same for any y ∈ {0, 1}r. Therefore,
for a random matrix A, evalx−x′(A) is uniformly distributed over {0, 1}r, and thus the probability
that evalx−x′(A) = 0, i.e. Ax = Ax′, equals 2−r.

In the other example, X = {0, 1}n is identified with the finite field F2n by fixing a F2-basis, and
G is then given by the functions {x 7→ [a · x]r | a ∈ F2n}, where the multiplication is to be understood
as multiplication in F2n , and [·]r denotes the projection into the first r coordinates. One can use a
similar argument as above to show universality.

9.3 Extracting Rényi Entropy as Almost Uniform Bits

Theorem 8 (Leftover Hash-Lemma) Let X be a random variable with image X , and let G be a
random variable corresponding to a uniformly random choice of a member of a family of universal
hash functions X −→ {0, 1}r. Define K = G(X). Then

H(K|G) ≥ H2(K|G) ≥ r − log(1 + 2r−H2(X)) ≥ r − 2r−H2(X)

ln 2
.

Proof. It is sufficient to show the second and third inequalities; the first follows by a previous lemma.
We have

H2(G(X)|G) = − log Col(G(X)|G) = − log
(∑

g

PG(g) · Col(G(X)|G=g)
)
,

where the sum in the last inequality corresponds to the probability that g(x1) = g(x2), where g is
uniformly chosen from the function family, and x1 and x2 are chosen according to the distribution

26

of X from X . All choices are made independently. So let us introduce random variables X1 and X2,
distributed as X, but independently, also from G. Then

Col(G(X)|G) = P [G(X1)=G(X2)]
= P [X1 =X2] + P [X1 6=X2] · P [G(X1)=G(X2)|X1 6=X2]

≤ Col(X) + (1− Col(X)) · 2−r < 2−H2(X) + 2−r = 2−r(1 + 2r−H2(X)) ,

where the first inequality above follows from the definition of universal hash functions. The second
and third inequalities in the statement of the theorem now follow by taking logarithms and using
that log(1 + z) ≤ z/ ln 2. �

Applying Proposition 12 to Col(K|G) ≤ 2−r · (1 + 2r−H2(X)), we immediately obtain

Corollary 6 For X, G and K as in Theorem 8,

∆[KG;UG] ≤ 1
2
· 2− 1

2 (H2(X)−r) ,

where U is uniformly distributed over {0, 1}r (independent of anything else).

9.4 Privacy Amplification

An immediate consequence is that if the Rényi entropy about the original string is large enough from
the point of view of an adversary who has access to partial information, then we can distill a shorter
key that is almost random, and about which the adversary has almost no information.

Theorem 9 (Privacy Amplification) Let X and Y be random variables with respective images X
and Y, and let G be a random variable corresponding to a uniformly random choice of a member of
a family of universal hash functions X −→ {0, 1}r. Define K = G(X). Then

∆[KYG;UY G] ≤ 1
2
· 2− 1

2 (H2(X|Y)−r) ,

where U bis uniformly distributed over {0, 1}r (independent of anything else).

Suppose that H2(X|Y) >> r. Then the theorem implies that for an adversary with side information
Y , the key K is as good as uniform and unpredictable from the point of view of the adversary, except
with small probability.
Proof. The proof follows immediately from Corollary 6 and Jensen’s inequality:

∆[KYG;UY G] =
∑
y

PY (y)∆[KG;UG |Y =y] ≤ 1
2

∑
y

PY (y) · 2− 1
2 (H2(X|Y=y)−r)

=
1
2

∑
y

PY (y)
√

Col(X|Y =y) · 2 r
2 ≤ 1

2

√∑
y PY (y)Col(X|Y =y) · 2 r

2

=
1
2

√
Col(X|Y) · 2 r

2 =
1
2
· 2− 1

2 (H2(X|Y)−r) .

�

9.5 Application to Eavesdropping

Suppose the adversary has partial information defined by an eavesdropping function

e : X −→ {0, 1}t.

27

This means that he has access to the value y = e(x). Possibly, the eavesdropping function has been
specified by the adversary, and our only knowledge about it is that it maps to t-bit strings (so we
know t).

We apply Privacy Amplification to mod out this partial information. Let notation be as before,
with exceptions as stated in the theorem below. The partial information Y is now defined as e(X).

Theorem 10 Assume that X = {0, 1}n, and that X has the uniform distribution on it. Assume
0 ≤ t < n. Let 0 < s < n − t be a safety parameter. Define r = n − t − s. Then, applying privacy
amplification,

∆(KGY ;UGY) ≤ 2−
s
2−1 .

Proof. For y ∈ {0, 1}t, let cy denote the number of x ∈ {0, 1}n such that

e(x) = y.

Since X has the uniform distribution on {0, 1}n, we have

Col(X|Y =y) = cy ·
1
c2y

=
1
cy

and therefore
Col(X|Y) =

∑
y

Pe(X)(y)Col(X|Y =y) =
∑
y

cy
2n

1
cy

= 2t−n .

This means that
H2(X|Y) = n− t

and therefore by privacy amplification,

∆(KGY ;UGY) ≤ 1
2
· 2− 1

2 (n−t−r) =
1
2
· 2− s

2 .

�

28

References

[1] Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Ueli Maurer. Generalized Privacy
Amplification. Transactions on Information Theory, vol. 41, no. 6. IEEE, 1995.

[2] Thomas M. Cover and Joy A. Thomas. Elements of information theory. 2nd edition. Wiley, 2006.
ISBN 0-471-24195-4.

[3] Victor Shoup. A Computational Introduction to Number Theory and Algebra. 2nd edition. Cam-
bridge University Press, 2008. ISBN 978-0-521-51644-0.

[4] Stefan Wolf. Unconditional Security in Cryptography. Lecture Notes in Computer Science, vol.
1561. Springer, 1999.

29

