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ABSTRACT
We define a new model of communication complexity, called
the garden-hose model. Informally, the garden-hose com-
plexity of a function f : {0, 1}n×{0, 1}n → {0, 1} is given by
the minimal number of water pipes that need to be shared
between two parties, Alice and Bob, in order for them to
compute the function f as follows: Alice connects her ends
of the pipes in a way that is determined solely by her input
x ∈ {0, 1}n and, similarly, Bob connects his ends of the pipes
in a way that is determined solely by his input y ∈ {0, 1}n.
Alice turns on the water tap that she also connected to one
of the pipes. Then, the water comes out on Alice’s or Bob’s
side depending on the function value f(x, y).

We prove almost-linear lower bounds on the garden-hose
complexity for concrete functions like inner product, ma-
jority, and equality, and we show the existence of functions
with exponential garden-hose complexity. Furthermore, we
show a connection to classical complexity theory by proving
that all functions computable in log-space have polynomial
garden-hose complexity.

We consider a randomized variant of the garden-hose com-
plexity, where Alice and Bob hold pre-shared randomness,
and a quantum variant, where Alice and Bob hold pre-shared
quantum entanglement, and we show that the randomized
garden-hose complexity is within a polynomial factor of the
deterministic garden-hose complexity. Examples of (partial)
functions are given where the quantum garden-hose com-
plexity is logarithmic in n while the classical garden-hose
complexity can be lower bounded by nc for constant c > 0.

Finally, we show an interesting connection between the
garden-hose model and the (in)security of a certain class of
quantum position-verification schemes.

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Formal models
of communication

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITCS’13, January 9–12, 2013, Berkeley, California, USA.
Copyright 2013 ACM 978-1-4503-1859-4/13/01 ...$15.00.

Keywords
communication complexity; garden-hose model; position-based
quantum cryptography

1. INTRODUCTION

The garden-hose model.
On a beautiful sunny day, Alice and Bob relax in their

neighboring gardens. It happens that their two gardens
share s water pipes, labeled by the numbers 1, 2, . . . , s. Each
of these water pipes has one loose end in Alice’s and the
other loose end in Bob’s garden. For the fun of it, Alice and
Bob play the following game. Alice uses pieces of hose to
locally connect some of the pipe ends that are in her gar-
den with each other. For example, she might connect pipe
2 with pipe 5, pipe 4 with pipe 9, etc. Similarly, Bob locally
connects some of the pipe ends that are in his garden; for
instance pipe 1 with pipe 4, etc. We note that no T-pieces
(nor more complicated constructions), which connect two or
more pipes to one (or vice versa) are allowed. Finally, Alice
connects a water tap to one of her ends of the pipes, e.g.,
to pipe 3 and she turns on the tap. Alice and Bob observe
which of the two gardens gets sprinkled. It is easy to see that
since Alice and Bob only use simple one-to-one connections,
there is no “deadlock” possible and the water will indeed
eventually come out on one of the two sides. Which side it
is obviously depends on the respective local connections.

Now, say that Alice connects her ends of the pipes (and
the tap) not in a fixed way, but her choice of connections
depends on a private bit string x ∈ {0, 1}n; for different
strings x and x′, she may connect her ends of the pipes
differently. Similarly, Bob’s choice which pipes to connect
depends on a private bit string y ∈ {0, 1}n. These strategies
then specify a function f : {0, 1}n × {0, 1}n → {0, 1} as
follows: f(x, y) is defined to be 0 if, using the connections
determined by x and y respectively, the water ends up on
Alice’s side, and f(x, y) is 1 if the water ends up on Bob’s
side.

Switching the point of view, we can now take an arbitrary
Boolean function f : {0, 1}n × {0, 1}n → {0, 1} and ask:
How can f be computed in the garden-hose model? How
do Alice and Bob have to choose their local connections,
and how many water pipes are necessary for computing f
in the garden-hose model? We stress that Alice’s choice for
which pipes to connect may only depend on x but not on
y, and vice versa; this is what makes the above questions
non-trivial.
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In this paper, we introduce and put forward the notion of
garden-hose complexity. For a Boolean function f : {0, 1}n×
{0, 1}n → {0, 1}, the garden-hose complexity GH (f) of f is
defined to be the minimal number s of water pipes needed
to compute f in the garden-hose model. It is not too hard to
see that GH (f) is well defined (and finite) for any function
f : {0, 1}n × {0, 1}n → {0, 1}.

This new complexity notion opens up a large spectrum of
natural problems and questions. What is the (asymptotic
or exact) garden-hose complexity of natural functions, like
equality, inner product etc.? How hard is it to compute the
garden-hose complexity in general? How is the garden-hose
complexity related to other complexity measures? What is
the impact of randomness, or entanglement? Some of these
questions we answer in this work; others remain open.

Lower and upper bounds.
We show a near-linear Ω(n/ log(n)) lower bound on the

garden-hose complexity GH (f) for a natural class of func-
tions f : {0, 1}n × {0, 1}n → {0, 1}. This class of func-
tions includes the mod-2 inner-product function, the equal-
ity function, and the majority function. For the former two,
this bound is rather tight, in that for these two functions we
also show a linear upper bound. For the majority function,
the best upper bound we know is quadratic. Recently, Mar-
galit and Matsliah improved our upper bound for the equal-
ity function with the help of the IBM SAT-Solver [23] to
approximately 1.448n, and the question of how many water
pipes are necessary to compute the equality function in the
garden-hose model featured as April 2012’s “Ponder This”
puzzle on the IBM website1. The exact garden-hose com-
plexity of the equality function is still unknown, though; let
alone of other functions.

By using a counting argument, we show the existence of
functions with exponential garden-hose complexity, but so
far, no such function is known explicitly.

Connections to other complexity notions.
We show that every function f : {0, 1}n × {0, 1}n →
{0, 1} that is log-space computable has polynomial garden-
hose complexity. And, vice versa, we show that every func-
tion with polynomial garden-hose complexity is, up to local
pre-processing, log-space computable. As a consequence,
we obtain that the set of functions with polynomial garden-
hose complexity is exactly given by the functions that can
be computed by arbitrary local pre-processing followed by a
log-space computation.

We also point out a connection to communication com-
plexity by observing that, for any function f : {0, 1}n ×
{0, 1}n → {0, 1}, the one-way communication complexity of
f is a lower bound on GH (f) log(GH (f)).

Randomized and quantum garden-hose complexity.
We consider the following natural variants of the garden-

hose model. In the randomized garden-hose model, Alice
and Bob additionally share a uniformly random string r,
and the water is allowed to come out on the wrong side
with small probability ε. Similarly, in the quantum garden-
hose model, Alice and Bob additionally hold an arbitrary
entangled quantum state and their wiring strategies can de-
pend on the outcomes of measuring this state before playing

1http://ibm.co/I7yvMz

the garden-hose game. Again, the water is allowed to come
out on the wrong side with small probability ε. Based on
the observed connections of the garden-hose complexity to
log-space computation and to one-way communication com-
plexity, we can show that the resulting notion of randomized
garden-hose complexity GHε(f) is polynomially related to
GH (f). For the resulting notion of quantum garden-hose
complexity GH Q

ε (f), we can show a separation (for a par-
tial function) from GHε(f).

Application to quantum position-verification.
Finally, we show an interesting connection between the

garden-hose model and the (in)security of a certain class of
quantum position-verification schemes. The goal of position-
verification is to verify the geographical position pos of a
prover P by means of sending messages to P and measur-
ing the time it takes P to reply. Position-verification with
security against collusion attacks, where different attacking
parties collaborate in order to try to fool the verifiers, was
shown to be impossible in the classical setting by [11], and
in the quantum setting by [5], if there is no restriction put
upon the attackers. In the quantum setting, this raises the
question whether there exist schemes that are secure in case
the attackers’ quantum capabilities are limited.

We consider a simple and natural class of quantum position-
verification schemes; each scheme PVfqubit in the class is spec-
ified by a Boolean function f : {0, 1}n × {0, 1}n → {0, 1}.
These schemes may have the desirable property that the
more classical resources the honest users use to faithfully
execute the scheme, the more quantum resources the adver-
sary needs in order to break it. It turns out that there is
a one-to-one correspondence between the garden-hose game
and a certain class of attacks on these schemes, where the
attackers teleport a qubit back and forth using a supply of
EPR pairs. As an immediate consequence, the (quantum)
garden-hose complexity of f gives an upper bound on the
number of EPR pairs the attackers need in order to break
the scheme PVfqubit. As a corollary, we obtain the following
interesting connection between proving the security of quan-
tum protocols and classical complexity theory: If there is an
f in P such that there is no way of attacking scheme PVfqubit

using a polynomial number of EPR pairs, then P 6= L. Vice
versa, our approach may lead to practical secure quantum
position-verification schemes whose security is based on clas-
sical complexity-theoretical assumptions such as P is differ-
ent from L. However, so far it is still unclear whether the
garden-hose complexity by any means gives a lower bound on
the number of EPR pairs needed; this remains to be further
investigated.

2. THE GARDEN-HOSE MODEL

2.1 Definition
Alice and Bob get n-bit input strings x and y, respectively.

Their goal is to “compute” an agreed-upon Boolean function
f : {0, 1}n×{0, 1}n → {0, 1} on these inputs, in the following
way. Alice and Bob have s water pipes between them, and,
depending on their respective classical inputs x and y, they
connect (some of) their ends of the pipes with pieces of hose.
Additionally, Alice connects a water tap to one of the pipes.
They succeed in computing f in the garden-hose model, if
the water comes out on Alice’s side whenever f(x, y) = 0,
and the water comes out on Bob’s side whenever f(x, y) = 1.
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Figure 1: Computing the XOR function in the
garden-hose model using three water pipes. If Al-
ice’s input bit x is 0, she connects the water tap to
the first water pipe labeled “0”. In case x = 1, she
connects the tap to the second pipe labeled “1”.

Note that it does not matter out of which pipe the water
flows, only on which side it flows. What makes the game
non-trivial is that Alice and Bob must do their “plumbing”
based on their local input only, and they are not allowed
to communicate. We refer to Figure 1 for an illustration of
computing the XOR function in the garden-hose model.

We formalize the above description of the garden-hose
game, given in terms of pipes and hoses etc., by means of
rigorous graph-theoretic terminology. However, we feel that
the above terminology captures the notion of a garden-hose
game very well, and thus we sometimes use the above “wa-
tery”terminology. We start with a balanced bi-partite graph
(A ∪ B,E) which is 1-regular and where the cardinality of
A and B is |A| = |B| = s, for an arbitrary large s ∈ N. We
slightly abuse notation and denote both the vertices in A and
in B by the integers 1, . . . , s. If we need to distinguish i ∈ A
from i ∈ B, we use the notation iA and iB . We may assume
that E consists of the edges that connect i ∈ A with i ∈ B
for every i ∈ {1, . . . , s}, i.e., E =

{{
iA, iB

}
: 1 ≤ i ≤ s

}
.

These edges in E are the pipes in the above terminology.
We now extend the graph to (A◦∪B,E) by adding a vertex
0 to A, resulting in A◦ = A ∪ {0}. This vertex corresponds
to the water tap, which Alice can connect to one of the pipes.
Given a Boolean function f : {0, 1}n×{0, 1}n → {0, 1}, con-
sider two functions EA◦ and EB ; both take as input a string
in {0, 1}n and output a set of edges (without self loops). For
any x, y ∈ {0, 1}n, EA◦(x) is a set of edges on the vertices A◦
and EB(x) is a set of edges on the vertices B, so that the re-
sulting graphs (A◦, EA◦(x)) and (B,EB(y)) have maximum
degree at most 1. EA◦(x) consists of the connections among
the pipes (and the tap) on Alice’s side (on input x), and
correspondingly for EB(y). For any x, y ∈ {0, 1}n, we define
the graph G(x, y) = (A◦∪B,E∪EA◦(x)∪EB(y)) by adding
the edges EA◦(x) and EB(y) to E. G(x, y) consists of the
pipes with the connections added by Alice and Bob. Note
that the vertex 0 ∈ A◦ has degree at most 1, and the graph
G(x, y) has maximum degree at most two 2; it follows that
the maximal path π(x, y) that starts at the vertex 0 ∈ A◦
is uniquely determined. π(x, y) represents the flow of the
water, and the endpoint of π(x, y) determines whether the
water comes out on Alice or on Bob’s side (depending on
whether the final vertex is in A◦ or in B).

Definition 2.1. A garden-hose game is given by a graph
function G : (x, y) 7→ G(x, y) as described above. The num-
ber of pipes s is called the size of G, and is denoted as s(G).

A garden-hose game G is said to compute a Boolean func-
tion f : {0, 1}n×{0, 1}n → {0, 1} if the endpoint of the max-
imal path π(x, y) starting at 0 is in A◦ whenever f(x, y) = 0
and in B whenever f(x, y) = 1.

Definition 2.2. The deterministic garden-hose complex-
ity of a Boolean function f : {0, 1}n×{0, 1}n → {0, 1} is the
size s(G) of the smallest garden-hose game G that computes
f . We denote it by GH (f).

2.2 Upper and Lower Bounds
In this section, we present upper and lower bounds on

the number of pipes required to compute some particular
(classes of) functions in the garden-hose model. We first
give a simple upper bound on GH (f) which is implicitly
proven in the attack on Scheme II in [18].

Proposition 2.3. For every Boolean function f : {0, 1}n×
{0, 1}n → {0, 1}, the garden-hose complexity GH (f) is at
most 2n + 1.

Proof. We identify {0, 1}n with {1, . . . , 2n} in the nat-
ural way. For s = 2n + 1 and the resulting bipartite graph
(A◦ ∪B,E), we can define EA◦ and EB as follows. EA◦(x)
is set to {(0, x)}, meaning that Alice connects the tap with
the pipe labeled by her input x. To define EB , group the set
Z(y) = {a ∈ {0, 1}n : f(a, y) = 0} arbitrarily into disjoint
pairs {a1, a2} ∪ {a3, a4} ∪ . . . ∪ {a`−1, a`} and set EB(y) =
{{a1, a2} , {a3, a4} , . . . , {a`−1, a`}}. If ` = |Z(y)| is odd so
that the decomposition into pairs results in a left-over {a`},
then a` is connected with the“reserve”pipe labeled by 2n+1.

By construction, if x ∈ Z(y) then x = ai for some i, and
thus pipe x = ai is connected on Bob’s side with pipe ai−1 or
ai+1, depending on the parity of i, or with the“reserve”pipe,
and thus π(x, y) is of the form π(x, y) = (0, xA, xB , vB , vA),
ending in A◦. On the other hand, if x 6∈ Z(y), then pipe x is
not connected on Bob’s side, and thus π(x, y) = (0, xA, xB),
ending in B. This proves the claim.

We notice that we can extend this proof to show that the
garden-hose complexity GH (f) is at most 2D(f)+1−1, where
D(f) is the deterministic communication complexity of f .
See Appendix A for a sketch of the method.

Definition 2.4. We call a function f injective for Alice,
if for every two different inputs x and x′ there exists y such
that f(x, y) 6= f(x′, y). We define injective for Bob in an
analogous way: for every y 6= y′, there exists x such that
f(x, y) 6= f(x, y′) holds.

Proposition 2.5. If f is injective for Bob or f is injec-
tive for Alice, then2

GH (f) log(GH (f)) ≥ n .

Proof. We give the proof when f is injective for Bob.
The proof for the case where f is injective for Alice is the
same. Consider a garden-hose game G that computes f .
Let s be its size s(G). Since, on Bob’s side, every pipe is
connected to at most one other pipe, there are at most ss =
2s log(s) possible choices for EB(y), i.e., the set of connections

on Bob’s side. Thus, if 2s log(s) < 2n, it follows from the
pigeonhole principle that there must exist y and y′ in {0, 1}n
for which EB(y) = EB(y′), and thus for which G(x, y) =

2All logarithms in this paper are with respect to base 2.
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G(x, y′) for all x ∈ {0, 1}n. But this cannot be since G
computes f and f(x, y) 6= f(x, y′) for some x due to the

injectivity for Bob. Thus, 2s log(s) ≥ 2n which implies the
claim.

We can use this result to obtain an almost linear lower
bound for several functions that are often studied in com-
munication complexity settings such as:

• Bitwise inner product: IP(x, y) =
∑
i xiyi (mod 2)

• Equality: EQ(x, y) = 1 if and only if x = y

• Majority: MAJ(x, y) = 1 if and only if
∑
i xiyi ≥ d

n
2
e

The first two of these functions are injective for both Alice
and Bob, while majority is injective for inputs of Hamming
weight at least n/2, giving us the following corollary.

Corollary 2.6. The functions bitwise inner product, equal-
ity and majority have garden-hose complexity in Ω( n

log(n)
).

By considering the water pipes that actually get wet, one
can show a lower bound of n pipes for equality [25]. On the
other hand, we can show upper bounds that are linear for
the bitwise inner product and equality, and quadratic in case
of majority. We refer to [29] for the proof of the following
proposition.

Proposition 2.7. In the garden-hose model, the equality
function can be computed with 3n+1 pipes, the bitwise inner
product with 4n+ 1 pipes and majority with (n+ 2)2 pipes.

In general, garden-hose protocols can be transformed into
(one-way) communication protocols by Alice sending her
connections EA◦(x) to receiver Bob, which will require at
most GH (f) log(GH (f)) bits of communication. Bob can
then locally compute the function by combining Alice’s mes-
sage with EB(y) and checking where the water exits.3 We
summarize this observation in the following proposition.

Proposition 2.8. Let D1(f) denote the deterministic one-
way communication complexity of f . Then,

D1(f) ≤ GH (f) log(GH (f)) .

As a consequence, lower bounds on the communication com-
plexity carry over to the garden-hose complexity (up to log-
arithmic factors). Notice that this technique will never give
lower bounds that are better than linear, as problem in com-
munication complexity can always be solved by sending the
entire input to the other party. It is an interesting open
problem to show super-linear lower bounds in the garden-
hose model, e.g. for the majority function.

Proposition 2.9.
There exist functions f : {0, 1}n×{0, 1}n → {0, 1} for which
GH (f) is exponential.

3In fact, garden-hose protocols can even be transformed
into communication protocols in the more restrictive
simultaneous-message-passage model, where Alice and Bob
send simultaneous messages consisting of their connections
EA◦(x) and EB(y) to the referee who then computes the
function. The according statements of Propositions 2.8, 2.19
and 2.20 can be derived analogously.

Proof. The existence of functions with an exponential
garden-hose complexity can be shown by a simple counting

argument. There are 222n

different functions f(x, y). For a
given size s = s(G) of G, for every x ∈ {0, 1}n, there are
at most (s + 1)s+1 ways to choose the connections EA◦(x)

on Alice’s side, and thus there are at most ((s+ 1)s+1)2n =

22n(s+1) log(s+1) ways to choose the function EA◦ . Similarly
for EB , there are at most 22ns log(s) ways to choose EB .
Thus, there are at most 22·2n(s+1) log(s+1) ways to choose G
of size s. Clearly, in order for every function f to have a G of
size s that computes it, we need that 2 ·2n(s+1) log(s+1) ≥
22n, and thus that (s + 1) log(s + 1) ≥ 2n−1, which means
that s must be exponential.

2.3 Polynomial Garden-Hose Complexity and
Log-Space Computations

A family of Boolean functions {fn}n∈N is log-space com-
putable if there exists a deterministic Turing machine M and
a constant c, such that for any n-bit input x, M outputs the
correct output bit fn(x), and at most c · logn locations of
M ’s work tapes are ever visited by M ’s head during compu-
tation.

Definition 2.10. We define L(2), called logarithmic space
with local pre-processing, to be the class of Boolean func-
tions f(x, y) for which there exists a Turing machine M and
two arbitrary functions α(x), β(y), such that4 M(α(x), β(y)) =
f(x, y) and M(α(x), β(y)) runs in space logarithmic in the
size of the original inputs |x|+ |y|.

This definition can be extended in a natural way by con-
sidering Turing machines and circuits corresponding to var-
ious complexity classes, and by varying the number of play-
ers. For example, a construction as in Proposition 2.3 and
a similar reasoning as in Proposition 2.14 below can be
used to show that every Boolean function is contained in
PSPACE(2). As main result of this section, we show that
our newly defined class L(2) is equivalent to functions with
polynomial garden-hose complexity. We leave it for future
research to study intermediate classes such as AC0

(2) which
are related to the polynomial hierarchy of communication
complexity [1].

Theorem 2.11. The set of functions f with polynomial
garden-hose complexity GH (f) is equal to L(2).

The two directions of the theorem follow from Theorem 2.12
and Proposition 2.14.

Theorem 2.12. If f : {0, 1}n × {0, 1}n → {0, 1} is log-
space computable, then GH (f) is polynomial in n.

Proof sketch, full proof in Appendix B.1.
Let M be the deterministic log-space Turing machine decid-
ing f(x, y) = 0. Using techniques from [19], M can be made
reversible incurring only a constant loss in space. As M is
a log-space machine, it has at most polynomially many con-
figurations. The idea for the garden-hose strategy is to label
the pipes with those configurations of the machine M where
the input head of M “switches sides” from the x-part of the

4For simplicity of notation, we give two arguments to the
Turing machine whose concatenation is interpreted as the
input.
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input to the y-part or vice versa. Thanks to the reversibil-
ity of M , the players can then use one-to-one connections
to wire up (depending on their individual inputs) the open
ends of the pipes on their side, so that eventually the water
flow corresponds to M ’s computation of f(x, y).

In the garden-hose model, we allow Alice and Bob to lo-
cally pre-process their inputs before computing their wiring.
Therefore, it immediately follows from Theorem 2.12 that
any function f in L(2) has polynomial garden-hose complex-
ity, proving one direction of Theorem 2.11.

We saw in Proposition 2.9 that there exist functions with
large garden-hose complexity. However, a negative impli-
cation of Theorem 2.12 is that proving the existence of a
polynomial-time computable function f with exponential garden-
hose complexity is at least as hard as separating L from P,
a long-standing open problem in complexity theory.

Corollary 2.13. If there exists a function f : {0, 1}n ×
{0, 1}n → {0, 1} in P that has super-polynomial garden-hose
complexity, then P 6= L.

It remains to prove the other inclusion of Theorem 2.11.

Proposition 2.14. Let f : {0, 1}n × {0, 1}n → {0, 1} be
a Boolean function. If GH (f) is polynomial (in n), then f
is in L(2).

Proof. Let G be the garden-hose game that achieves
s(G) = GH (f). We write s for s(G), the number of pipes,
and we let EA◦ and EB be the underlying edge-picking func-
tions, which on input x and y, respectively, output the con-
nections that Alice and Bob apply to the pipes. Note that
by assumption, s is polynomial. Furthermore, by the re-
strictions on EA◦ and EB , on any input, they consist of at
most (s+ 1)/2 connections.

We need to show that f is of the form f(x, y) = g(α(x), β(y)),
where α and β are arbitrary functions {0, 1}n → {0, 1}m,
g : {0, 1}m × {0, 1}m → {0, 1} is log-space computable, and
m is polynomial in n. We define α and β as follows. For any
x, y ∈ {0, 1}n, α(x) is simply a natural encoding of EA◦(x)
into {0, 1}m, and β(y) is a natural encoding of EB(y) into
{0, 1}m. In the hose-terminology we say that α(x) is a bi-
nary encoding of the connections of Alice, and β(y) is a
binary encoding of the connections of Bob. Obviously, these
encodings can be done with m of polynomial size. Given
these encodings, finding the endpoint of the maximum path
π(x, y) starting in 0 can be done with logarithmic space:
at any point during the computation, the Turing machine
only needs to maintain a pointer to the position of the wa-
ter and a binary flag to remember on which side of the in-
put tape the head is. Thus, the function g that computes
g(α(x), β(y)) = f(x, y) is log-space computable in m and
thus also in n.

2.4 Randomized Garden-Hose Complexity
It is natural to study the setting where Alice and Bob

share a common random string and are allowed to err with
some probability ε. More formally, we let the players’ lo-
cal strategies EA◦(x, r) and EB(y, r) depend on the shared
randomness r and write Gr(x, y) = f(x, y) if the resulting
garden-hose game Gr(x, y) computes f(x, y).

Definition 2.15. Let r be the shared random string. The
randomized garden-hose complexity of a Boolean function

f : {0, 1}n × {0, 1}n → {0, 1} is the size s(Gr) of the small-
est garden-hose game Gr such that ∀x, y : Prr[Gr(x, y) =
f(x, y)] ≥ 1− ε. We denote this minimal size by GHε(f).

In Appendix B.2, we show that the error probability can
be made exponentially small by repeating the protocol a
polynomial number of times.

Proposition 2.16. Let f : {0, 1}n×{0, 1}n → {0, 1} be a
function such that GHε(f) is polynomial in n, with error ε ≤
1
2
−n−c for a constant c > 0. For every constant d > 0 there

exists a polynomial q(·) such that GH
2−nd

(f) ≤ q
(
GHε(f)

)
.

Using this result, any randomized strategy can be turned
into a deterministic strategy with only a polynomial over-
head in the number of pipes.

Proposition 2.17. Let f : {0, 1}n×{0, 1}n → {0, 1} be a
function such that GHε(f) is polynomial in n and ε ≤ 1

2
−nc

for a constant c > 0. Then there exists a polynomial q(·)
such that GH (f) ≤ q

(
GHε(f)

)
.

Proof sketch. By Proposition 2.16 there exists a ran-
domized garden-hose protocol Gr(x, y) of size q(GHε(f))
with error probability at most 2−2n−1. The probability for
a random string r to be wrong for all inputs is at most
22n · 2−2n−1 < 1. In particular, there exists a string r̂ which
works for every input (x, y).

Using this Proposition 2.17, we conclude that the lower
bound from Proposition 2.9 carries over to the randomized
setting.

Corollary 2.18.
There exist functions f : {0, 1}n×{0, 1}n → {0, 1} for which
GHε(f) is exponential.

With the same reasoning as in Proposition 2.8, we get
that lower bounds on the randomized one-way communica-
tion complexity with public shared randomness carry over to
the randomized garden-hose complexity (up to a logarithmic
factor).

Proposition 2.19. Let R1,pub
ε (f) denote the minimum

communication cost of a one-way-communication protocol
which computes f with an error ε using public shared ran-
domness. Then, R1,pub

ε (f) ≤ GHε(f) log(GHε(f)).

For instance, the linear lower boundRpubε (IP ) ∈ Ω(n) from [12]
for the inner-product function yields GHε(IP ) ∈ Ω( n

logn
).

2.5 Quantum Garden-Hose Complexity
Let us consider the setting where Alice and Bob share

an arbitrary entangled quantum state besides their water
pipes. Depending on their respective inputs x and y, they
can perform local quantum measurements on their parts of
the entangled state and wire up the pipes depending on the
outcomes of these measurements. We denote the resulting
quantum garden-hose complexity with GH Q(f) in the deter-
ministic case and with GH Q

ε (f) if errors are allowed.
With the same reasoning as in Proposition 2.8, we get that

lower bounds on the entanglement-assisted one-way commu-
nication complexity carry over to the quantum garden-hose
complexity (up to a logarithmic factor).

Proposition 2.20. For ε ≥ 0, let Q1
ε(f) denote the min-

imum cost of an entanglement-assisted one-way communi-
cation protocol which computes f with an error ε. Then,
Q1
ε(f) ≤ GH Q

ε (f) log(GH Q
ε (f)).
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For instance, the lower bound Q1
ε(IP ) ∈ Ω(n) which follows

from results in [13] gives GH Q
ε (IP ) ∈ Ω(n/ logn). For the

disjointness function, Q1
ε(DISJ) ∈ Ω(

√
n) from [26] implies

GH Q
ε (DISJ) ∈ Ω(

√
n/ logn).

In Appendix D, we present partial functions which give a
separation between the quantum and classical garden-hose
complexity in the deterministic and in the randomized set-
ting.

Theorem 2.21. There exist partial Boolean functions f
and g such that

1. GH Q(f) ∈ O(logn) and GH (f) ∈ Ω( n
logn

),

2. GH Q
ε (g) ∈ O(logn) and GHε(g) ∈ Ω(

√
n

logn
).

3. APPLICATION TO POSITION-BASED
QUANTUM CRYPTOGRAPHY

The goal of position-based cryptography is to use the geo-
graphical position of a party as its only “credential”. For ex-
ample, one would like to send a message to a party at a geo-
graphical position pos with the guarantee that the party can
decrypt the message only if he or she is physically present
at pos. The general concept of position-based cryptography
was introduced by Chandran, Goyal, Moriarty and Ostro-
vsky [11].

A central task in position-based cryptography is the prob-
lem of position-verification. We have a prover P at posi-
tion pos, wishing to convince a set of verifiers V0, . . . , Vk (at
different points in geographical space) that P is indeed at
that position pos. The prover can run an interactive proto-
col with the verifiers in order to convince them. The main
technique for such a protocol is known as distance bound-
ing [3]. In this technique, a verifier sends a random nonce
to P and measures the time taken for P to reply back with
this value. Assuming that the speed of communication is
bounded by the speed of light, this technique gives an upper
bound on the distance of P from the verifier.

The problem of secure position-verification has been stud-
ied before in the field of wireless security, and there have
been several proposals for this task ([3, 27, 30, 7] [9, 28, 31,
8]). However, [11] shows that there exists no protocol for se-
cure position-verification that offers security in the presence
of multiple colluding adversaries. In other words, the set
of verifiers cannot distinguish between the case when they
are interacting with an honest prover at pos and the case
when they are interacting with multiple colluding dishonest
provers, none of which is at position pos.

The impossibility result of [11] relies heavily on the fact
that an adversary can locally store all information he re-
ceives and at the same time share this information with other
colluding adversaries, located elsewhere. Due to the quan-
tum no-cloning theorem, such a strategy will not work in
the quantum setting, which opens the door to secure proto-
cols that use quantum information. The quantum model was
first studied by Kent et al. under the name of“quantum tag-
ging” [17, 18]. Several schemes were developed [18, 21, 10,
22, 20] and proven later to be insecure. Finally in [5] it was
shown that in general no unconditionally secure quantum
position-verification scheme is possible. Any scheme can be
broken using a double exponential amount of EPR pairs in
the size of the messages of the protocol. Later, Beigi and
König improved in [2] the double exponential dependence

to single exponential making use of port-based teleporta-
tion [15, 16].

Due to the exponential overhead in EPR pairs, the general
no-go theorem does not rule out the existence of quantum
schemes that are secure for all practical purposes. Such
schemes should have the property that the protocol, when
followed honestly, is feasible, but cheating the protocol re-
quires unrealistic amounts of resources, for example EPR
pairs or time.

3.1 A Single-Qubit Scheme
Our original motivation for the garden-hose model was to

study a particular quantum protocol for secure position veri-
fication, described in Figure 2. The protocol is of the generic
form described in Section 3.2 of [5]. In Step 0, the verifiers
prepare challenges for the prover. In Step 1, they send the
challenges, timed in such a way that they all arrive at the
same time at the prover. In Step 2, the prover computes
his answers and sends them back to the verifiers. Finally, in
Step 3, the verifiers verify the timing and correctness of the
answer.

As in [5], we consider here for simplicity the case where
all players live in one dimension, the basic ideas generalize
to higher dimensions. In one dimension, we can focus on
the case of two verifiers V0, V1 and an honest prover P in
between them.

We minimize the amount of quantum communication in
that only one verifier, say V0, sends a qubit to the prover,
whereas both verifiers send classical n-bit strings x, y ∈
{0, 1}n that arrive at the same time at the prover. We fix
a publicly known Boolean function f : {0, 1}n × {0, 1}n →
{0, 1} whose output f(x, y) decides whether the prover has
to return the qubit (unchanged) to verifier V0 (in case f(x, y) =
0) or to verifier V1 (if f(x, y) = 1).

0. V0 randomly chooses two n-bit strings x, y ∈ {0, 1}n
and privately sends y to V1. V0 prepares an EPR pair
(|0〉V |0〉P + |1〉V |1〉P )/

√
2. If f(x, y) = 0, V0 keeps the

qubit in register V . Otherwise, V0 sends the qubit in
register V privately to V1.

1. V0 sends the qubit in register P to the prover P to-
gether with the classical n-bit string x. V1 sends y
so that it arrives at the same time as the information
from V0 at P .

2. P evaluates f(x, y) ∈ {0, 1} and routes the qubit to
Vf(x,y).

3. V0 and V1 accept if the qubit arrives in time at the cor-
rect verifier and the Bell measurement of the received
qubit together with the qubit in V yields the correct
outcome.

Figure 2: Position-verification scheme PVfqubit using
one qubit and classical n-bit strings.

The motivation for considering this protocol is the fol-
lowing: As the protocol uses only one qubit which needs
to be correctly routed, the honest prover’s quantum actions
are trivial to perform. His main task is evaluating a classical
Boolean function f on classical inputs x and y whose bit size
n can be easily scaled up. On the other hand, our results
suggest that the adversary’s job of successfully attacking the
protocol becomes harder and harder for larger input strings
x, y.
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3.2 Connection to the Garden-Hose Model
In order to analyze the security of the protocol PVfqubit,

we define the following communication game in which Alice
and Bob play the roles of the adversarial attackers of PVfqubit.
Alice starts with an unknown qubit |φ〉 and a classical n-
bit string x while Bob holds the n-bit string y. They also
share some quantum state |η〉AB and both players know the
Boolean function f : {0, 1}n×{0, 1}n → {0, 1}. The players
are allowed one round of simultaneous classical communi-
cation combined with arbitrary local quantum operations.
When f(x, y) = 0, Alice should be in possession of the qubit
|φ〉 at the end of the protocol and on f(x, y) = 1, Bob should
hold it.

As a simple example consider the case where f(x, y) =
x ⊕ y, the XOR function, with 1-bit inputs x and y. Alice
and Bob then have the following way of performing this task
perfectly by using a pre-shared quantum state consisting
of three EPR pairs (three ebits). Label the first two EPR
pairs 0 and 1. Alice teleports5 |φ〉 to Bob using the pair
labeled with her input x. This yields measurement result
i ∈ {0, 1, 2, 3}, while Bob teleports his half of the EPR pair
labeled y to Alice using his half of the third EPR pair while
obtaining measurement outcome j ∈ {0, 1, 2, 3} . In the
round of simultaneous communication, both players send
the classical measurement results and their inputs x or y to
the other player. If x⊕ y = 1, i.e. x and y are different bits,
Bob can apply the Pauli operator σi to his half of the EPR
pair labeled x = y ⊕ 1, correctly recovering |φ〉. Similarly,
if x ⊕ y = 0, it is easy to check that Alice can recover the
qubit by applying σiσj to her half of the third EPR pair.

If Alice and Bob are constrained to the types of actions
in the example above, i.e., if they are restricted to teleport-
ing the quantum state back and forth depending on their
classical inputs, there is a one-to-one correspondence be-
tween attacking the position-verification scheme PVfqubit and
computing the function f in the garden-hose model. The
quantum strategy for attacking PVfqubit in the example above
exactly corresponds to the strategy depicted in Figure 1 for
computing the XOR-function in the garden-hose model.

More generally, we can translate any strategy of Alice and
Bob in the garden-hose model to a perfect quantum attack
of PVfqubit by using one EPR pair per pipe and performing
Bell measurements where the players connect the pipes.

Our hope is that also the converse is true: if many pipes
are required to compute f (say we need super-polynomially
many), then the number of EPR pairs needed for Alice and

Bob to successfully break PVfqubit with probability close to 1
by means of an arbitrary attack (not restricted to Bell mea-
surements on EPR pairs) should also be super-polynomial.

The examples of (partial) functions from Theorem 2.21
show that the classical garden-hose complexity GH (f) does
not capture the amount of EPR pairs required to attack
PVfqubit. It is conceivable that one can show that arbitrary
attacks can be cast in the quantum garden-hose model and
hence, the quantum garden-hose complexity GH Q

ε (f) (or a
variant of it6) correctly captures the amount of EPR pairs

required to attack PVfqubit. We leave this question as an
interesting problem for future research.

5See Appendix C.1 for a brief introduction to quantum tele-
portation.
6In addition to the number of pipes, one might have to ac-
count for the size of the entangled state as well.

We stress that for this application, any polynomial lower
bound on the number of required EPR pairs is already in-
teresting.

3.3 Lower Bounds on Quantum Resources to
Perfectly Attack PVfqubit

In Appendix E, we show that for a function that is in-
jective for Alice or injective for Bob (according to Defini-
tion 2.4), the dimension of the quantum state the adversaries
need to handle (including possible quantum communication

between them) in order to attack protocol PVfqubit perfectly
has to be of order at least linear in the classical input size n.
In other words, they require at least a logarithmic number
of qubits in order to successfully attack PVfqubit.

Theorem 3.1. Let f be injective for Bob. Assume that
Alice and Bob perform a perfect attack on protocol PVfqubit.
Then, the dimension d of the overall state (including the
quantum communication) is in Ω(n).

In the last subsection, we show that there exist functions
for which perfect attacks on PVfqubit requires the adversaries
to handle a polynomial amount of qubits.

Theorem 3.2. For any starting state |ψ〉 of dimension
d, there exists a Boolean function f on inputs x, y ∈ {0, 1}n

such that any perfect attack on PVfqubit requires d to be expo-
nential in n.

These results can be seen as first steps towards establish-
ing the desired relation between classical difficulty of honest
actions and quantum difficulty of the actions of dishonest
players. We leave as future work the generalization of these
lower bounds to the more realistic case of imperfect attacks
and also to more relevant quantities like some entanglement
measure between the players (instead of the dimension of
their shared state).

4. CONCLUSION AND OPEN QUESTIONS
The garden-hose model is a new model of communica-

tion complexity. We connected functions with polynomial
garden-hose complexity to a newly defined class of log-space
computations with local pre-processing. Alternatively, the
class L(2) can also be viewed as the set of functions which
can be decided in the simultaneous-message-passing (SMP)
model where the referee is restricted to log-space computa-
tions. Many open questions remain. Can we find better up-
per and lower bounds for the garden-hose complexity of the
studied functions? The constructions given in [29] still leave
a polynomial gap between lower and upper bounds for many
functions. It would also be interesting to find an explicit
function for which the garden-hose complexity is provably
super-linear or even exponential, the counting argument in
Proposition 2.9 only shows the existence of such functions.
It is possible to extend the basic garden-hose model in vari-
ous ways and consider settings with more than two players,
non-Boolean functions or multiple water sources. Further-
more, it is interesting to relate our findings to very recent
results about space-bounded communication complexity [4].

Garden-hose complexity is a tool for the analysis of a spe-
cific scheme for position-based quantum cryptography. This
scheme requires the honest prover to work with only a sin-
gle qubit, while the dishonest provers potentially have to
manipulate a large quantum state, making it an appealing
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scheme to further examine. The garden-hose model captures
the power of attacks that only use teleportation, giving up-
per bounds for the general scheme, and lower bounds when
restricted to these attacks.

An interesting additional restriction on the garden-hose
model would involve limiting the computational power of
Alice and Bob. For example to polynomial time, or to the
output of quantum circuits of polynomial size. Bounding
not only the amount of entanglement, but also the amount
of computation with a realistic limit might yield stronger
security guarantees for the cryptographic schemes.
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APPENDIX
A. UPPER BOUND BY COMMUNICATION

COMPLEXITY
We show that the garden-hose complexity GH (f) of any

function f is at most 2D(f)+1 − 1, where D(f) is the deter-
ministic communication complexity of f .

Consider a protocol where Alice and Bob alternate in
sending one bit. The pipes between Alice and Bob are la-
beled with all possible non-empty strings of length up to
D(f), with one extra reserve pipe.

Let Av(x) be the bit Alice sends after seeing transcript v ∈
{0, 1}∗ given input x and let Bv(x) be the bit Bob sends after
a transcript v on input y. (Since Alice and Bob alternate,
Alice sends a bit on even length transcripts, while Bob sends
when the transcript has odd length.) Alice connects the tap
to 0 or 1 depending on the first sent bit. Then, Alice makes
connections

{{v, vAv(x)}|v ∈ {0, 1}∗ with |v| even and 1 ≤ |v| ≤ D(f)} .

Here vAv(x) is the concatenation of v and Av(x). Bob’s
connections are given by the set

{{v, vBv(x)} |v ∈ {0, 1}∗ with |v| odd and 1 ≤ |v| ≤ D(f)} .

Now, for all transcripts of length D(f), Alice knows the
function outcome. (Assume D(f) is even for simplicity.)

For those 2D(f) pipes she can route the water to the cor-
rect side by connecting similar outcomes, as in the proof of
Proposition 2.3, using one extra reserve pipe. This brings

the total used pipes to 1+
∑D(f)
i=1 2i = 2D(f)+1−1. The cor-

rectness can be verified by comparing the path of the water
to the communication protocol: the label of the pipe the wa-
ter is in, when following it through the pipes for r “steps”,
is exactly the same as the transcript of the communication
protocol when executing it for r rounds.

B. PROOFS

B.1 Proof of Theorem 2.12
Theorem 2.12 If f : {0, 1}n × {0, 1}n → {0, 1} is log-

space computable, then GH (f) is polynomial in n.

Proof. Let M be a deterministic Turing machine decid-
ing f(x, y) = 0. We assume that M ’s read-only input tape
is of length 2n and contains x on positions 1 to n and y on
positions n + 1 to 2n. By assumption M uses logarithmic
space on its work tapes.

In this proof, a configuration of M is the location of its
tape heads, the state of the Turing machine and the content
of its work tapes, excluding the content of the read-only in-
put tape. This is a slightly different definition than usual,
where the content of the input tape is also part of a config-
uration. When using the normal definition (which includes
the content of all tapes), we will use the term total con-
figuration. Any configuration of M can be described using
a logarithmic number of bits, because M uses logarithmic
space.

A Turing machine is called deterministic, if every total
configuration has a unique next one. A Turing machine is
called reversible if in addition to being deterministic, every
total configuration also has a unique predecessor. An S(n)
space-bounded deterministic Turing machine can be simu-
lated by a reversible Turing machine in space O(S(n)) [19].
This means that without loss of generality, we can assume
M to be a reversible Turing machine, which is crucial for
our construction. Let M also be oblivious7 in the tape head
movement on the input tape. This can be done with only a
small increase in space by adding a counter.

Alice’s and Bob’s perfect strategies in the garden-hose
game are as follows. They list all configurations where the
head of the input tape is on position n coming from position
n + 1. Let us call the set of these configurations CA. Let
CB be the analogous set of configurations where the input
tape head is on position n+ 1 after having been on position
n the previous step. Because M is oblivious on its input
tape, these sets depend only on the function f , but not on
the input pair (x, y). The number of elements of CA and
CB is at most polynomial, being exponential in the descrip-
tion length of the configurations. Now, for every element in
CA and CB , the players label a pipe with this configuration.
Also label |CA| pipes ACCEPT and |CB | of them REJECT.
These steps determine the number of pipes needed, Alice
and Bob can do this labeling beforehand.

For every configuration in CA, with corresponding pipe p,
Alice runs the Turing machine starting from that configura-
tion until it either accepts, rejects, or until the input tape
head reaches position n+ 1. If the Turing machine accepts,
Alice connects p to the first free pipe labeled ACCEPT. On
a reject, she leaves p unconnected. If the tape head of the
input tape reaches position n+1, she connects p to the pipe
from CB corresponding to the configuration of the Turing
machine when that happens. By her knowledge of x, Alice
knows the content of the input tape on positions 1 to n, but
not the other half. Alice also runs M from the starting con-
figuration, connecting the water tap to a target pipe with a
configuration from CB depending on the reached configura-
tion.

Bob connects the pipes labeled by CB in an analogous
way: He runs the Turing machine starting with the config-
uration with which the pipe is labeled until it halts or the
position of the input tape head reaches n. On accepting, the
pipe is left unconnected and if the Turing machine rejects,
the pipe is connected to one of the pipes labeled REJECT.
Otherwise, the pipe is connected to the one labeled with the

7A Turing machine is called oblivious, if the movement in
time of the heads only depend on the length of the input,
known in advance to be 2n, but not on the input itself. For
our construction we only require the input tape head to have
this property.
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configuration in CA, the configuration the Turing machine
is in when the head on the input tape reached position n.

In the garden-hose game, only one-to-one connections of
pipes are allowed. Therefore, to check that the described
strategy is a valid one, the simulations of two different con-
figurations from CA should never reach the same configura-
tion in CB . This is guaranteed by the reversibility of M as
follows. Consider Alice simulating M starting from different
configurations c ∈ CA and c′ ∈ CA. We have to check that
their simulation can not end at the same d ∈ CB , because
Alice can not connect both pipes labeled c and c′ to the same
d. Because M is reversible, we can in principle also simulate
M backwards in time starting from a certain configuration.
In particular, Alice can simulate M backwards starting with
configuration d, until the input tape head position reaches
n + 1. The configuration of M at that time can not simul-
taneously be c and c′, so there will never be two different
pipes trying to connect to the pipe labeled d.

It remains to show that, after the players link up their
pipes as described, the water comes out on Alice’s side if
M rejects on input (x, y), and that otherwise the water ex-
its at Bob’s. We can verify the correctness of the described
strategy by comparing the flow of the water directly to the
execution of M . Every pipe the water flows through corre-
sponds to a configuration of M when it runs starting from
the initial state. So the side on which the water finally exits
also corresponds to whether M accepts or rejects.

B.2 Proof of Proposition 2.16
Proposition 2.16 Let f : {0, 1}n×{0, 1}n → {0, 1} be a

function such that GHε(f) is polynomial in n, with error ε ≤
1
2
−n−c for a constant c > 0. For every constant d > 0 there

exists a polynomial q(·) such that GH
2−nd

(f) ≤ q
(
GHε(f)

)
.

Proof. The new protocol G′r(x, y) takes the majority of
k = 8n2c+d outcomes of Gri(x, y) where r1, . . . , rk are k
independent and uniform samples of the random string. We
have to establish (i) that taking the majority of k instances
of the original protocol indeed gives the correct outcome

with probability at least 1 − 2−n
d

and (ii) that G′r(x, y)
requires only polynomial pipes.

(i) LetXi be the random variable that equals 1 whenGri(x, y) =
f(x, y) and 0 otherwise. Note that the Xi are indepen-
dent and identically distributed random variables with
expectation E[Xi] ≥ 1−ε =: p. Whenever

∑k
i=1 Xi ≥

k
2

the protocol gives the correct outcome. Use the Chernoff
bound to get

Pr

[
k∑
i=1

Xi < (1− ζ)pk

]
≤ e−

ζ2

2
pk

for any small ζ. Picking ζ = n−c, so that (1 − ζ)pk is
still greater than k

2
, and filling in k, we can upper bound

the probability of failure by

e
− 8n2c+d

2n2c p ≤ 2−n
d

(ii) In Theorem 2.12 we show that any log-space computable
function can be simulated by a polynomial-sized garden-
hose strategy. Thus, if checking the majority of k garden-
hose strategies can be done in logarithmic space (after
local pre-computations by Alice and Bob), then G′r(x, y)
can be computed using a polynomial number of pipes.

Let Ai = EA◦(x, ri) be the local wiring of Alice for strat-
egy G on input x with randomness ri, and let Bi =
EB(y, ri). Alice locally generates (A1, . . . , Ak) and Bob
locally generates (B1, . . . , Bk). In the proof of Proposi-
tion 2.14 it was shown that simulating the outcome of a
single garden-hose strategy (Ai, Bi) can be done in log-
arithmic space. Here we follow the same construction,
but instead of getting the outcome of a single strategy
we simulate all k strategies. This can still be done in log-
arithmic space, since we can re-use the memory needed
to simulate each of the k strategies. To find the majority,
we need to add a counter to keep track of the simulation
outcomes, using only an extra log k bits of space.

C. QUANTUM PRELIMINARIES
For Appendices D and E, we assume that the reader is

familiar with basic concepts of quantum information theory.
We refer to [24] for an introduction and merely fix some
notation here.

C.1 Quantum Teleportation
An important example of a 2-qubit state is the EPR pair,

which is given by |Φ〉AB = (|0〉A|0〉B+|1〉A|1〉B)/
√

2 ∈ HA⊗
HB = C2 ⊗ C2 and has the following properties: if qubit A
is measured in the computational basis, then a uniformly
random bit x ∈ {0, 1} is observed and qubit B collapses
to |x〉. Similarly, if qubit A is measured in the Hadamard
basis, then a uniformly random bit x ∈ {0, 1} is observed
and qubit B collapses to H|x〉.

The goal of quantum teleportation is to transfer a quan-
tum state from one location to another by only commu-
nicating classical information. Teleportation requires pre-
shared entanglement among the two locations. To teleport
a qubit Q in an arbitrary unknown state |ψ〉Q from Alice
to Bob, Alice performs a Bell-measurement on Q and her
half of an EPR pair, yielding a classical measurement out-
come k ∈ {0, 1, 2, 3}. Instantaneously, the other half of the
corresponding EPR pair, which is held by Bob, turns into
the state σk|ψ〉, where σ0, σ1, σ2, σ3 denote the four Pauli-
corrections {I, X, Z,XZ}, respectively. The classical infor-
mation k is then communicated to Bob who can recover the
state |ψ〉 by performing σk on his EPR half.

D. SEPARATIONS BETWEEN QUANTUM
AND CLASSICAL GARDEN-HOSE COM-
PLEXITY

D.1 Deterministic Setting
Using techniques from [6], we show a separation between

the garden-hose model and the quantum garden-hose model
in the deterministic setting for the function EQ′, defined as:

EQ′(x, y) =

{
1 if ∆(x, y) = 0 ,
0 if ∆(x, y) = n/2 ,

where ∆(x, y) denotes the Hamming distance between two
n-bit strings x and y. We show that the zero-error quantum
garden-hose complexity of EQ′ is logarithmic in the input
length.

Theorem D.1. GH Q(EQ′) ∈ O(logn).

Proof. Alice and Bob start with the fully entangled quan-
tum state of logn qubits, i.e. with 1√

n

∑n−1
i=0 |i〉|i〉. Counting
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indices of the input bits from 0 to n− 1, Alice gives a phase
of −1 to state |i〉 whenever xi = 0 and Bob does the same
thing with his half when the bit yi = 0, yielding the state

1√
n

n−1∑
i=0

(−1)xi+yi |i〉|i〉 .

After both Alice and Bob perform a Hadamard transfor-
mation on their qubits, we obtain

1

n
√
n

∑
i

∑
a,b

(−1)xi+yi(−1)a·i(−1)b·i|a〉|b〉 .

So the probability pa,b of obtaining outcome a, b when
measuring in the computational basis is

pa,b =
1

n3

∣∣∣∣∣∑
i

(−1)xi+yi+(a+b)·i

∣∣∣∣∣
2

If x = y, then pa,b = 0 wherever a 6= b. If ∆(x, y) = n/2,
then pa,b = 0 wherever a = b. It follows that EQ′(x, y) =
EQ(a, b) — determining the equality of the n-bit strings x
and y is equivalent to computing the equality of the log(n)-
bit strings a and b. The garden-hose protocol for equality
needs a number of pipes that is linear in the input size. After
the quantum steps above, Alice and Bob can use O(logn)
water pipes to compute EQ(a, b).

We can also show that the deterministic classical garden-
hose complexity has an almost-linear lower bound.

Theorem D.2. GH (EQ′) ∈ Ω( n
logn

)

Proof. Theorem 1.7 of [6] shows that the zero-error clas-
sical communication complexity of EQ′ is lower bounded by
Ω(n). The statement then follows from Proposition 2.8.

D.2 Randomized Setting
The Noisy Perfect Matching problem (NPM) is a variant

of the Boolean Hidden Matching introduced in [14] where
they prove an exponential gap between the classical one-way
communication complexity and the quantum one-way com-
munication complexity of NPM. We adapt the given quan-
tum one-way protocol to our setting, showing that the quan-
tum garden-hose complexity is only logarithmic. This gives
a separation between the classical and quantum garden-hose
complexity of a partial function in the randomized setting.

The NPM problem is described as follows:8

Alice’s input: x ∈ {0, 1}2n.

Bob’s input: a perfect matching M on {1, . . . , 2n} and a
string w ∈ {0, 1}n. The matching M consists of n
edges, e1 = (i1, j1), . . . , en = (in, jn).

Promise: ∃b ∈ {0, 1} such that ∆(M · x ⊕ bn, w) ≤ n/3,
where ∆(·, ·) is the Hamming distance and the k-th bit
of the n-bit string M · x equals xik ⊕ xjk .

Function value: b.

Informally, the question asked is whether the parity on the
edges of M , where the vertices are entries of x, is close to
the parities specified by w, or not.

8For this example, we deviate from the earlier convention of
giving two n-bit strings as input to the players.

Theorem D.3. GH Q(NPM) ∈ O(logn).

Proof. Alice and Bob use log(2n) EPR pairs as quan-
tum state |ψ〉 = 1√

2n

∑2n−1
i=0 |i〉|i〉. Alice inserts her input

bits x = x0 . . . x2n−1 as phases of the shared superposition,
yielding the shared state

1√
2n

2n−1∑
i=0

(−1)xi |i〉A|i〉B .

Bob performs the following measurement: he uses projec-
tors Pk = |ik〉〈ik|B + |jk〉〈jk|B corresponding to the n edges.
As they form a perfect matching, we have

∑n
k=1 Pk = I

and PkPk′ = δkk′Pk, so {Pk}k is a valid orthogonal mea-
surement. Let us denote Bob’s measurement outcome by `.
Setting i := i` and j := j`, the post-measurement state is

(−1)xi |i〉A|i〉B + (−1)xj |j〉A|j〉B .

Alice then performs a Hadamard transform H⊗2n⊗I on her
part of the state, resulting in

2n−1∑
a=0

|a〉A
[
(−1)xi+a·i|i〉B + (−1)xj+a·j |j〉B

]
.

Alice measures her register in the computational basis and
obtains outcome a. Bob performs a Hadamard gate on basis
states |i〉B and |j〉B , that is, Hi,j = 1

2
(|i〉〈i|B + |i〉〈i|B +

|j〉〈j|B − |j〉〈j|B), resulting in the state

|a〉A
(

1

2

[
(−1)xi+a·i + (−1)xj+a·j

]
|i〉B

+
1

2

[
(−1)xi+a·i − (−1)xj+a·j

]
|j〉B

)
.

and measures in the computational basis. He gets outcome
i if and only if xi ⊕ a · i = xj ⊕ a · j which is equivalent to
xi ⊕ xj = a · (i ⊕ j). In case xi ⊕ xj 6= a · (i ⊕ j), Bob gets
outcome j.

In the garden-hose game played after the measurements,
Alice and Bob perform the garden-hose protocol for the
inner-product function described in [29] with a and i⊕ j as
their respective inputs. The protocol can be easily adapted
so that at the end of it, the water will be in one particular
pipe (known to Bob) on Bob’s side if a · (i ⊕ j) = 0, let us
call this pipe 0-pipe. The water will be in another “1-pipe”
(known to Bob) if a · (i ⊕ j) = 1. Furthermore, Bob knows
from his second measurement outcome if they are comput-
ing xi ⊕ xj or xi ⊕ xj ⊕ 1. In the first case, Bob looks at
the `-th bit of w and leaves the 0-pipe open if w` = 1 and
routes the 1-pipe to Alice, and if w` = 0 he keeps the 1-pipe
open and sends back the 0-pipe. This strategy computes
the function value w`⊕ xi⊕ xj , with ` uniformly random in
{1, . . . , n}. The promise guarantees that it gives the correct
value b with probability at least 2

3
. The second case (when

Bob knows that a · (i ⊕ j) 6= xi ⊕ xj) is handled by the
“inverse” strategy.

Theorem D.4. GHε(NPM) ∈ Ω(
√
n

logn
).

Proof. Combining the lower bound on the classical one-
way communication complexity from [14] of Ω(

√
n) with

Proposition 2.19 gives the statement.
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E. LOWER BOUNDS ON QUANTUM RE-
SOURCES FOR A PERFECT ATTACK

We show that for a function that is injective for Alice or
injective for Bob (according to Definition 2.4), the dimen-
sion of the state the adversaries need to handle (including
possible quantum communication between them) in order to

attack protocol PVfqubit perfectly has to be of order at least
linear in the classical input size n. We start by showing two
lemmas. The actual bound is shown in Section E.3.

In the last subsection, we show that there exist functions
for which perfect attacks on PVfqubit requires the adversaries
to handle a polynomial amount of qubits.

E.1 Localized Qubits
Assume we have two bipartite states |ψ0〉 and |ψ1〉 with

the property that |ψ0〉 allows Alice to locally extract a qubit
and |ψ1〉 allows Bob to locally extract the same qubit. In-
tuitively, these two states have to be different.

More formally, we assume that both states consist of five
registers R,A, Ã, B, B̃ where registers R,A,B are one-qubit
registers and Ã and B̃ are arbitrary. We assume that there
exist local unitary transformations UAÃ acting on registers

AÃ and VBB̃ acting on BB̃ such that9

UAÃ|ψ
0〉RAÃBB̃ = |β〉RA ⊗ |P 〉ÃBB̃ (1)

VBB̃ |ψ
1〉RAÃBB̃ = |β〉RB ⊗ |Q〉AÃB̃ , (2)

where |β〉RA := (|00〉RA+|11〉)RA)/
√

2 denotes an EPR pair
on registers RA and |P 〉ÃBB̃ and |Q〉AÃB̃ are arbitrary pure
states.

Lemma E.1. Let |ψ0〉, |ψ1〉 be states that fulfill (1) and (2).
Then, ∣∣ 〈ψ0|ψ1〉

∣∣ ≤ 1/2 .

Proof. Multiplying both sides of (1) with U†
AÃ

and mul-

tiplying (2) with V †
BB̃

, we can write∣∣ 〈ψ0|ψ1〉
∣∣ =

∣∣ 〈β|RA〈P |ÃBB̃ UAÃ V
†
BB̃
|β〉RB |Q〉AÃB̃

∣∣
=
∣∣ 〈β|RA〈P ′|ÃBB̃ |β〉RB |Q′〉AÃB̃ ∣∣

=
∣∣ 〈P ′|ÃBB̃〈β|RA|β〉RB |Q′〉AÃB̃ ∣∣ ,

where we used that UAÃ and VBB̃ commute and defined
|P ′〉ÃBB̃ := VBB̃ |P 〉ÃBB̃ and |Q′〉AÃB̃ := UAÃ|Q〉AÃB̃ . The
last equality is just rearranging terms that act on different
registers.

Note that writing out the partial inner product between
|β〉RA and |β〉RB gives

〈β|RA|β〉RB =
1

2

(
〈0|A|0〉B + 〈1|A|1〉B

)
,

where the operator in the parenthesis “transfers” a qubit
from register A to register B. Hence,∣∣ 〈ψ0|ψ1〉

∣∣ =
∣∣ 〈P ′|ÃBB̃ 1

2

(
〈0|A|0〉B + 〈1|A|1〉B

)
|Q′〉AÃB̃

∣∣
=

1

2
·
∣∣ 〈P ′|ÃBB̃ |Q′〉BÃB̃ ∣∣

≤ 1

2
,

9We always assume that these transformations act as the
identities on the registers we do not specify explicitly.

where the last step follows from the fact that the inner prod-
uct between any two unit vectors on the same registers can
be at most 1.

E.2 Squeezing Many Vectors in a Small Space
For the sake of completeness, we reproduce here an argu-

ment similar to [24, Section 4.5.4] about covering the state
space of dimension d with patches of radius ε.

Lemma E.2. Let B be a set of 2n distinct unit vectors in a
complex Hilbert space of dimension d, with pairwise absolute
inner product at most 1/2. Then, the dimension d has to be
in Ω(n).

Proof. For any two vectors |v〉, |w〉, we can rotate the
space such that |v〉 = |0〉 and |w〉 = cos θ|0〉 + sin θ|1〉 for
two orthogonal vectors |0〉 and |1〉. The Euclidean distance
between |v〉 and |w〉 can be expressed as∣∣ |v〉 − |w〉 ∣∣ = |(1− cos θ)|0〉 − sin θ|1〉|

=
√

(1− cos θ)2 + sin2 θ

=
√

1− 2 cos θ + cos2 θ + sin2 θ

=
√

2
√

1− cos θ .

If |v〉 and |w〉 have absolute inner product at most 1/2, we
have that | cos θ| ≤ 1/2 and hence

∣∣ |v〉−|w〉 ∣∣ ≥ 1. Therefore,
the vectors in B have pairwise Euclidean distance at least 1.
The set of unit vectors |w〉 with Euclidean distance at most
δ from |v〉 is called patch of radius δ around |v〉. It follows
that patches of radius 1/2 around every vector in the set B
do not overlap.

The space of all d-dimensional state vectors can be re-
garded as the real unit (2d − 1)-sphere, because the vector
has d complex amplitudes and hence 2d real degrees of free-
dom with the restriction that the sum of the squared am-
plitudes is equal to 1. Notice that the Euclidean distance
between complex vectors |v〉, |w〉 remains unchanged if we
regard these vectors as points of the real unit (2d−1)-sphere.

The surface area of a patch of radius 1/2 near any vec-
tor is lower bounded by the volume of a (2d − 2)-sphere
of radius ε where ε is a constant slightly less than 1/2.10.

We use the formula Sk(r) = 2π(k+1)/2rk/Γ((k + 1)/2) for
the surface area of a k-sphere of radius r, and Vk(r) =

2π(k+1)/2rk+1/[(k + 1) Γ((k + 1)/2)] for the volume of a k-
sphere of radius r. The total surface area of all patches,
which is at least 2n · V2d−2(ε), is not more than the total
surface of the whole sphere S2d−1(1). Inserting the formu-
las, we get

2n · 2πd−
1
2

ε2d−1

(2d− 1) Γ(d− 1
2
)
≤ 2πd

1

Γ(d)

Using the fact that
Γ(d− 1

2
)

Γ(d)
≤ 1

d
, we conclude that

2n ≤
√
π(2− 1

d
)ε−(2d−1) ≤ 2

√
πε−(2d−1) .

As ε < 1/2, we obtain that d has to be in Ω(n).

E.3 The Lower Bound
We consider perfect attacks on protocol PVfqubit from Fig-

ure 2. We allow the players one round of simultaneous

10The patch is a “bent” version of this volume.
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quantum communication which we model as follows. Let
|ψ〉RAÃACBB̃BC be the pure state after Alice received the
EPR half from the verifier. The one-qubit register R holds
the verifier’s half of the EPR-pair, the one-qubit register
A contains Alice’s other half of the EPR-pair, the register
Ã is Alice’s part of the pre-shared entangled state and the
register AC holds the qubits that will be communicated to
Bob. The registers BB̃BC belong to Bob where B holds
one qubit and B̃ is Bob’s part of the entangled state and
the BC register will be sent to Alice. We denote by qA the
total number of qubits in registers Ã and AC and by qB the
total number of qubits in B̃ and BC . The overall state is
thus a unit vector in a complex Hilbert space of dimension
d := 22+qA+1+qB .

In the first step of their attack, Alice performs a unitary
transform Ux depending on her classical input x on her reg-
isters AÃAC . Similarly, Bob performs a unitary transform
V y depending on y on registers BB̃BC . After the applica-
tion of these transforms, the communication registers AC
and BC and the classical inputs x and y are exchanged. A
final unitary transform (performed either by Alice or Bob)
depending on both x, y “unveils” the qubit either in Alice’s
register A or in Bob’s register B.

Theorem E.3. Let f be injective for Bob. Assume that
Alice and Bob perform a perfect attack on protocol PVfqubit.
Then, the dimension d of the overall state (including the
quantum communication) is in Ω(n).

Proof. We assume that the player’s actions are unitary
transforms as described before the theorem.

We investigate the set B of overall states after Bob per-
formed his operation, but before Alice acts on the state.
These states depend on Bob’s input y ∈ {0, 1}n,

B :=
{
V y
BB̃BC

|ψ〉RAÃACBB̃BC : y ∈ {0, 1}n
}
.

We claim that for any two different n-bit strings y 6= y′, the

corresponding two vectors V y|ψ〉 and V y
′
|ψ〉 in B have an

absolute inner product of at most 1/2.
Due to the injectivity of f , there exists an input x for

Alice such that f(x, y) 6= f(x, y′). Applying Alice’s unitary
transform Ux to both vectors does not change their inner
product, i.e.

|〈ψ|(V y)†V y
′
|ψ〉| = |〈ψ|(V y)†(Ux)†UxV y

′
|ψ〉| .

As f(x, y) 6= f(x, y′), the qubit has to end up on differ-
ent sides. Formally, there exist unitary transforms KAÃBC
and LBB̃AC that “unveil” the qubit in register A or B re-
spectively. Hence, we can apply Lemma E.1 to prove the

claim that the two vectors V y|ψ〉 and V y
′
|ψ〉 have an abso-

lute inner product of at most 1/2. In particular, all of the
vectors in B are distinct. Applying Lemma E.2 yields the
theorem.

E.4 Functions For Which Perfect Attacks Need
a Large Space

Using similar arguments as above, we can show the exis-
tence of functions for which perfect attacks require polyno-
mially many qubits.

Theorem E.4. For any starting state |ψ〉 of dimension d,
there exists a Boolean function on inputs x, y ∈ {0, 1}n such

that any perfect attack on PVfqubit requires d to be exponential
in n.

We believe that the statement with the reversed order of
quantifiers is true as well (but our current proof does not
suffice for this purpose), so that we can guarantee the exis-
tence of one particular function (independent of the starting
state) for which perfect attacks require large states.

Proof sketch. We consider covering the sphere with K
patches of vectors whose pairwise absolute inner product is

larger than
√

3
2

(which corresponds to an Euclidean distance

of ε =
√

2
√

1 +
√

3/2 ≈ 0.52). This partitioning also in-

duces a partitioning on all possible unitary operations of
Alice and Bob. We say that two actions A and A′ are in the
same patch if they take the starting state |ψ〉 to the same
patch. In other words, if two actions are in the same patch
then ∣∣〈ψ|A′†A|ψ〉∣∣ ≥ √3

2
.

Claim. Given two actions of Alice A,A′ coming from the
same patch i, and two actions of Bob B,B′ coming from
the same patch j, the inner product between BA|ψ〉 and
B′A′|ψ〉 has magnitude at least 1

2
.

Proof of the claim. Since Alice and Bob act on dif-
ferent parts of the state, their actions commute. Write
|ψA〉 := A′†A|ψ〉 and |ψB〉 := B†B′|ψ〉. Then the inner
product can be written as

〈ψ|A′†B′†BA|ψ〉 = 〈ψ|B′†BA′†A|ψ〉 = 〈ψB |ψA〉

Note that ∣∣〈ψ|ψA〉∣∣ =
∣∣〈ψ|A′†A|ψ〉∣∣ ≥ √3

2
,

so the angle θ between |ψA〉 and |ψ〉 is at most arccos
√

3
2

=
π
6

. The same holds for the angle between |ψB〉 and |ψ〉. We
can upper bound the total angle between |ψA〉 and |ψB〉 by
the sum of these angles, giving a total angle of at most π

3
.

This corresponds to a lower bound on the inner product of
cos π

3
= 1

2
.

So there exists no pair of combined actions AB and A′B′,
with A and A′ in patch i and B and B′ in patch j, such
that the qubit ends up on Alice’s side for AB and on Bob’s
side for A′B′. Therefore, the combination of i and j com-
pletely determines the destination of the qubit and hence
the output of the function. If K denotes the number of
patches, then there are K2n possible strategies for Alice and
K2n possible strategies for Bob. Hence, the number of com-
bined strategies (possibly resulting in different functions) is

at most K2·2n .
It is shown in [24, Section 4.5.4] that we need at least

K = Ω( 1
εd−1 ) patches. Using the same counting argument

as in Proposition 2.9, we have that

222n

≥ Ω

(
1

ε(d−1)2·2n

)
,

from which follows that for some function, d has to be ex-
ponential in n.
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