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Abstract

In the setting of information-theoretically secure secret-key agreement, two parties, Alice and
Bob, want to extract a secret key from independent realisations of a given distribution by
communication over a public channel in such a way that only minimal information about
the key is leaked to the adversary Eve. Considering this process as a transformation of
distributions, the secret-key rate of a distribution is redefined in a new way.

This new formalism proves to be convenient to generalise this setting to different active
adversaries. These adversaries are able to choose the initial distributions from a given set
of distributions but have no influence on the public channel. The corresponding secret-key
rates of sets of distributions are defined, and various relations between them are proved and
illustrated by examples. In particular, it is shown that an adaptive adversary is not more
powerful than an non-adaptive one.
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Chapter 1

Introduction

A main goal of cryptography is to establish a secret communication between two parties Alice
and Bob over an insecure channel overheard by the adversary Eve. Symmetric cryptographic
schemes have been used since Roman times to encrypt messages (e.g., the one-time pad) and
authenticate the communication, but all these schemes require an initial secret key shared by

Alice and Bob.

In 1976, Whitfield Diffie and Martin Hellman gave a solution for the problem of secret-
key agreement by introducing the revolutionary concept of Public-Key Cryptography [DH76].
Since then, Public-Key Cryptography has been extensively studied, improved, and become
very popular. Its security is based on the computational hardness of such mathematical prob-
lems as factoring large numbers or finding discrete logarithms. These problems are believed
to have no efficient solutions, i.e., a computationally bounded adversary cannot solve them
in reasonable time. However, since a sufficiently powerful adversary can solve any compu-
tational problem, and the non-existence of efficient algorithms for these problems has not
been proven so far, computational security is always conditional, and computationally-secure
schemes could be broken by future progress in complexity theory and hardware engineering
(e.g., quantum computing).

Unconditionally-secure cryptographic schemes are called information-theoretically secure.
The security can be proven using Information Theory, a mathematical theory based on prob-
ability theory and statistics, introduced by Claude Shannon [Sha48]. This thesis deals with
information-theoretically secure secret-key agreement by public discussion from common in-
formation. In this setting first studied by Maurer [Mau93], Alice and Bob start with some
correlated information not fully known to Eve. By discussion over a public channel completely
susceptible to eavesdropping by the adversary, they extract a mutual secret key in such a way
that only minimal information is leaked to Eve.

A protocol specifies, based on the correlated information, which messages are exchanged by
Alice and Bob over the public channel and how they calculate the secret key. This process can
be seen as a transformation of distributions. The initial joint distribution of the information
known to each party Alice, Bob, and Eve is transformed into another joint distribution which
is nearly an ideal secret-key distribution, i.e., Alice and Bob’s strings are equal as well as
uniformly distributed over the key space, and Eve’s knowledge is statistically independent.

In order to formally define protocols and quantities related to secret-key agreement, we
introduce in this thesis a new formalism which uses distributions instead of information-
theoretical measures like (Shannon) entropy and mutual information. This formalism makes
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it easy to deal with more general settings like secret-key agreement secure against active adver-
saries as described below or the reversed process of generating a joint distribution from secret-
key bits by public discussion. Studying the reversed process has been recently contributed
to better insights on how many secret-key bits can be extracted from a given distribution

[RW03].

1.1 Motivating Example: The Extended Satellite Scenario

One realistic way to obtain correlated information is the following satellite scenario introduced
in [Mau93] and completely analysed in [MW96]. Alice, Bob, and Eve use antennas to receive
random bits broadcasted by a satellite. The received bits are subject to various transmission
errors depending, among other things, on the quality and size of the antennas. Surprisingly, it
could be shown that an information-theoretically-secure secret key can be extracted from the
received bits by public discussion even if Eve’s equipment is much more sophisticated than
Alice’s and Bob’s, i.e., Eve’s error probability is much smaller than the error rate of Alice’s
or Bob’s bits.

Extending the scenario, assume that the adversary Eve uses a jamming transmitter to
disturb the transmission of the satellite’s bit stream. In this way she actively influences
the chances of transmission errors and hence “chooses” the initial joint distribution of the
information from which Alice and Bob want to extract a secret key.

In all scenarios studied so far, Alice and Bob have access to many independent realisations
of the same distribution. The property of the distribution specifying at which rate secret-key
bits can be extracted is called secret-key rate. In this thesis analogous quantities are defined
for a set of distributions. In the most general setting, the adversary Eve acts adaptively: she
chooses a distribution from the given set based on the outcome of her previous variables. This
enables her to generate dependent distributions. In a more restricted scenario, she chooses
independently (possibly different) distributions from the set. In a third setting, she fixes only
one distribution from the set, and the parties have access to independent realisations of this
distribution.

1.2 Contributions

A new formalism is introduced to define good protocols which yields a definition of the
secret-key rate of a distribution that is equivalent to the common definition but deals with
distributions rather than with information-theoretical quantities. In this formalism a well-
known upper bound on the secret-key rate is reproved, and known theorems are adapted to
the new form.

The formalism turns out to be suitable to define, for a given set of distributions, the secret-
key rate in the three scenarios of an active adversary! described above. Relations between
these secret-key rates are proved. It is shown in particular that the generalised secret-key rate
of a set of distributions equals the secret-key rate for a fixed distribution from a set which

't should be pointed out that in this thesis, contrary to the active adversaries considered in [Wol99,
Chapter €], an “active” adversary is only able to choose distributions but is not allowed to disturb the public
discussion by inserting, modifying, or deleting messages. Hence, the public channel remains the same as in the
passive model.
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is derived from the original one and that an adaptive adversary is not more powerful than a
non-adaptive one. Examples are given to illustrate the facts.

1.3 Outline of the Thesis

In Sections 2.1-2.3 of Chapter 2, the necessary definitions and notation used in the thesis
are presented, basic facts are restated, and some lemmata derived. Section 2.4 contains a
definition of good protocols based on the distance of distributions.

In Chapter 3, Section 3.1 gives the new definition of the secret-key rate of one distribution,
and basic properties are proved in Section 3.2. The reproof of an upper bound can be found
in Section 3.3. Section 3.4 adapts to the new formalism known theorems that are used in the
proofs later on.

Chapter 4 is concerned with sets of distributions. In the first Section 4.1, good protocols
for the different scenarios and the related secret-key rates of sets of distributions are defined,
and basic properties are shown in Section 4.2. In the remaining sections of the chapter,
relations between the different secret-key rates are proved.

The first Section 5.1 of Chapter 5 summarises the results from the previous chapters and
gives illustrating examples. Section 5.2 lists suggestions for further research.

The appendix contains two technical calculations which prove more precise results about
the continuity of mutual information used in Section 3.3 and the difference between drawing
with and without replacement discussed in Section 4.3.



CHAPTER 1. INTRODUCTION



Chapter 2

Notation, Definitions and Basic
Facts

2.1 Random Variables, Distributions, Distances

Notation 2.1. Random variables are denoted by capital letters A, B, C, ..., X, Y, Z.
Their ranges (or target sets) A, B,C,..., X, Y, Z are always finite.

We denote with XV = [X1,...,Xn] and XN = [X,,..., XnK] the first N and NK
random variables of the sequence X, X9, X3,.... If we are handling blocks of random vari-
ables, the following notation is used: X = [X1,...,Xn], X = [Xng1,.--, Xon], o,
X{ = [X(k-1)N415 - - - XNEK]

Notation 2.2. For X and Y random variables with the same range X, we use Px — Py as

short notation for the equality Vo € X' : Px(z) = Py (z).

In this thesis we often handle joint distributions of random variables X, Y, and Z with
finite ranges &', )V, and Z, respectively. For these probability distributions, we will use a
representation of the form given by the table below.

X T 9 Tn

Y (2)
(21) P11,1 (Zl) D211 (Zl) Pni1

Y1 (22) P11,2 (22) D212 (22) Pni,2
(2p) P11y (2p) P2.1p (2p) Pnip
(21) P1,2,1 (21) D221 (Zl) Pnp21

Ys (22) D122 (22) D222 (22) Pnp2,2
(2p) Pr2p (2p) P22, (2p) Pn2p
(Zl) Pimn (Zl) D2m (Zl) Pnym

Urn (22) P1,m,2 (22) DP2,m,2 (22) Pn,m,2
(2p) PLmp (2p) P2,mp (2p) Prmp

5
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The table entries are numbers p; jx = Pxyz(z;,y;, 2zx) where X = {z1,...,2,}, Y =
{v1,...,ym} and Z = {z,..., z,} are the ranges of X, Y, and Z, respectively. We usually
scratch all zero probabilities. Let for example X = Y = {0,1,2}, Z = {0,1,2,3} and the
joint distribution Pyyz of X, Y, and Z be given by the following table.

Z 0l1]2]3
(X,Y)

0,00 [F]0]0]0

010 |H|0]o0

(Lo [0 | 4|10

(LY [0 ]0]|0]|%

X 0 1

o
o~~~

o
=
-
=
o~
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=
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—
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Notation 2.3. We call a distribution of a random variable X trivial if X is constant, i.e.,

1 ifz=ug
3 X Px(z) =40 = . ’
To € x (2) rox { 0 ifz+# xo.
Definition 2.4. The Li-distance, or just distance, between two distributions of discrete ran-
dom variables X andY with the same range X is defined as

d(Px,Py) =) |Px(z) — Py(2)|.

zelX

The Li-distance between the distribution of a random variable X and the uniform dis-
tribution Pr over A’ can be interpreted as follows. Assume that d(Px, Py) < e. Then there
is a refinement of the probability space underlying X in which an event £ exists that has
probability at least 1 —¢ such that Px g = Py, i.e., with probability at least 1 —e, X behaves
like a uniformly distributed random variable.

In [CT91, Page 299] it is shown that the L;-distance equals the variational distance

1Px — Pyl]:

d(Px,Py)=2sup |Px(A) - Py(4)| = ||Px — Fy||.
ACX

We take a closer look at the distances of joint distributions.

Lemma 2.5. The distance of two joint distributions P4g and Pop is larger than the the dis-
tances of the marginal distributions. Formally, d (Pag, Pcp) > d(Pa, Pc), and d (Pag, Pcp) >
d (Pg, Pp).
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Proof.

d(PsB,Pop) = Y_|Pap(a,b) - Pop(a,b)]
b

Z Z‘Z(PAB((L,Z))—PCD(@J)))‘
a b
= Y |P4(a) - Po(a)|

= d(Pa, Pc).
The other inequality d (Pag, Pcp) > d(Pg, Pp) follows in the same way. O
The triangle inequality yields the following upper bound:
d(Pap,Pcp) < d(Pap, PcPg) + d(PcPp, Pep) -

Note that d(Psp, PcPg) can only be further upper bounded by d(P4, Pc) if A and B are
independent.

d(PaB, PoPg) = |Pag(a,b) — Po(a)Pa(b)|

a,b

= " |P4(a)Pp(b) — Po(a)Pp(b)]
a,b

=YY " Ps(b)|Ps(a) - Po(a)|
a b ~

= d(P4, Pc)

These two ideas are used to prove the following useful

Lemma 2.6. Let ¢ > 0 and XV = [X|,X,,...,Xn] be independent random wvariables
with the property that for all i holds: d(Px,, Py) < e. If the random wariables YN =
Y1,Ys,...,YN] are all independent and Py -distributed, it is true that d (Py~, Pyn) < N - €.

Proof. From above follows that

d(Px, X, X5.. Xn» PV Y2V YN )
< d(Px, X, X5.. Xns PV Pxy X5..Xn) + A(Pyy Pxyxs.. X x> Privs Pxs.. xn) +
+d (Pyyv, Pxy. X ns Privavs Py xn) + -+ A (Privavs. vy Px s PrivaYs.. Vi1 Vi)
= d(Px,, Py,)+d(Px,, Py,) + ...+ d(Px,, Pry)
< N-e.

O

If the variables X; and X, are both nearly Py-distributed but dependent, the distance
between the joint distributions cannot be bounded in terms of the distance between the
marginal distributions.
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For example, consider for 0 < § < 1/4 the following distribution:

JYZ
0 |3+ 5-9¢
1 | 1-0|3+496

The marginal distributions are both uniform Py, (0) = Px,(1) = Px,(0) = Px,(1) =
1/2. I Y is another uniform binary random variable independent of X; and X, we have

d(PXl,Py) =0 and d(PXQ,Py) = 0 but d(PXle,Pypy) =4-4>0.

2.2 Entropy, Mutual Information

We refer to [CT91] and [Bla90] for general introductions to all information-theoretical quan-
tities treated in this section and repeat only those facts that are used later on in this thesis
or might help to understand how these measures behave.

In this thesis the binary logarithm (to base 2) of a real number z € R is denoted by
log(z), the natural logarithm (to base e) by In(z). We denote the (Shannon) entropy of a
random variable with H (X)) and the conditional entropy with H(X|Z). It is easy to see that
conditioning reduces entropy [CT91, Theorem 2.6.5]

H(X|Y) < H(X).

Lemma 2.7. If the random variable A completely determines B, i.e., H(B|A) = 0, it follows
that for all X H(B|AX) =0, H(ABX)= H(AX), and H(X|AB) = H(X|A) holds.

Proof.

0 < H(B|AX) < H(B|A) =0
H(AX)+ H(B|AX) = H(ABX)
T

H(X|AB) = H(ABX) — H(AB) = H(AX) — H(A) = H(X|A).
O

Definition 2.8. The mutual information between X and Y and the conditional mutual in-
formation between X andY given Z are defined by

I(X;Y):= H(X) - HX|Y),
I(X;Y|Z):=H(X|Z)- HX|YZ).

It can be shown [CT91, Theorem 2.4.1] that
I(X:Y) = I(Y; X).
As H(Z|XY) < H(Z|Y), it follows from above that

I(XY;2Z)> I(Y; 2). (2.1)
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2.3 Markov Chains

Definition 2.9. A sequence of random variables X1, X, ..., Xy is called a Markov chain,

denoted by
XieoXoe ... Xy
if for all 1 > 1,
Px.x,Xs-Xi20 = Pxyxi:

See Notation 2.2 for the correct interpretation of equation (2.2).

The following lemmata state some basic facts about Markov chains.

Lemma 2.10. The following three statements are equivalent:
1. PZ|XY:PZ|Y) i.e., X&YYoz
2. PX|YZ:PX|Y; ZE,ZHY(—}X

3. Pxyy - Pzy = Px gy, t.e., X and Z are independent given Y.

. _ Pxvyz _ Pxvz Pxy L. Pyz Pxy _
PTOOf. 1.= 2.: PX|YZ = Pyy = Pxy Pyvz Py Pyg PX|Y

. __ P _ P P 2.
2':>3"PXZ|Y_%— ]%(YYZZ' ];lz/YZ—PX|Y'PZ|Y'

. _ Pxyvyz _ Pxvz Py 3 Pxy Pyz Py _
3.=1.: PZ|XY = Pxy — Py Pxy — Py Py Pxy — Pz|y.

(2.2)

O

From Lemma 2.10 follows that if X & Y <& Z & W is a Markov chain, the reversed
chain W & Z & Y & X is also Markov which justifies the arrows in both directions. Since
Pwixvz) = Pwiz = Pw|vz), X ¢ YZ < W is a Markov chain as well, and in a similar

way XY & Z & W and X &Y & ZW are Markov chains.

Note that Py xyz = Pw|yz does not imply Py |xy = Pyy. For X = Z =W and Y
statistically independent of Z = W, Py xy is trivial, and Py = Pw can be nontrivial.

Lemma 2.11. Let A, B, C, and Z be random variables with ranges A, B,C, and Z, respec-

tively.

1. If AZ & B + C'isa Markov chain, then A & BZ -+ C, A B & C,andZ < B & C

are also Markov chains.

2. If A BZ & C and Z & B & C are Markov chains, then AZ < B « C is a Markov

chain as well.

PTOOf. 1. PC|ABZ = PC|B = PC|ABZ = PC|BZ' By summing the equality PAZ|BC = PAZ|B

over z € Z and a € A, respectively, we obtain Py pc = Py g and Pzpc = Pz|-

2. Pojapz = Poipz = PoiB-

Lemma 2.12. If A+ BZ + C is a Markov chain, the following inequality holds

I(A; B|Z) > I(A; B|ZC).
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Proof.

I(A;B|Z) = H(A|Z)-H(A|BZ)=H(A|Z)- H(A|BZC)
> H(A|ZC)- H(A|BZC)=I(A;B|ZC)
where the first and last equalities are the definitions of conditional mutual information, and

the second follows by Markovity. The inequality is due to the fact that conditioning on further
random variables cannot increase entropy. O

If a random variable Y is send over a channel ¢ to obtain 17, the channel ¢ is completely
specified by the conditional probability P17|Y' Conditioning on further variables does not
change this probability. Therefore, we use the following

Notation 2.18. We write ... <Y &Y if the random variable Y is obtained by sending Y
over a channel c.

The ellipsis ... stands for any random variable(s) different from Y and Y.

Lemma 2.14. IfY and Z are sent over the same channel ¢ to obtain Y and 2, e, ...
Y &Y and ...« Z & Z with Py, = Py ;. Then it holds

d(Pyy,P,z) = d(Py,Py).
Proof.

d(PYf/vPZZ) :Z‘PY?(%@ - PzZ(yvg)‘

uy

:Z‘P?|Y'PY_PZ|2'PZ‘
Yy

:Z‘Pf/w‘PY_Pﬁy‘PZ‘ (2.3)
vy
Sy -
]
N —
=1
=d(Py,Pyz).
Equation (2.3) holds as the channel ¢ is the same. O

The channel ¢ from the previous lemma can be extended to a channel ¢/ whose output is
still Y and Z if XY and WZ are sent. This channel ignores the first variable and sends the
second over ¢. The lemma above then assures that d (PXYT/’ szz) = d (Pxy, Pwz) which
proves the following lemma.

Lemma 2.15. If ... &YV & Yand ... 2 & 2, it holds for arbitrary random variables X
and W that

P

d(P wzz) = d(Pxy, Pwz) .

XYY
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2.4 Protocols

In the setting of secret-key agreement by public discussion from common information [Mau93],
the two players Alice and Bob and the adversary FEve get realisations of random variables
X, Y, and Z with ranges X', ), Z, respectively and joint distribution Pxyz. Then Alice
and Bob communicate over an authentic but insecure channel. Eve reads all messages sent
over this public channel, but she is not able to alter, delete, or insert messages. After the
communication Alice and Bob calculate output random variables X and Y in the key space
S.

A protocol specifies, for each N € N, the messages Cq,Cjy,...,C; exchanged over the
public channel. The first message C] is sent by Alice to Bob and calculated by Alice knowing
only her realisation of XV, Bob sends to Alice the second message Cy which he calculates based
on YV and C etc. We assume that the number of messages, denoted by ¢, is even, i.e., the last
message C; is sent by Bob. Having sent C; to Alice, Bob calculates his output Y™ consisting
of M values from a target set S. After having received the last message Cy from Bob, Alice

calculates XM € SM_ In the following scheme we write for 1 < i <t:C" = [Cy,Cy,...,Cj].
Alice Bob
knows XV knows YN
Cy

calculates Cy based on XN receives Cq

calculates Cy based on

Cs

receives Cy YN,
calculates C'5 based on C
XNc2 3 receives Cj

C calculates C}; based on
receives C} t yNct-1
calculates XM based on calculates Y™ based on
JYNCt Yth

This process can be understood as a transformation of distributions and be formally
defined as follows.

Definition 2.16. A protocol P is a set of conditional probability distributions which specify,
for all N, how to transform the distribution Pxy~nyn~yn into Pymymynes where M € Nis a
function of N. The conditional probabilities define the second steps of the following Markov
chains:

YNZVN & XN & ¢y, (2.4)
XNZN o YNC! & Oy, (2.5)
YNZN & XNC? & C, (2.6)
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YNZN o XNC'2 o oy, (2.7)

XVNZN 4 v NCet & ¢y, (2.8)

XVNZN Y NCe* oYM, (2.9)

YMyNzN o XNC* 5 XM (2.10)

where C* = [C1,Cy,...,C;] for all1 < i <t, and C* := C* denotes the whole communication

over the public channel.
Definition 2.17. The rate of a protocol P is defined as Rate(P) = ]\}im %
—00

We want to study protocols that fulfill a certain task, i.e., that asymptotically transform
a given distribution Pxyz into another Pgy » in such a way that after the transformation
the adversary does not know more than Z. The allowed knowledge of the adversary can be
formalized by a random variable U which is obtained by sending Z over a channel. This yields
a set of “ideal distributions” {Pgarpary @ ... ¢ ZM + U}. We say that a protocol is good if
the distance between the obtained distribution Pgarymznes and the set of ideal distributions
Py nyag; tends to zero for large N. Formally, we make the following definition.

Definition 2.18. The set of all good protocols with respect to Pxyz and Py, is denoted
by T (PXYZ — PXYZ) and consists of those protocols that specify for all N a M(N) and
transform the distribution Pynynzn into Pyuymgngs in such a way that

(N—=o00)

min d (PXMYMZNC*VPXM}A/MU) — 0.
PU|ZM

Note that T’ (PXYZ — PAYZ) is not the empty set as trivial protocols without output,
i.e., with M = 0, are always good.

We can use protocolsin I’ (PXYZ — PXYZ) as well for a distribution Pgiz whose distance
to Pyxyz is small. The following proposition assures that the distributions generated by the

protocol do not differ more than the input distributions.

Proposition 2.19. Let P be a protocol which transforms Pxnyn~zn into Pguymzngs, and

let XNYNZN be random variables with the same range as XNYNZN . Then P transforms

Posiirgn mto Pogiexiox 5 such that

d (Pesryprznon Pengsigmas ) < d (Pxnvywan, Pespize ) -

Proof. Using the Markov chains (2.4) — (2.10) from the definition of a protocol and Lemma 2.11,
we see that the following are all Markov chains:

YM & XNYNZNC! o XM, (2.11)
XN & ZNYNCt 5 Y M, (2.12)
XN o YyNZNCt! o ¢, (2.13)
YN & XNZNC=2? & ¢y, (2.14)

YN & XVNZN & 0. (2.15)
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We use Lemma 2.5 for the first inequality and make repeated use of Lemma 2.15 for the
remaining steps.

=" d

d <PXM}7MZth,Pf(T/Iﬁ4ﬁ67> < d (PiMYMXNYNZNCt’PﬁﬁﬁWVﬁ&)
(221) d (P* MXNYNZN(it, Pﬁﬁﬁﬁaﬁ)
(2.12) d (PXNYNZNCt7 Pﬁﬁﬁﬁ)
(2.13) d (PXNYNZNC“—1 ) Pﬁﬁﬁﬁ)
(2.14) (

PynyngNgi-2, Pﬁﬁﬁ(j?—’z)

= d(PXNYNZN017 jﬁvﬁﬁa)
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Chapter 3

Secret-Key Rate of a Distribution

3.1 Definition of the Secret-Key Rate

In the scenario of secret-key agreement, we want to attain the distribution Ps,s, where
1 denotes a constant random variable, the key space § = {0, 1} is binary and S4, Sp have
key-bit distribution:

1/2 ifz=y=0,

Ps sp(z,y)=<X 1/2 ifz=y=1, (3.1)
0 ifz#y.
A constant variable is always independent. Hence, Ps,s,1 = Ps,s, - Pi. The set

I'(Pxyz — Ps,s,1) consists of all protocols P that transform, for all N, the distribution
Py~nynzn into Pguypmyngs in such a way that

min d (PXMYMZNC*7 PSMSMPU) — 0
Py)1 A °B

<= mind (PXMY/Mch*,PsMSM_P[]> (Njo) 0. (3.2)
Py 4°B

As the random variables U and L are independent, equivalence (3.2) holds.

Definition 3.1. The secret-key rate of a distribution Pxy z is defined as

S(Pxvz) = sup Rate(P).
,PGF(PXYZ%PSASBJ_)

It should be pointed out that this definition of the secret-key rate of a distribution is
equivalent to the earlier definition introduced in [Mau93]. It can be shown that

S(X;Y[[Z) < S(Pxyz) < Suw(X;Y][2)
where S,,(X;Y||Z) denotes the weak secret-key rate and S(X;Y||Z) the earlier definition of

the secret-key rate. These two quantities are defined and showed to be equal in [Wol99] which
gives the equivalence of the definitions.

15
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3.2 Properties of the Secret-Key Rate

The following proposition states that the secret-key rate increases as Eve’s knowledge de-
creases.

Proposition 3.2. Let Pxyz be the joint distribution of random variables X, Y, and Z. By
sending Z over a channel ¢, the random variable Z is obtained, i.e., ... & Z & Z. Then

S(Pxyz) < S(Pyy73)-

Proof. Let P be a protocol in I'(Pxyz — Ps,s,1). Thus, P transforms Pynyn~nzn into
Pgaymgnes in such a way that

N—oo
min d (Pyaryar e, Poysy P ) (N=2ed g, (3.3)
Py A °B

We show that the same protocol is secure and can be used if Eve gets random variables Al
instead of ZV.

Alice and Bob start with the same random variables as before. So, the protocol generates
the same output XMyM and communication C* with distribution PXMYMZNC* Let V be

the random variable that minimises d(Pgarya zn e, PSJIYS%PV> and denote by V the random

variable obtained by sending the Z-part of V over the same channel as Z, ie., ... &V (C—/> v
where the channel ¢’ sends the Z-part of V over ¢ and leaves the C*-part unchanged. It
follows

n;:]nd( XMyMzN0*7PS%S{\34Pﬁ) S d(PXMY/M’Z\NC*7PS%S%4P‘7)

<d (PXMYMZNC*iNC“PSﬁ/’Sg’PVV) (3.4)

—d (PXMYMZNC* , PSySgPV) (3.5)

= H’]gln d (PXMYMZNC* PSMSMPU) (36)
U

Inequality (3.4) is due to Lemma 2.5 and equality 3.5 follows from Lemma 2.15. The last
term (3.6) tends to zero according to (3.3). Hence, the protocol P is in ' (Pyy 5 — Ps,s5,1)
which shows that I' (Pxyz — Ps,s,1) C T (PXYE — PSASBJ_)7 and the proposition follows
by taking the suprema over the rates of the protocols in these two sets. O

Alice cannot gain any advantage by sending her variables over a channel.

Proposition 3.3. For a joint distribution Pxyz, let Pg be the distribution where X is

XYZ
obtained by sending X over a channel, i.e., ...« X < X. Then S( Pgyv ) < S(Pxyz)-

Proof. Let P be a protocol in T’ (P)?YZ — PSASBJ_). A protocol P € T'(Pxyz — Ps,s,1)
with the same Rate P = Rate P is obtained if Alice sends, as a precomputation, her variables
XN over the channel and then applies P. The proposition follows like in the previous proof.

O
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3.3 An Upper Bound on the Secret-Key Rate

In [Mau93] it has been shown that for every secret-key agreement protocol holds
S(Pxyz) <min{I(X;Y),I(X;Y|2)}.

For the trivial cases where Alice and Bob share no common information, i.e., X and Y are
statistically independent, or the adversary gets the same information as one of the players,
this bound implies that no secret key can be extracted because one of the quantities I(X;Y)
and I(X;Y|Z) vanishes.

As described in [Wol99, Section 5.1], a better bound is given by the intrinsic (conditional
mutual) information I(X ;Y| Z) which is the infimum over all quantities I(X;Y|Z) where Z
is obtained by sending Z over a channel.

I(X;YZ)=iuf{I(X;Y|Z):... o Z < Z}.
Theorem 3.4. [Wol99, Theorem 5.1] For arbitrary random variables X, Y, and Z, we have
S(Pxyvz) < I(X;Yl2Z). (3.7)

In this section we reprove Theorem 3.4 based on the new definition of the secret-key rate
introduced in Section 3.1.

For this proof two lemmata are used. The first says that mutual information given Eve’s
knowledge can only decrease in each step of a protocol. The second formalises the continuity
of mutual information.

Lemma 3.5. Consider a protocol P which transforms the joint distribution Pxynyn~yzn into
Pguysgnes. In each step of the protocol, the mutual information given FEve’s knowledge
cannot increase. Formally,

(XN, yNzNy > 1(xN;yN|zNc) (3.8)
> I(xXNvNizNc?)
> L.
> 1 (xN;vNiZzNer) (3.10)
> I (XM;yM|ZzNcr) (3.11)

Proof. From Definition 2.16 of a protocol, we know that YNZN « XN < C! is Markov and
by Lemma 2.11, YN & ZNXN & €' is Markov as well. Hence, Lemma 2.12 implies (3.8).
For the next step in the protocol, we obtain similarly

XNZN v N o 0y = XV o ZVNY N & 0.

Again, Lemma 2.12 implies (3.9). The same reasoning applies to all communication steps of
the protocol, therefore (3.10).

Using (2.9) and (2.10) and Lemma 2.11 again, we see that the following are all Markov
chains:

XN & ZNYNCr oYM (3.12)
YM o XNyNzNCe* o XM (3.13)
YN o XNZNC* o XM (3.14)
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From this we can conclude

1(xV;yNizNer) = H(xNzZNc*) - H (xNyNzNc)

G12) o <XN|ZNC*) _H (XND;MYNZNC*)
(XN, yNyMizNex)
H(YNYyM|zNc*) — H (YNYM|xNzNer)
H(YNYM|zNc*) — H (YNYM|XNxMzNer)  (3.15)
I (XNxM yNyM|zNe=)
(XM yNy M| ZzNc) (3.16)
(XM yMZzNC) . (3.17)

(AVARAVS

Inequalities (3.16) and (3.17) are due to (2.1) and (3.15) follows from
H (YNY/M|XNZNC*) = (YM|XNYNZNC*) +H (YN |xNzNc)
(3.14) ( |XNX—MyNZNC«*‘) L H (YN|XNX—MZNC«*‘)
H(YNYM|xNxMzNcr).
U

Lemma 3.6. The conditional mutual information is a continuous function of the distribution
with respect to the Ly-distance. Formally, let ABZ and CDU be random variables with joint
range A x B x Z. Then it holds

Ve > 038> 0:d(Papz, Popr) < 8 = |I(4; B|Z) — I(C; D|U)| < e. (3.18)

Proof. According to [CT91, Equation 2.61] the conditional mutual information I(A4; B|Z) can
be explicitly written as

Pap|z(a,b|z)
A B|Z PZ PAB|Z a b| log
zez;z %4 Pyz(alz) - Pgiz(b]2)
PABlz(a7b|Z)
=Y"r b 2)1 -
; 4Bz (a,b,2) - log Paz(al2) - P4 (b]2)
beB
2€Z

The distributions Pyp|z, P4z, and Pp|z can be written as sums in terms of Papyz, e.g.,

PABZ(GJ),Z): Pipz(a,b, z)
Pz(z) >ap Panz(a,b, z)

As summing, dividing and taking logarithms are continuous operations and the composition

Pypz(a,b|z) =

of continuous functions is a continuous function, the conditional mutual information is a
continuous function of the distribution. O

Lemma A.1 in the Appendix proves a more precise relation between I(A4; B|Z) and the
distribution Pspz.
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With the help of the two lemmata, we show the upper bound S(Pxyz) < I(X;Y] Z)

stated by Theorem 3.4.

Proof of Theorem 3.4. Let P € I' (Pxyz — Ps,s,1) be a protocol that transforms Py ~y~ 7~
into Pymym N« in such a way that

N—oo
min d (PX'MYMZNc*,PSMSMPU) ( :> ) 0. (3.19)
Py A°B

We denote by V' the random variable that minimises d (PXMYMch* , PSIJ;JS%PV). From the
definition of the secret-key-bit distribution (3.1) follows
(4S5 [V) = 1(S4'; S§) = M.

We claim that Alice’s and Bob’s mutual information given Eve’s knowledge after the protocol
tends to M if N approaches infinity. Fix ¢ > 0. Lemma 3.6 assures the existence of a § > 0
such that

d (PXMYMZNC*,PS%S%JPV) <= 1(xMyM|zNer) - 1(SY; SE V)|
= [I(XM;yM|ZNC*) — M| < e. (3.20)

Because of (3.19) we can choose Ny(d) € N such that
VN > Ny:d (PXMYMZNC*, PSIJ;JS%dPV) < & which implies (3.20).
As € can be arbitrary small, this shows
[(xXM,yM|zNc) W25 oy,
It follows that

1 1 oo 00 M
I(X;Y]2) = (XN YNz > N [(XM, yM|zN oy V23 Jim == = Rate(P)
—00

where the inequality is due to Lemma 3.5. This shows S(Pxyz) < I(X;Y]Z). According to
Proposition 3.2 the secret-key rate can only increase if Eve sends her Z-values over a channel
to obtain Z. Hence,

S(Pxyz) < S(Pyyz) < I(X;Y|2).

and Theorem 3.4 follows. O

3.4 A Lower Bound on the Secret-Key Rate

In this section more general entropy measures than the common Shannon entropy are used.
We refer to [Cac97, Chapters 2 and 3] for an introduction to these measures and repeat only
the definitions.
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Definition 3.7. The min-entropy of a random variable X with range X is defined as

Hy(X):=—log max Px (z).

The Rényi entropy of order 0 is defined as
Ho(X) = log |

where X' := {x € X : Px(z) > 0} denotes the set of all values the random variable X takes
on with positive probability.

Even more general is

Definition 3.8. For a fized ¢ > 0 the e-min entropy and e-Rényi entropy of order 0 are
defined as

H (X):= inf H. (X",
X’:d(PX/,Px)<€
Hj(X) = sup Ho(X').

X":d(Px:,Px)<e
The following theorem states a well-known lower bound on the secret-key rate.

Theorem 3.9. [Wol99, Theorem 4.7] For all distributions Pxyz there is a protocol P €
r (PXYZ — PSASBJ_) with

Rate(P) > max{I(X;Y) - I(X;Z),I(Y;X) - I(Y;Z)}. (3.21)
This lower bound has been generalised by Renner and Wolf as follows:!

Theorem 3.10. Let X, Y, and Z be random wvariables with joint distribution Pxyz and
€ > 0. With probability 1 — ¢, a secret key of size

max{HZ,(X|2) - H(X|Y), HS,(Y|Z) - Hy(Y|X)} (3.22)
can be extracted.

It can be shown that for any fixed £ > 0 and for enough independent realisations of the
random variables XY Z, (3.22) gets equal to the right hand side of (3.21).

The following proposition gives bounds on these entropies for K blocks which have nearly
secret-key distribution. Using Notation 2.1, consider blocks of random variables X{WYIMZ{V,
XMYyMzN . XMYMZE. We denote by ZVK all Z-variables and by X MKy MK ZNK 4]
random variables except the ones from the 2th block.

Proposition 3.11. Let e > 0. If for each © we have

min d (PXMY/_MZg\TXMKYMKZN_K, Porrgm -PU) <eg, (3.23)
PU Z z 7 —2 —2 — A"B

it holds that HY*(XMK|ZNK) > (1 — &) MK and HY*(XME|YMK) < \/eMK.

!This result has not yet been published.
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Proof. According to the remark after Definition 2.4, there exist events &, &3, ..., Ex that all
have probabilities smaller than € with the property that whenever the complementary event
&; occurs, XiM?iM is uniformly distributed and statistically independent of Eve’s knowledge
ZlN and all other blocks, hence a perfect secret key.

We claim that the probability that L or more events occur is upper bounded by %5 To
prove this claim, let S be the set of all 0-1-vectors of length K with L or more 1’s:

S = {§=(s1,5,...,51) € {0,1}X : w(3) > L}

where w(35) denotes the number of 1’s in §or the weight of 5. We denote by & the characteristic

vector of the events &1,&;,...,Ek, i.e., g, = 1 if the event &; occurs and g; = 0 otherwise. It
holds that
K
K-£>> P[] (3.24)
=1

=1 | 7e¢{0,1}¥:5;=1

>y p| Y £=+5

i=1 | 5€S:5;=1

S (3.25)

i=1 5€S5:5;=1

ZL-ZPF:,?} (3.26)

= L - P[L or more events occur].

The probability that the event &; occurs is smaller than e, hence (3.24). Equation (3.25) holds
because the events {€ = 5} and {£ = #} are disjoint for §# #. As every § € S has weight at
least L, (3.26) follows by double counting. This proves the claim.

If L events occur, the remaining K — L blocks are independent and perfect secret keys
according to (3.23). Hence, with probability at least 1 — %5 holds

H (XMK|ZNK)
HO ()Z—MKD}MK)

(K — L)M,

>
< L-log|SM = LM -log(2) = LM.

By setting L := /c - K, it follows that
HYF(XME|ZNEY > (1 - /e) MK,
HYF (XME|YMEY <\ [eMK.
]

Theorem 3.10 and Proposition 3.11 can be combined to yield the following useful propo-
sition.
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Proposition 3.12. Given a protocol which is applied to each block and transforms for each i
the distribution of the ith block Py~yn~ N 1nto Pymymynes in such a way that
(N—=c0)

there is a protocol which extracts at the same rate a secret key from the K blocks. Formally,
it transforms the distribution Pynky Nk zNk into Pyyxy v gy« such that

) el

min d (PXMKYMKZNKC* y Pomx g Py
Py A4 B

Proof. Given € > 0, N can be chosen large enough that inequality (3.23) is fulfilled. Propo-
sition 3.11 then assures that

HYF(XMF|ZNK) _ gy (XME)y M) > (1 - 2/6) MK.

Hence, by Theorem 3.10, we can extract with probability at least 1 — /2 a secret key of
length at least (1 — 2\/5) MK. As /e is arbitrarily small for large K and N, this proves the
proposition. ]

For independent blocks follows

Corollary 8.13. Given a protocol which transforms the distribution Pynyw~zn (not neces-
sarily identically nor independently distributed) into Pgamymyznes in such a way that
. N
mind (Pyayrznes, PoarspPr) 30, (3.28)
Py A °B
there is a protocol with the same rate which transforms K independent blocks of Pynynyw
nto PXMKYMKZNKC*K such that
. K,N
min d (PXMKYMKZNKC*K7 PSMKSMKPU) (" —_>>Oo) 0.
PU A B
Proof. As the blocks are independent, (3.28) implies (3.27) and Proposition 3.12 yields the
protocol. O



Chapter 4

Secret-Key Rate of a Set of
Distributions

4.1 Definitions

4.1.1 Good Protocols for Different Scenarios

Let us consider the setting in which Eve can choose the distributions Px,y;z; from a set of
distributions D. In the most general case, Eve acts adaptively, i.e., she chooses Px,y, z,, looks
at her realisation of Z;, then chooses Px,y, 7z, and so on. On the same lines as in Section 2.4,
we define what a good protocol for this scenario is:

Definition 4.1. Let D be a set of distributions Pxyz, and let XNYNZN be random vari-
ables with distributions in D. The distribution Px,y,z, might depend on Zy,2Zy,...,2Z;_;.
We denote by T'y (D — PXYZ) the set of all good protocols that transform, for all N, this
distribution Px~yn~yn into Pymymgnes in such a way that
. N
U|ZzM
In a more restricted scenario of independent distributions, Eve is not allowed to look at
her realisations while choosing. We define in analogy:

Definition 4.2. The set T’ (D — PXYZ) consists of all good protocols that transform, for
all N, the distribution Pynynznv = [[vy Px.y:z: with (possibly different) Px.y.7, € D into
Pguymgnes in such a way that (4.1) holds.

If we consider only the case of independent random variables with a fixed distribution, we
can define in a very similar way:

Definition 4.3. The set I's (D — PXY/Z) consists of all good protocols that transform, for
all N, the distribution Pxynynzn = Hfil Pxyz for a fized (but possibly unknown) Pxyz € D
into Pgmymynes in such a way that (4.1) holds.

4.1.2 Secret-Key Rates

Having defined good protocols in each case, we define the secret-key rates belonging to these
settings.

23
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Definition 4.4. The secret-key rate for dependent distributions is

Sa(D) = sup Rate(P).
'PEFd(D—>P5A5BJ_)

The generalised secret-key rate of a set of distributions D is defined as

S(D):= sup Rate(P).
PEF(D—)PSASBJ_)

The secret-key rate for a fixed distribution s

S¢(D) = sup Rate(P).
PEFf(’D—)PSASBJ_)

As Eve’s options are more restricted from scenario to scenario, it follows immediately that
S4(D) < S(D) < 5¢(D) (4.2)

because every protocol in I'y (D — Ps,s,1) can in particular handle the situation of in-
dependent distributions and is therefore in I' (D — Ps,s,1), and in the same way holds
I'(D— Ps,s,1) CT'y(D— Ps,s,1). By taking the suprema over the rates of the proto-
cols in these sets, the inequalities 4.2 follow. The main goal of this chapter is to study the
properties of the generalised secret-key rate S(D).

As a first simple fact, we show the following proposition.

Proposition 4.5. Let D be a set of distributions. Then

S(DP)< inf S(P . 4.3
£ )_nglzeD (Pxyz) (4.3)

Proof. Let P € T'f(D — Ps,s,1) be a protocol. It is clear from the definitions above that
VPxyz € D:P € F(PXYZ — PSASBJ_). It follows that VPxyy € D : Ff (D — PSASBJ_) -
I'(Pxyz — Ps,sp1). By taking the suprema of the rates over the two sets, we see that
VPxyz € D :S¢(D) < S(Pxyz). Hence, inequality (4.3) holds. O

4.2 Basic Properties

In this section the generalised secret-key rate of a set of distribution S(D) is studied, ex-
pressed, and bounded from above in terms of the secret-key rate for a fixed distribution
S¢(D) where the set D is derived from D. We start with two definitions showing how such

sets of distributions D can be derived.
Definition 4.6. For a set of distributions D, we define
D= {PXy(ZD) : Pxyz € D and D uniquely determines PXYZ}

the set of distributions with the property that, from her realization of ZD, Eve can learn the
joint distribution of XY Z.

Definition 4.7. Given a set of distributions D, the convex hull D of D is the intersection of
all conver sets containing D.
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Note that for a finite set of distributions D = {P)((lx),z, P)((Z%Z, . ,P)((n})/z}, the convex hull

can be expressed as follows

D=4 Y Py, Vit €R,0<a; <1, Yoy =1
i=1 ’

Some basic properties of derived sets are given by

Proposition 4.8. Let D, D1, and Dy be sets of distributions. Then the following three
statements hold.

1. VD1 C Dy : S§(D2) < S4(D1) and S(D2) < S(Dy).
2. VD : S¢(D') = S¢(D) and S(D') = S(D).
3. VYD : S4(D’) < S4(D) and S(D’') < S(D).
Proof. We prove only the statements about S(:), the reasoning for S¢(:) is the same.
1. follows from I' (D3 — Ps,s,1) CT' (D1 — Ps,s5,1)-

2. >: Eve knows the the distributions of XYZ already because she chooses them from D.
<: Eve can “forget” the additional information by sending ZD over a channel which
eliminates D. Proposition 3.2 assures that this can only increase the secret-key rate.

3. Using the same argument, Eve can “forget” her additional information.

Proposition 4.9. For a set of distributions D holds that S(D') = S(D).

Proof. <: S(D') < S(D') = S(D) by Proposition 4.8, points 1 and 2.

>: For a probabilistic adversary Eve, let R be the random tape determining all of Eve’s
probabilistic choices. For a fixed randomness R, Eve’s strategy to choose N distributions from
D’ is deterministic. According to Carathéodory’s Fundamental Theorem [Eck93], each point
in the convex hull D’ can be expressed as convex combination of n distributions from D’ where
n depends on the dimension of the joint range A X Y x Z. Therefore, Eve’s deterministic

strategy can be described by at most nN distributions P)((];/(ZD) € D' and real numbers

agi) e Rforl <¢< N,1<j<nN with the property that Vi : 0 < agi) <1, E;’ivl agi) =1
nN 7 ]
and Pxyiz, = 50 0" Py 7
We consider another adversary George. Contrary to the deterministic Eve (remember that
R is fixed), George makes probabilistic choices, i.e., for a fixed strategy ozgl)
with probability ay) P)((j})/Z as distribution of Px,y,7,. After his choice George forgets the
(7)

probabilities a7’ and keeps in mind only which distributions from the set D he has chosen.

, George chooses

George’s resulting distributions Px,v, 7, Px,v,7,, ... are the same as Eve’s as long as they
use the same strategy.
We claim that George’s knowledge about the distributions Px,v, 7z, Px,v,7,,... is the

same as Eve’s. For every ¢, Eve can derive from Z;D; “from which corner in D the realisations
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of X;Y;Z; come”, i.e., which of the distributions in D the distribution of X;Y;Z; is. George
has kept exactly this information in mind after his probabilistic choice.

Hence, we have shown that the two kind of adversaries are equally powerful, and without
loss of generality, we can assume George (instead of Eve) as adversary. This results in a sit-
uation where we can apply a protocol P € I' (D — Ps,s,1). Therefore, I' (ﬁ — PSASBJ_> D
I'(D — Ps,s,1) and the inequality follows by taking the suprema over the rates of the pro-
tocols in these two sets. O

Corollary 4.10. For all sets of distributions D, S(D) = S(D) holds.

Proof. S(D) > S(D) follows from the first point of Proposition 4.8. The proposition above

assures S(D) = S(D’), and S(D’) < S(D) holds true by Proposition 4.8, point 3. O

4.3 Relation Between S(D) and S;(D)

Having given the relations between the secret-key rate of a set D and its derivatives in the last
section, this section investigates the relation between S(D) and Sf(-). The goal is to prove

Theorem 4.11. Let D be a set of distributions. Then it is true that
S(P) = S¢(D").

We first give the key ideas that lead to the proof presented at the end of this section. The
relation S(P) = S(D’) < S;(D’) follows from Proposition 4.9 and (4.2). For the other inequal-
ity S(D) > S;(D’), Eve independently chooses distributions Px,v,z,, Px,vyZs: - - - s PXnVnZn
from a finite set D. Alice and Bob want to use a protocol P € T’y (5—> PSASBJ_) which
handles only random variables with a fixed distributioiirlﬁ.

A first idea Alice and Bob can have is to draw X;Y; uniformly at random from their

random variables {X1Y7, X1Y5,... ,X]_VYN}. It is easy to see that Py = % Efil Px.y,
which is an element of the convex set D. They might continue to independently draw (with
replacement) N times from {X;Y1, XoYs,..., XnYn} with the idea to obtain P)}vafv 2

(% Efil Px,y.)N and apply P, but this works only if no variable is drawn twice as otherwise

XNYN are not independent. It is well-known that the first time an element is drawn twice
when drawing uniformly and independently with replacement from a set with N elements is
around the v/Nth try which disables the proposed procedure.

Alice and Bob have to make sure that their random variables remain independent. They
draw from {X Yy, XoYs, ..., XnYn} without replacement which is the same as permuting
their variables. The distribution of the first element drawn Pf(vl?l is the average distribution

% Ef\il Px,y; just like above, but with every element that is drawn, the distribution differs
more from the average distribution.

This problem can be eased by drawing (without replacement) only a few elements from
a large set of variables which results in permuting N K variables and processing them in K
blocks of size N. It is shown in Appendix A.2 that the resulting distribution P-<-—x of one

XNy N
block tends to the average distribution as K goes to infinity. Lemma A.2 can be used to prove
Theorem 4.11 as alternative to the proof presented below.
The adversary Eve chooses the distributions and learns the permutation sent over the
public channel. Hence she knows the exact distributions of all random variables. When
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considering a protocol for a fixed distribution from D, we have to take care that none of the
adversary’s information is lost. That is why we take a protocol from I'; (ﬁ — PSASBJ_).

For the proof of Theorem 4.11, a result from [DF80] that formalises the above ideas is
used. Let 8 be a set of finite cardinality ¢. Let S¥ be the set of k-tuples of elements of S. A
probability P on S* is said to be exzchangeable provided it is invariant under permutations.
More precisely, if 7 is a permutation of {1,2,... &k}, then

]3(817 e ,Sk) = P(Sﬂ(l), .. .Sﬂ.(k)).

Let 8* be the set of probabilities on §; geometrically, §* is the unit simplex in R For a
probability Q € §*, let QF = Hle @ be the distribution of k independent picks from Q. If
p is a probability on the Borel subsets of §*, we define the probability P, on S* as follows:
Choose Q from 8* at random with probability p, then make k independent picks from Q.
Formally,

Pu(4) = | Q"4)n(aq).

If P is a probability on 8” and k < n, let P be the projection of P onto S¥. More formally,
Py is the distribution of (sq, ..., si) when the n-tuple (s1,..., Sk, Sk+1, ..., Sn) is distributed
according to P. Clearly, (Pu,)r = Puk.

Theorem 4.12. [DF80, Theorem 3] Let 8 be a set of finite cardinality ¢ € N. For n € N,

let P be an exchangeable probability on 8™. Then there exists a probability i on the Borel
subsets of §* such that

k
|P. — Pu|| < 2¢—  forall k < n.
n

Proof of Theorem 4.11. As stated above, it follows from Proposition 4.9 and (4.2) that S(D) =

S(D") < S¢(D"). As S(D) = S(D’) it remains to prove S(D’) > S¢(D’) which is done by giving

for each protocol Py € I'y (ﬁ — PSASBJ_) a protocol with the same ratein I' (D' — Ps, 5,1 ).
Fixe > 0and Py €Ty (ﬁ — PSASBJ_). The protocol Py transforms P)](VYZ = Hfil Pxyz

for Pxyz € D' into Pgarymynes so that for large enough N holds

min d (PXMYMzNC* , PSIJX[SJJ!\?/IPU> <e. (4.4)

P(]

Let Eve independently choose distributions Px, v, (z, D, ) PX,vs(ZsDs)s - - - from D'
For K € N which will be chosen later on, the protocol P consists of the following steps:

1. Alice chooses uniformly at random a permutation 7 from the set of all permutations of
NK elements. She sets forall : =1,2,... , NK : X; == X ;).

2. Alice sends as first message Cp := 7 to Bob. Bob sets Y, = Yy Vi=1,2,... ,NK.

3. Alice and Bob partition their random variables into K blocks of size N:

XaYh, .. XNYN, XYt XonYon, o XNk YN (-1 410 - - ANKYNE
XNy XNV ARV

To each block _;(;TV{/;N they apply the protocol Py.
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We claim that P fulfills condition (3.28). Then Corollary 3.13 yields a protocol in
I'(D' — Ps,s,1). For an arbitrary joint distribution Pynxynxzvx of NK discrete random
variables and a randomly chosen permutation w, the “permuted” probability PXNK;//T\&}T\&
is exchangeable because it is invariant under permutations. According to Theorem 4.12 there
exists a probability p such that

n
d (P s PRy z,) < 20557

foralln < NK (4.5)

where ¢ = |X x Y x Z| and Pxyz, does not depend on n and is defined as follows: choose
Pxy z at random with probability p, then make n independent picks from Pxyyz. Formally,

P)?YZ,M(JU’%Z):/P)?YZ(%%Z)H(CZPXYZ)-

For n =1 follows from (4.5) that Pxyz, lies in D for large N and K because P)& vz € D

and

1 (N K—=x)
NE

We choose K large enough such that in each block 7, the real distribution is nearly identically
distributed. Formally,

d (P)’(j?le, PXYZ,M) <2c

N 1
d (Pﬁﬁﬁ P)](VYZM) < 2o =204 < (4.6)

Eve chooses the distributions from D and learns 7 from the first message Cy. Hence,

she knows the distribution of each random variable PX S As the random variables are

independent, only Z,-D,- = Zn(i)Dx() gives information about :‘{}7 By Definition 4.6 5

uniquely determines the distribution PX N7 7 Hence, we can assume without loss of generality

that Eve only knows Zb:, ZEZ, .. ZNADNK, i.e., she forgets the original distributions

Px.vi(2,D1)s PXsYs (22Ds)s - - - 7PXNKYNK(ZNKDNK) as well as the permutation .
Considering the ith block, the same argument yields that we can assume Eve to know

only ZNDN Hence, the protocol Py can be applied to this block. It transforms P

XNYNZN
into PXMYMZNC* and PXYZ,M into Pgymymzngs. We conclude
n}gln d(PXMYMZNG*’ PS%S%dPU) (4.7)
< T%;n (d(PXMyMZNC* ; PXMYMZNC*) + d<PXMYMZNc* ; Psys]gdPU)>
= d( SMyM NG PXMYMZNC*) + H}%Ii]n d(PXMYMZNC* , PSySJ'yPU)
<d(P ( SNTNZN PXYZ,,u) + min d(PXMYMZNc* : Ps{;ﬂsgdPU) (4.8)
< 2e. (4.9)

Inequality (4.8) follows from Proposition 2.19 and (4.9) from (4.4) and (4.6). Therefore (4.7)
can be made arbitrarily small and Corollary 3.13 be applied to obtain a protocol with the
same rate as Py in ' (D' — Ps,s,1). O
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4.4 Recognition of a Distribution

4.4.1 Groups of Similar Distributions

Alice and Bob can try to find out which distribution(s) the adversary Eve has chosen. If Eve
chooses independently from an infinite set D, and we assume that the players Alice and Bob
can deduce the distributions from their random variables, they are able to form groups of
random variables with similar distributions. A protocol suitable for each group can then be
applied.

Alice and Bob are also allowed to communicate over the public channel in order to de-
termine the joint distribution as long as the conversation does not reveal more information
about the realisations to the adversary than Eve already has from the joint distribution.

Theorem 4.13. Let D be a set of distributions Pxyy so that, for all 1, Alice and Bob are
able to find out from their random variables X;Y; and by restricted public discussion described
above the joint distribution Px,y,z;. Then

S(D)= inf _S(Pxyz).

Pxyz€D

Proof. From relation (4.2) and Proposition 4.5 follows S(D) < S¢(D) < infpy, ,ep S(Pxyz).

To show the other inequality, consider random variables X;Y1 7y, X5Y27;,... with given
distributions Px.v, 7z, Px,v,7,,... € D.
Let ¢ > 0 and N large enough that for all protocols P € |J T (Pxyz — Ps,s51)
Pxvz€D
holds
min d (PXMYMch*,PsMsMPU) < €. (4.10)
PU AYB

In a first step Alice and Bob communicate over the public channel to determine all joint
distributions Px;y;z,. By assumption this is done in a such way that no new information is
revealed to Eve. After this step all players involved know all distributions.

Alice and Bob want to partition Px,v,z, , Px,v, 7, . into a finite number of classes. In
each class, the maximal distance between pairs of distributions should be ¢/N.

From a geometric point of view, a distribution Pxy 7z can be seen as a point of the unit
simplex in R¢ where ¢ = | x YV x Z| denotes the dimension of the joint range of XY Z. D is
a subset of this simplex.

Recall that the Lq-distance of two points a,b € R¢is defined as ) ;_, |a; — b;|. Hence,
the maximal L;-distance between two points in a two-dimensional square with side length
d is 26. In a three-dimensional cube with side length §, the maximal distance is 34. In the
c-dimensional hypercube it is ¢- 4. To cover the unit simplex in R¢in such a way that the
maximal distance in one class is at most /N, we need therefore a c-dimensional <—-grid.
Hence, the number of classes to cover the unit simplex in this way is upper bounded by
(&)C < 00.

4

By partitioning the infinitely many distributions Px,v, 7, , Px,v, %, - - - into this finite num-
ber of classes, we consider only those classes that get infinitely many elements when more
and more distributions are divided up into the classes.

Let us denote the distributions in one of these classes with PZT,;Z, PJE%Z’ .... Alice
and Bob arbitrarily fix one of these distributions, denote it by Pxy 7, and choose a protocol



30 CHAPTER 4. SECRET-KEY RATE OF A SET OF DISTRIBUTIONS

P €T (Pxyz — Ps,s,1). All other distributions of this class have distance at most ¢/N
from PXYZ They form blocks of length N with the realisations of the random variables:

X1Y1Z1, . ,XNYNZN, Xn+1YN+1ZN+1, - - ,XQNYQNZZN, .... In each block 7 Lemma 2.6
assures that

d (Pﬁﬁﬁ,P)](\fyz) <e Vi=1,2,.... (4.11)

The protocol P is applied to each block. It transforms Pﬁﬁzﬁ into PXMYMZNC* and

P)](VYZ into Psﬁds%lch*. It follows like in the previous proof that

rr]gln d<PXMYMZNC*’ PSIJ;JS%dPU> (4.12)

< min (d(Pﬁﬂﬁav* , PXMYMch*) + d(PXMYMZNC* , PSQ/IS%/’PU)>

PU

= d( XMYMZNC* , PXMYMzNC*> + n}ljlljn d(PXMYMzNC* , PSIJ;/IS%/]PU>

IA

A( Pz PRvz) + mind(Prsyazves Psysy )

<2 by (4.11) and (4.10).

Hence, (4.12) can be made arbitrarily small. Applying Corollary 3.13, Alice and Bob
obtain a secret key at rate S(Pxyz) from this class. The same thing can be done for all infinite
classes. After another step of Privacy Amplification!, i.e., application of Corollary 3.13 to
minimise Eve’s knowledge about the keys from different classes, Alice and Bob share a secret
key. As only protocols with rates larger than infp, , ,ep S(Pxyz) have been used, this yields
an overall secret-key rate which is larger or equal to infp, . ,ep S(Pxyz). O

4.4.2 Estimate a Distribution

The scenario of the previous section is based on the quite strong assumption that Alice and
Bob are able to directly deduce the joint distribution Pxyz from a single representation of
their variables. Motivated by the bounds of S(D) in terms of Sf(-) from Section 4.3, we
restrict ourselves in this section to a fixed distribution from D which Alice and Bob want to
estimate based on independent realisations. They use some of their variables to estimate this
distribution and apply a protocol intended for the estimated distribution to extract a secret
key from the rest of their variables. We have to make sure that they can somehow deduce the
joint distribution Pxy 7 from their estimate ]3Xy. This is done by the following definition of
a continuous set D.

For a set of distributions D, let f be the function which gives for every marginal distri-
bution Pxy from D the set of all possible original distributions. Formally,

f(Pxy) = {PXYZ €D:Pxy = EPXYZ}-

'See [Wol99] for a definition of Privacy Amplification.
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Definition 4.14. The set D and the function f are called continuous if

V€>OE|5>0VPXy,ﬁXYED:d(PXy,ﬁXy) <é= max ‘d(PXyz,ﬁXyz> <e.
Pxyz€f(Pxy)

Pxyz€f(Pxy)

Theorem 4.15. For a continuous set D holds

S/(D)= inf S(Pxyz).

Pxyz€D

For the proof of this theorem, two statistical tools from [CT91] are used. The relative
entropy D(P||Q) of two probabilities P and @ is another measure of the distance between P
and @. It behaves like the square of the Euclidean distance:

Lemma 4.16. [CT91, Lemma 12.6.1]
D(PIQ) - 202 > d(P,Q)*.

Definition 4.17. [CT91] The type or empirical probability distribution Py of a sequence
x = (21,22, ..., Tn) 18 the relative proportion of occurrences of each symbol of X, i.e., Px(a) =
N(a|x)/n for all a € X, where N (a|x) is the number of times the symbol a occurs in the
sequence X € X",

The following theorem gives the key estimate.

Theorem 4.18. [CT91, Theorem 12.2.1] Let X1, Xo,..., X, be random variables indepen-
dently and identically distributed according to Q(z). Then

—nfe— log(n+1
Pyn [D (Pr]|@) > €] < 27" (573156

Proof of Theorem 4.15. Proposition 4.5 states Sy(D) < infp,, ,ep S(Pxyz). For the other
inequality fix a distribution Pxyz from D and let X Y12, X,Y57,,... be independently
Pyxy z-distributed. For a fixed € > 0, we choose N large enough that for all protocols P €

U F(ﬁXYZ%PSASBJ_> holds
Pxyz€D

min d(PXMYMzNC*, PSMSMPU) <e. (4.13)
Py 4 °B

The idea of the proof is that, for a L € N which is determined later on, Alice and Bob
use L of their random variables to determine a distribution Pxyz which is an estimate of the
true distribution Pxyz. They then partition the remaining variables into K blocks of size N

and apply a protocol in T’ (f’XYZ — PSASBJ_) to each block.
For K, L € N the following protocol processes NK + L variables:

1. Alice and Bob exchange the first L variables over the public channel. From the sequence

xy = (z1y1,...,2Lyr) they both determine the empirical distribution
~ N (zy| Xty T
By () = LEYT)

L
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2. They agree on a distribution fA’Xy € D with minimal Li-distance to ﬁxy.

3. They further agree on ﬁXYZ € f(f’Xy) and a protocol P € T <13XYZ — PSASBJ_). After

partitioning the remaining variables into K blocks of size N, P is applied to each block.

Since D is continuous, there exists a §(¢, N) > 0 such that
d (ny, ﬁxy) <dé=d (PXYZ, ﬁXYZ) < %
The probability that d(PXy, ]3Xy) > d(PXy, ﬁxy) > 4 is bound as follows
Pyiyr {d(f’xy,PXy) > 5} — Pyiyr :d(ﬁxy,PXy)z > 52}

< Pyiyr | D(PyllPxy) -2n2 > 8% (4.14)

_ R 52
= PXLyL D(nyHPXy) > 21n2:|

(o )yt
<2 L(21n2 |X| |y| gL ) (415)

Inequality (4.14) is due to Lemma 4.16, and the last inequality is given by Theorem 4.18.
Depending on §, i.e., on N and ¢, we choose L € N large enough that the last term (4.15) is
smaller than e.

This shows that with probability 1 — ¢ Alice and Bob can estimate the true distribution
Pxyz by f’XYZ which is good enough that in each block holds:

d <P)](VYZ7 ﬁ?yz) <N-d (PXYZ7 ﬁXYZ) <e (4.16)

<e/N

where Lemma 2.6 is used for the first inequality. For the rest of the proof, we denote with
Pgyym N ex the distribution generated by the protocol P when applied to the #th block and

by Pﬁﬁﬁ@ the generated distribution if the processed variables had distribution Pxyz

and conclude as usual:

min d( Pgary Payisu P )
pin d(Pyyoyzycy, Poyisy P

< d(Pxpypzyos Pewgving: ) + min d (Pwgwzmes Powsy o)

IA

d (P;](Vyzy P)](Vyz) +min d <P§z\7ﬁ4ﬁé\* : Psgys;yPU)

2 by (4.16) and (4.13).

IA

The blocks are independent, Corollary 3.13 applies. We showed that with probability
1 — g, we can extract a secret key at rate

KM M(N)

EN+L y4 10

(4.17)

As L is independent of K, we let K grow faster than L(N) for N — oo. Hence, we have ob-
tained a protocol in I'y (D — Ps, s, 1) whose rate (4.17) tends to lim y o0 % = Rate(P) =
S(fA’XYZ) >infp,,,ep S(Pxyz) with probability at least 1 —e. O
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4.5 Adaptive Eve: Dependent Distributions

In this section we show that the generalised secret-key rate S(D) is equal to the secret-key
rate of dependent distributions S4(D).

Theorem 4.19. For all sets of distributions D, it holds

4.5.1 Examples and Ideas

We start with an example to illustrate the problems that occur if Eve can adaptively choose
the distributions and give the idea how these problems can be solved. Consider the set

D= {P)((l}),z, P)((Z%Z} consisting of the two following distributions:

Py, (2)
X 0 1 3 = P);YZ -
Y (2) Y‘( 2)
0 [(0)1/3 Oy, 3| (2) 1/2
1 0) 1/3
5 DEE 4 (2) 1/2

It is easy to give a protocol in I' (D — Ps,s,1) with S(D) > 0: Alice and Bob discard
the random variables X and Y whose realisations take on the value 2, map values {3,4} to
{0, 1}, and after a uniformation step, they share a perfect secret key. We slightly modify this
protocol to obtain a protocol P’. The modified protocol P’ does exactly the same as P but
“fails”, i.e., outputs the all-zero string of length M if the following three conditions hold:

e The first distribution Px,y, 7 is P)((l}),z.
e Forall i =1,...,N -1 holds: If X; € {0,1,3,4} then Px,, v;,,7;,, = P)((l}),z.
e Foralli=1,..., N —1holds: If X; =2 then Px,, v, ,7z,,, = P)((ZX)/Z.

Note that the protocol P’ is also in I' (D — Ps,s, 1) because the probability that the pro-
tocol fails, i.e., that the distributions are independently chosen in such a way that all three
conditions hold tends to zero as N grows infinitely.

The protocol P’ illustrates the advantage of an adaptive adversary.? If Eve can look at
her Z-realisations before choosing the next distribution, she can always cause the protocol P’
to fail. Hence, P’ € I'y (D — Ps,s,1). If Eve wants to independently—without looking at
her Z-realisations—choose the distributions in such a way that the protocol fails, she has to
guess correctly for every P)((l}),z—distributed variable whether X = 2 or not, but the probability
of correct guessing vanishes exponentially in V.

In this example there is a way for Alice and Bob to prevent an adaptive Eve from causing
the protocol P’ to fail. Alice randomly permutes her X-variables, and sends the permutation
to Bob who does the same with his Y-variables. Eve learns the permutation as it is sent
over the public channel, but she has no control of the order the variables have after the

20f course, P’ is a “pathological” protocol constructed only for illustration purposes and of less practical
use than P.
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permutation. However Eve (adaptively) chooses the distributions, the probability that the
three conditions hold for the permuted variables tends to zero for large N. This illustrates
the fact that permuting the variables can help Alice and Bob to prevent adaptive attacks of
the adversary, but the next example shows that permuting is not sufficient.

Let D and P be like above. This time, the modified protocol P is identical to P except it
fails whenever the following is true:

e Of the N distributions the protocol has to handle, the number of occurrences of the
distribution P)({ZQ,Z equals exactly the number of times X takes on the value 2.

It is easy to verify that like P’ from the first example, the protocol Pisin T (D — Ps,s,1)
but not in 'y (D — Ps,5,1). Of course, in this case permuting the variables does not help.
Alice and Bob cannot prevent an adaptive Eve from choosing exactly as many distributions
P)(?}),Z as occurrences of X = 2.

Another “countermeasure” can be used instead: after the random permutation from above,
Alice and Bob partition their random variables in K blocks of size N. For large K it is unlikely
that the condition above is fulfilled in each block. It is intuitive and can be shown that for
large enough K and N, the protocol P can be applied to each block and fails only for a
negligible number of blocks. Hence, a secret key can be extracted at rate Rate(ﬁ).

The concepts of permuting the random variables and partitioning them into blocks have
already been formalised in Section 4.3 and are used as well in the next section to prove
Theorem 4.19.

4.5.2 Proof of Theorem 4.19

Sa(D) < S(D) is already stated in (4.2). For the other inequality Sq(D) > S(D) = S(D),
let Eve adaptively choose distributions of X Y72y, X3Y5Z,,... from D as described in De-
finition 4.1. We fix ¢ > 0 and P € T' (D — Ps,5,1) which generates Pgmymynee from N
independent random variables. Let N be large enough such that

min d (PXMyMZNC*,PSMSMPU> <e. (4.18)
Py 4 °B

For K € N the protocol P’ is exactly the same as in the proof of Theorem 4.11. For the sake
of completeness, it is repeated here:

1. Alice chooses uniformly at random a permutation 7 from the set of all permutations of
NK elements. She sets forall i = 1,2,... , NK : X; = X ;).

2. Alice sends as first message Cy := 7 to Bob. Bob sets Y; = Y,y Vi=12,...,NK.

3. Alice and Bob partition their random variables into K blocks of size N:

XaYe,. o XNYN, XY, - XonYon, o X1 YN (=) 4+10 - - - XNKYNE
XlN YlN Xév Y2N X %YI{Y

To each block _;(;TV{/;N they apply the protocol P.
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The idea is to apply Proposition 3.12 to obtain a protocol in I'y (D — Ps,s,1). Therefore,
it is shown like in the proof of Theorem 4.11 that there exist p and Pxyz, € D, and K can
be chosen large enough such that in each block ¢, the real distribution is nearly independent.
Formally,

d (Pﬁﬁﬁ P)](VYZM) < 2cNA; = 20% <e. (4.19)
The protocol P € T’ (5 — PSASBJ_) can handle independent distributions known to (and
chosen independently by) the adversary. Therefore, we can apply P to each block and claim
that (3.27) is fulfilled. Recall the block notation from Proposition 3.12 for the following.
The adversary Eve can choose the distributions adaptively from D and knows the permu-
tation m from the first message Cj sent over the public channel. Hence, Eve knows the exact
distributions of all random variables. We assume for the rest of the proof that this knowledge
is contained in her Z-variables. After the adaptive choice is made, the distributions and
Z-realisations other than from block ¢ give no more information about the ¢th block than she
already has knowing the exact distributions and Z-realisations of the ¢th block. Hence,

—

YNyN ., 7N ., YNKyNK 7NK
XNYN &5 ZN ¢ XNEYNKZN.

is a Markov chain. As the protocol P processes the XY -variables of the ith block indepen-
dently from ZNX and the XY -variables of the other blocks,
XMYMCH 5 ZN o5 XNKYNKZNKCSK and

P

XMYM o ZNC* o XNIxyNIszIfo*Ix (4‘20)

are Markov chains as well. The random variable 6:* denotes the communication of protocol
P for block i. We assume the first message of the outer protocol P’, the permutation Cp = 7,
as part of C7 for all 2.

Considering the ith block, the inner protocol P transforms P)’(?\’?f’ﬁ into PXMYMZNC*

and P)](VYZM into Pgmymzne«. In the following we use the same idea as in the proof of

Proposition 3.2. Let V be the random variable that minimises d(P MY NG PSIJXIS%/IPV).

e

Let ¢ be the channel that gives X VNAYNKZNKCI on input ZlNC';“ defined by the Markov

chain (4.20). We denote by Vi the random variable obtained by sending V over the same
channel c. It then follows that

r]rjllljl d ( XMYMZNC*XMKYMKZNKC*K’ PSJ,XIS%/IPU/) (4'21)
<d ( XMyMch*XMI(YMI(ZNKc*K7 PSQ/IS%/IPV‘Z)
n];ln d<PXMYMZNC*’ PSQ\JS%P[]) .

Equality (4.22) is due to Lemma 2.15.
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We conclude as usual that

min d (P:v

e Peme P)
Po XMyMzNge - SISy AU
< d(Pemigmizwas Pxvy ) + min d( Pyary Poyisn Py )
S A\ Pgmgmgngs Pxmymznes | + o XMyMzNCs, Lgmgy Py

.
< APz PRvan) + gind(Powi e, Prysy o)

2e

A

where the last inequality follows from (4.18) and (4.19). Hence, (4.21) can be made arbitrarily
small which proves the claim that (3.27) is fulfilled. Proposition 3.12 eventually yields a
protocol in T'y (D — Ps,s,1). O



Chapter 5

Concluding Remarks

5.1 Conclusions

In the context of secret-key agreement from common information, the secret-key rate is the
most interesting property of a distribution. In this thesis we have redefined it in an intu-
itive way as supremum over the rates of all protocols that transform the distribution into
a secret-key distribution. The resulting formalism has proved to be suitable to define and
study secret-key agreement information-theoretically secure against an active adversary who
chooses distributions from a set. The use of the new formalism is suggested to study other
transformations of distributions or further generalisations of known settings.

Summarizing the results of Chapter 4, we have seen that for an arbitrary set of distribu-
tions D the generalized secret key rate S(D) can be expressed and bounded in terms of S (-)
as follows

$4(D') = S(D) = S(D) < 5;(D). (5.1)

The last inequality cannot be replaced by an equality as shown by the following example:
Consider the set of distributions D = {P)((l}),Z,P)(?}),Z} consisting of the two following
distributions:

PyY s Py
X 0 1 X 0 1
Y (2) Y (2)
0 | (0)1/3 0 0) 1/3
1 (0) 1/3 1 | (0)1/3
2 | (1) 1/3 2
3 3 1) 1/3

For this set D we claim that S(D) = S¢(D’) = 0 and S;(D) > 0.

Y (2) 0 If Eve chooses both distributions with probabil-
- ity 1/2, the distribution on the left is obtained.
0 (0)1/6 | (0) 1/6 = . e . .
1 0 176 (00 176 e D! It is easy to see that the intrinsic information of
5 (1 )1/6 (0) 1/ this distribution is zero. Hence, no secret key
3 1)1/ can be extracted, and Sy(D’) = 0 follows.

(1) 1/6

37
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If Eve cannot distinguish where the distribution X 0 1
comes from, it can be shown that, forall 0 < o < 1, Y (2)
the distribution on the left has a positive secret-key 0 (0) & (0) 1—Ta
rate. Intuitively, if a equals 0 or 1, the realisations =
where Y € {0, 1} can be transformed into a secret 1 0) 5> | (0) % €D
key, otherwise the ones with Y € {2,3}. 2 (1) &

3 (1) 5

From relation (5.1) the question arises for which sets D the secret-key rate for a fixed
distribution S§(D) equals the infimum of the secret-key rates of all distributions in the set
infp,, ,ep S(Pxyz). Theorem 4.15 shows that this is the case for continuous sets D where
the joint distribution Pxyz can be deduced from the marginal distribution Pxy. This is not
possible in the following example.

For N € Nand range ¥ =Y ={1,... ,N}, let

2
o forl<z<y<N
Pxv(z = N(N+1) — — — ’
xv (,9) { 0 otherwise,

be the marginal distribution of Pxyz. The random variable Z uniquely informs the adversary
about X and Y except for two values 1 < zp < yo < N. The adversary gets a dummy
symbol © in the three following cases X =Y =29, X =Y = yg, and X = 20 AY = y. For
example, for N = 5, o = 2, yo = 4 we have the following distribution:

X 1 2 3 4 5
Y (2)
1 | (1,1)1/15
2 [ (1,2)1/15| (V) 1/15
3 | (1,3)1/15 | (2,3) 1/15 | (3,3) 1/15
4 (1,4 1/15| (O)1/15 | (3.4)1/15 | (Q) 1/15
5 | (1,5) 1/15 | (2,5) 1/15 | (3,5) 1/15 | (4,5) 1/15 | (5,5) 1/15

For a fixed N, let D be the set of all distributions of this form. The cardinality |D| = (];7)
is the number of ways the two elements 2y < yo can be chosen from X = {1,...,N}.

Although Alice and Bob know (or easily estimate from some of their realisations) the
marginal distribution Pxy, they cannot deduce the joint distribution Pxyz from it as Pxy
is the same for all elements of D. If they knew the two values z¢ and g, they could discard
all realisations different from those values and apply protocols for Information Reconciliation
and Privacy Amplification to obtain a secret key.!

We believe that for this set of distributions holds S¢(P) < infp,, ,ep S(Pxyz), because
the chances of correctly guessing zq, yo are very small for large N, and the known protocols
for Information Reconciliation do not work if Alice and Bob do not know zg, y9. It seems
that in this case, Alice has to send Bob so much information about her realisations that Eve
is in a better position compared to the situation where Alice and Bob know zg, yg.

We have shown that an adaptive adversary is not more powerful than a non-adaptive
one. The examples in Section 4.5.1 show that the tools of “permuting the variables” and

'See, for example, [Wol99] for such protocols and the notions of Information Reconciliation and Privacy
Amoplification.
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“partitioning into blocks” are necessary to prove the statement. It is astonishing at first
sight that the same tool (Theorem 4.12) can be used to prove different things like both
Theorems 4.11 and 4.19. It is a sign of the power of randomisation that both proofs are based
on a permutation of the variables.

Processing blocks instead of single variables is the second tool strongly used in this thesis.
In the context of secret-key agreement, it is often sufficient to control the adversary’s knowl-
edge about every single block because a subsequent step of Privacy Amplification (Proposi-
tion 3.12) gives control over the adversary’s whole knowledge.

5.2 Suggestions for Further Research

An (incomplete) list of suggestions for further research follows:
e Apply the obtained results to concrete examples, e.g. from quantum cryptography.

e Find more sets of distributions D with interesting and provable properties. Besides the
difficulty to find good examples with certain interesting properties, it is often hard to
formally prove conjectured properties due to, among other reasons, the lack of tight
upper and lower bounds on the secret-key rate.

o We extended the standard model of secret-key agreement to an active adversary who
chooses distributions from a set. Investigate the scenario in which Alice (or Bob or
both) chooses the distributions from a set D. Can the secret-key rate (which has to be
defined) be strictly larger than maxp,, ,ep S(Pxyz)?

e Using the new formalism, study other transformations of distributions or different ge-
neralisations of secret-key agreement.
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Appendix A

Technical Calculations

A.1 Continuity of Conditional Mutual Information

Lemma 3.6 from Section 3.3 states the continuity of conditional mutual information. In this
section a more explicit expression for the continuity of the mutual information conditioned
on the same variable is given.

Lemma A.1. Let A and C be random wvariables with range A; B and D random variables
with range B and Z a random variable with range Z. Then it holds for d (Papz, Pcpz) — 0
that

|1(4; B|Z) - I(C; D|Z)| = O(\/d (Pagz, Pcnz))- (A.1)

Proof. The proofis divided into two steps. In a first step we prove the lemma for distributions
that slightly differ in two points only. In the second step we decompose the general case in
many of these special cases.

Let us assume, for the first step, a small § > 0, two points (ag, bo, o), (a1,b1,21) € AXBXZ
and two distributions Psgz, Popz such that

Papz(ao, bo, 20) = Popz(ao, bo, 20) + 6, (A.2)
Papz(ai,b1,21) = Popz(ai,b1,21) — 6,
Pipz(a,b,z) = Pcpz(a,b, 2) for all other (a, b, 2). (A.3)

Assume for a contradiction that zp # z;. It would follow that Pz(z0) =3, ; PaBz(a,b, z0) =
Ea,b Pepz(a,b, z0) + 6 = Pz(z0) + & which is not possible. That is why the distribution can
only differ in two points with identical Z-components.

According to [CT91, equation (2.61)] the conditional mutual information I(A; B|Z) can
be explicitly written as

Pyp|z(a,b|z)

I(A; B|Z) PSP bl2)1
|Z) ; Al (; B|7(a, b|2) log Pap(alz) - Papy (017)°
beB

41
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From this, we derive the inequality

PuB|z Pep|z
I(A;B|Z) - I(C;D|Z)| < Pipz-log—222  _ Popy-log — 22 A4
1(4B12) - 1(C:DIZ)| < 3 s s ot BEGED
:E +§ +§ +§ +§ +§ ... (AB)
a#ao ata; bsbo bby a=ao a=a;
b=by b=b a=do a=a 2;20 2;?;1

=51 +95 + 53+ Ss+ 55+ Se

where the first two sums in (A.5) run over a, the next two over b, and the last two have only
one addend. These are all nonzero addends of the right hand side of (A.4). If Pz(z) =0, all
sums vanish, and there is nothing to prove. We suppose Pz(zg) > 0, define §' := %, and
calculate

PC|Z L10|Zo)—|—6/ ifa:ao,

A <
PA|Z(Q|ZO) = Z W = PC|Z(Q1|Z0) — (S/ if a = ai, (AG)
beB Z320 Pg)z(alz) otherwise,
Ppiz(bolzo) + 6" if b= by
P 'p D|Zz\Y0[<0 )
Ppiz(blz) = 3 W = Ppigbnlzo) — & ifb=bh, (A7)
a'eA Z1<0 Pp|7(b|20) otherwise.

To upper bound Sy, we make use of equations (A.2), (A.3), (A.6), and (A.7):

Pep)z

S| = PABZ a,b,z -logi—PCDZ a,b,z -logi
1 a% ( ) Ppz Pz ( ) Pez - Ppiz
bfbo
Pep\z - Poiz - Ppiz
= Pepz(a,bo, 20) - |log
G;GO ( ) Peiz - (Ppiz + ") - Popz
5/
= Popz(a, by, z -‘—log (1—|—7)‘ A8
a;) ( 0 0) PD|Z(bO|ZO) ( )

s

<O =0(8) =0(V8) ford—0

where the last inequality follows from the Taylor Series of the logarithm: log(l + z) =
% = ln%?) (z — % +...) = O(z) for small z. Note that Pp|7(bolz0) = 0 implies that
Ya Pcpz(a,bo, 20) = 0 and Sy vanishes. If otherwise Pp|z(bol20) > 0, the fraction in (A.8) is

well defined. The sums S, S3, and S4 can be upper bounded in the same way by O(\/g)
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For the remaining terms we obtain similarly

PiB|z Pop|z

Ss = |Papz(ao, bo, z0) - log — Pepz(ao, bo, 20) - log

Pz Pz Poz - Ppz
(Peoy +9) Pt Poi 1 Panis
(Pciz +6) - (Ppjz+ ') - Pepiz Py\z - Pg|z
o) o (1 )
“log (14—
Pep|z(ao, bo|20) Pz (aol20)

! P, &
—log (1—}—57)))—}-5’-105;( cpjz +

= |Pcpz(ag, bo, 20) - log

= PCDZ(“Oy bo, 2’0) . (log (1 +

Pp|z(bolz0 Peiz +8') - (Ppjz +¢')
< Pepz(ao, bo, z0) - (JO(8)] +10(8)] +10(8)]) + |O(V&)]
< O(WVD).

The first three logarithmic terms in (A.9) are treated asin Si, ..., S4, the fourth term must be
Pepiz+96’
Poiz+68")-(Pp|z+9’

power of the factor v/& suffices that the term goes to zero for 8 — 0 even if the probabilities
Pep)zy Pz, and Pp); are zero. Hence, it is of order O(W9).

The relation Sg = O(\/g) is derived in a similar way. The arguments above simplify if
Pcpz(ao, bo, 20) or Papz(ai, b1, 20) equals zero, ag = aq, or by = by.

As d(PaBz,Pcpz) = Y 4. |PaBz(a,b,z) — Popz(a,b, z)| = 25, we have shown equa-
tion (A.1) in this special case.

handled more carefully. Dividing ¢’ - log i 3 by v/8', the remaining polynomial

For the general scenario consider two distributions P4pz and Popz with small but positive
Ly-distance. We will transform in little steps P4z into Pcpz using in each step the special-
case result from above. As for a fixed zy € Z it must hold that }°_, Papz(a,b, 20) = Pz(2) =
> up Pepz(a, b, 20), the transformation can be done for each z € Z separately.

For a fixed zy € Z consider the set of points in which the distributions differ:

M = {(a,b) € Ax B: Pspzla,b, z) # PCDZ(a,b,ZO)}.

As a subset of the finite set A X B the set M* is finite, and its elements can be enumerated:
M# = {(ay,b1), (az, b2),...,(an,b,)}. For ease of notation, we abbreviate: Pup.,(a,b):=
Pipz(a,b, z) and Pcps, (a,b) := Pepz(a,b, zp). To transform Pap.,, into Pcp., in n steps,
we start with

0
P;(u%zo = PABZQ'

In a first step we set PE;ZO (a1,b1) == Pcps, (a1, b1), 1e., we add —PXBZO (a1,b1)+Pcps, (a1,b1)

and have to subtract the same from PXEZO (ag,bz). The distributions Pf(&)}ZO and PEZ;ZO are
identical in all other points different from (ay, b1) and (ag, b2). Formally, we define recursively
forevery 1 <7 <n-—1:

Pepa (@i, b)) if (a,b) = (a;,b;),
PL). (a,0) = PYgl(aivi i) = (~PY5Y (i, 0:) + Popay (ai, b)) i (a,0) = (ai41,bi),s

P}(llgzlo) (a,b) otherwise.
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We claim that PXEZ? = Pcps,. It is clear from the definitions above that this is true for all
points (a,b) ¢ M?* and for the points (a1, b1), (az,b2),..., (@¢n-1,b,—1). For the last point
(@n,bn), we calculate

P}(Gg_zi) (an7 bn) - P;(Gg_zi) (ana bn) + PgnB_zi (an—h bn—l) - PCDZO (an—h bn—l)

= Pipg (tny bn) + P2 (a1, bue) = Popig (anei, buet)

= Paps(an, b) + PS5 (an1,bnr) + Pl (a2, bno)
- PCDZO (an—27 bn—Z) - PCDzO (an—h bn—l)

= PuB:, (n, bn) + PaBzy (@n—1,br_1) + Pf(l%;i)(an-z, brn—2)

- PCDZO (an—27 bn—2) - PCDZO (an—h bn—l)

= E P4Ba, (a;,b;) E Popsy (@i, b

_ZPABZO a,, z ZPCDzO au
+ Z PABZO (a7b) - Z PCDZO a, b

(a ) gM (ab)gMo
= Pz(20) — Pz(20) + Pcps (an, bn)
= PCDzo (aru bn)

which proves the claim.
As stated above, this can be done for all zyp € Z. By concatenating the transformation

steps for all zg € Z, we obtain a finite transformation sequence P/(&;Z = Pipz, Pf(llgz,
PE;Z, . Pf({g)z = Pcpyz with the following properties:

e Two consecutive distributions differ only in two points with the same Z-components.

e The difference between two consecutive distributions of the transformation is at most
d (PaBz,Pcpz). Formally, for all 1 <7 < m:

d(PShs Pi5))) < d(Pasz, Ponz).

Using the first part of the proof, we conclude by showing equation (A.1) as follows
|1(A;B|Z) - I1(C; D|Z)|
= \I(A(O);B(OHZ(O)) — I(Al
= |1(A©); BOZ(0)) — 1(A1) |Z )) + 1(AW; B Zz()
— I(A®, B2z 4 I(A( 10U AC) I(A(m ; Bm)| Zz(m))y)|
< ‘[(A(O); B(0)|Z(0)) _ I(A(l); B(1)|Z(1))‘ + ‘[(A(l); B(1)|Z(1)) _ 1(44(2); B(2)|Z(2))‘
+.+ |I (m—l); B(m—1)|Z(m—1)) . I(A(m)' (m)|Z(m))‘

0 (JiThe 180) +0 (VP 1) o0 (o )
<m-0(\/d(Papz,Pcpz))
= O0(\/d(Pagz,Ponz)).

I(A™). B (m)|Z(m))‘
I
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A.2 Difference Between Drawing With and Without Replace-
ment

This section is concerned with drawing N elements from a set of NK random variables
{X1,X5,...,XnK}. The distance between two distributions obtained by drawing in two
different ways from this set is calculated. The result is stated in Lemma A.2 and could be
used in the context of Section 4.3 to give another proof of Theorem 4.11.

For large N, K € N let X1, Xy,...,XnyxK be independent random variables with distri-
butions Py, from a set of distributions D and range X'. The average distribution is denoted
by Px(z) = ﬁzf} Px.(z). For x = (z1,22,...,zn), the N-fold product of Px can be
written as

1
= WHZP&(%‘)

7=1:i=1

1
B (VI{)N Z PXil (1) ”.PX*'N(;rN)
- (i1, in)EINK]N

where [NK]:= {1,2,...,NK}. Note that this distribution cannot be achieved by drawing
independently with replacement from the set of realisations of Xy, Xy, ..., Xyxk. As explained
in Section 4.3, the variables are not independent if a realisation is drawn twice.!

Let m be a randomly chosen permutation of N K elements, and set Vi : _3(7 ‘= Xp(;)- This
vields for the first N of the N K variables the distribution

1
(11, AN)E[NK]X

where (NK)Y = (NK)-(NK—1)---(NK — N +1) is the number of ways to draw N elements
without replacement from a set of NK elements, and the set [NKJN:= {(iy,...,in) €
[NKINV : 4 # 4 Vk # I} consists of the sequences of length N with pairwise different
elements from [NV K]. This distribution is obtained by drawing at random without replacement
N elements from the set of realisations of X, X, ..., XyKk.

Intuitively, a few (N) elements of a much larger (N K) permuted set are nearly identically
P)](V—distributed. This is proved formally in the rest of this section.

!To indeed obtain the distribution, each realisation drawn would have to be replaced by another independent
realisation of the same random variable.
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We calculate the difference

(P PY) = Y 1P (x) - PY ()]

xeXN
_ P p 1 1
XEXN (ll,...,lN)E[NIX’]ﬂ
1
T o)
(i1, in)EINKIN\[N KN

1 1
- ¥ S Py, (#1) - Px (o) ‘ e (NK)N‘

(41,0 AN )ENKIN x€ XN

S

=1

+ ) S Py, (21) Py, (o)

(i1, in)EINK]N\[NKIN xg XN

— (NEK)N ( (N}{) o N;{) N) + (Nfl{) + (V)Y — (V)Y

(- 5)

Using Stirling’s formula k! ~ v27k (E)k, it follows

e

oo R VAR R MR
CEEa T zﬂ(k—n)(k—n)’“‘”_(’c—n> (k=

e

Hence, for k= NK,n=N
(NN ¢ NE N\ (NE NN
(NK)N " \NK - N

K \NK+1/2-N
- (K 1) e

= exp ((N(K -1+ 1/2) ln(KIi 1) — N)

S CRTESIE))

= exp —N(l—l—(I{—l-l—%)(—%_%_ﬂ%‘l'O(%)))

_ 7\7 1 1 i L+i+ 1 1 1 _|_O<i)
I U 95K 3K K ' 2K? 2KN 4K°N K3

2KN 12N K?2 K3

3_2N—N_1—}—O(N)).

_N(—N—|—2N—1+—4N+6N—3+O( 1 )))

12K2 2K K3
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We have shown the following lemma

Lemma A.2. For large enough N, K € N and P)fﬁ\,, P)](V as above holds

d (Pﬁ,P)](V) ~ 2(1 - exp(Slgz,]zV - N;gl +O(%)>).

If we have, for example, as many blocks as elements in a block, i.e., N = K the distance
tends to 2 (1 — 6_1/2) > 0 for N, K — oco. On the other hand, the intuition given above is
proved true: For fixed N, the distance goes to zero as K approaches infinity.
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