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Roadmap

n (Classical)	Homomorphic Encryption

n Quantum	Homomorphic Encryption

n Computation	 by	teleportation

n Our	scheme



Homomorphic	encryption
Classical	case

• Encrypt	data	so	that	another	party	can	perform	calculations	on	the	
encrypted	data

• Many
applications
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RSA
Multiplicative	homomorphic

• Public	key:	exponent	𝑒 and modulus	𝑁
• Encryption of	a	message :	Enc 𝑥 = 𝑥(mod𝑁

Given	encryptions	of	messages	𝑥 and	𝑦
possible	to	compute	the	encryption	of	the	product:

𝑥( mod𝑁 𝑦( mod𝑁 = (𝑥𝑦)(mod𝑁

Enc 𝑥 Enc 𝑦 = Enc 𝑥𝑦



Fully	Homomorphic	Encryption
• Encrypt	data	so	that	another	party	can	perform	calculations	on	the	
encrypted	data
• RSA	(and	ElGamal)	are	homomorphicwith	respect	to	multiplication
• Other	schemes	(e.g.	Goldwasser-Micali)	are	additively	homomorphic

Enc 𝑥 ⋅ Enc 𝑦 = Enc 𝑥 ⊕ 𝑦
• Universal	computation	needs	both

ADD:								ADD Enc 𝑥 , Enc 𝑦 = Enc 𝑥 + 𝑦
MULT:			MULT Enc 𝑥 ,Enc 𝑦 = Enc 𝑥𝑦

while	staying	compact	(complexity	of	Dec	does	not	depend	on	
evaluation	circuit)
• First	breakthrough	proposal	by	Gentry	2009,	currently	multiple	
candidates

still	slow:	seconds	per	bit	operation,	but	some	of	you	know	better	than	I	do…



ü(Classical)	Homomorphic Encryption

n Quantum	Homomorphic Encryption

n New	ingredients – computation	 by	teleportation

n Our	scheme

Roadmap



Quantum	Homomorphic	Encryption
• Encrypt	quantum	state instead	of	classical	data

𝜌 → QEnc(𝜌)

• Execute	quantum	circuit on	encrypted	data
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Classical	
Homomorphic	
Encryption

Quantum
One-Time	Pad

Quantum	Homomorphic Encryption
for	Clifford	circuits



One-time	pad

Plaintext	 𝑛-bit	string 𝑥 ∈ {0,1}D	
Key 𝑛-bit	string	 𝑘 ← {0,1}D	 ß randomly chosen
Ciphertext 𝑐 = 𝑥 ⊕ 𝑘

𝒙 0 1 1 0 1
𝐤 1 1 0 0 1
𝒄 1 0 1 0 0

Properties:
Perfectly	secure
Key	same	size	as	message	– each	key	can	be	used	only	once



One-time	 pad	 table	 (U.S.	National	 Security	 Agency)



Quantum	One-time	Pad

• Pauli	operators	 X = 0 1
1 0 ,	Y = 0 −𝑖

𝑖 0 , Z = 1 0
0 −1

• Self-inverse: 𝑋T = 𝕀 = 1 0
0 1 ,			𝑌T = 𝕀, 	𝑍T= 𝕀

• Anti-commute: 𝑋𝑍 = −𝑍𝑋, 𝑋𝑌 = −𝑌𝑋, 𝑌𝑍 = −𝑍𝑌

• Flip	two	random	bits	𝑎, 𝑏 ← 0,1 ,	
encryption	of	a	qubit𝜌:	 𝑋Z𝑍[	𝜌	𝑋Z𝑍[

• Perfect	security:	not knowing𝑎, 𝑏,	density	matrix	becomes	fully	mixed:
\
]
∑ 𝑋Z𝑍[𝜌𝑍Z𝑋[Z,[ = 𝕀/2

[AMTW00]	A.	Ambainis,	M.	Mosca,	A.	Tapp,	and	R.	De	Wolf.	Private	quantum	channels.	FOCS‘00



Pauli	Group	on	𝑛 Qubits

• Pauli	group	𝑃D ≔ {𝜙𝑋Z𝑍[ ∶ 𝑎⃗, 𝑏 ∈ 0,1 D,𝜙 ∈ ±𝑖, ±1 }

[AMTW00]	A.	Ambainis,	M.	Mosca,	A.	Tapp,	and	R.	De	Wolf.	Private	quantum	channels.	FOCS’00
(based	on	Stacey	Jeffery’s	slides)

Pauli	operators		

X = 0 1
1 0 ,	Y = 0 −𝑖

𝑖 0 , Z = 1 0
0 −1

2-qubit	example:	
𝑎 = 10,𝑏 = 11 𝑋Z𝑍[ =

𝑍 𝑋

𝑍

• Encryption	of	𝑛 qubits	𝜌:			𝑋Z𝑍[	𝜌	𝑋Z𝑍[ for random	𝑎⃗, 𝑏 ∈ 0,1 D

• Perfect	security:	not knowing 𝑎⃗, 𝑏,	density	matrix	becomes	fully	mixed:
\
]D
∑ 𝑋Z𝑍[	𝜌	𝑋Z𝑍[Z,[ = 𝕀/2𝑛



The	Clifford	group

• Clifford	group	is	the	normalizer	of	the	Pauli	group:
For	all	Cliffords C,	for	all	Paulis 𝑋Z𝑍[,	
there	exist	𝑐, 𝑑⃗ ∈ 0,1 D	such	that		𝐶𝑋Z𝑍[ =	𝑋i⃗𝑍j𝐶

• Generated	by	𝐻 = \
T
1 1
1 −1 ,	𝑃 = 1 0

0 𝑖 ,		𝐶𝑁𝑂𝑇 =
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

• Examples:	𝐻𝑋 = 𝑍𝐻, 𝑃𝑍 = 𝑍𝑃,	 𝑃𝑋 = 𝑋𝑍𝑃
• Not	a	universal	gate	set
• Classical	simulation	possible

Pauli	operators		

X = 0 1
1 0 ,	Y = 0 −𝑖

𝑖 0 , Z = 1 0
0 −1

Example interactionwith
quantumone-time	pad:
𝑃𝑋Z𝑍[ 𝜓 = 𝑋Z𝑍Z⊕[𝑃 𝜓



Quantum	Homomorphic	Encryption
For	Clifford	circuits

Encryption	(of	single	qubit):	
Input	state:	|𝜓⟩
Flip	random	classical	bits	𝑎, 𝑏
Output:	 𝑋Z𝑍[|𝜓⟩, Enc 𝑎 , Enc 𝑏

Circuit	Evaluation:
Apply	Clifford	gate	to	quantum	part
Homomorphically update	classical	keys	
according	to	commutation	relations

Folklore,	last	formalized	by	[BJ15]	A.	Broadbent,	S.	Jeffery.	Quantum	Homomorphic	Encryption	 for	Circuits	of	Low T-gate	Complexity.	CRYPTO	2015

Classical	homomorphic scheme:
Encryption:	𝑐 = Enc 𝑥
Decryption:	𝑥 = Dec(𝑥)

Example:	evaluation	of	P	gate:
• P𝑋Z𝑍[ 𝜓 = 𝑋Z𝑍Z⊕[𝑃 𝜓
• homomorphic update
Enc(𝑏′) ← ADD(Enc 𝑎 ,	Enc 𝑏 )

State	maintains	form:	
𝑋Zs𝑍[s|𝜓′⟩,	Enc(as),	Enc(bs)



Extending	the	gate	set:	T	gate
T	gate	(also	known	as	vw or	𝑅 gate)	is	given	by	T = 1 0

0 𝑒yv/]
Clifford+T can	approximate	all	quantum	operations	(universal	set)

Trouble:	Applying	T	gate	on	a	one-time-pad	encrypted	state	results	in
ciphertext: 𝑇𝑋Z𝑍[ 𝜓 = 𝑃Z𝑋Z𝑍[𝑇 𝜓 , 𝐸𝑛𝑐 𝑎 , 𝐸𝑛𝑐(𝑏)
because 𝑇𝑍 = 𝑍𝑇, 𝑻𝑿 = 𝑷𝑿𝑻	(not Clifford!)

Who	can	remove	this	extra	P-gate?
Evaluator	only	has	encrypted	version	of	𝒂 and	𝒃,while	the	
encrypting	party	knows	the	key



Previous	Work:	Overview
homomorphic for compactness security

Not	encrypting Quantum	circuits yes no
append	evaluation	
description

Quantum	circuits Complexity	of	Dec	
prop	to	(# gates)

yes

Quantum	OTP no yes inf theoretic
Clifford Scheme Clifford	circuits yes computational
[BJ15]:	AUX Q	circuits with	constant	T-depth yes computational

[BJ15]:	EPR Quantum	circuits Complexity of	Dec	
prop	to	(#T-gates)^2

computational

Our	result Quantum	circuits	of	polynomial
size	(levelled	fully	homorphic)

yes computational

[BJ15]	A.	Broadbent,	S.	Jeffery.	Quantum	Homomorphic	Encryption	 for	Circuits	of	Low T-gate	Complexity.	CRYPTO	2015
(comparison	based	on	Stacey	Jeffery’s	slides)



Related	Work
• Secure	delegated	quantum	computing
• Childs	2005;	Broadbent,	Fitzsimons,	Kashefi 2009;	
Aharonov,	Ben-Or,	Eban 2010;	Broadbent	2015

• Secure	2-party	quantum	computation
• Dupuis,	Nielsen,	Salvail 2010;	Dupuis,	Nielsen,	Salvail 2010

• Perfectly	secure	quantum	FHE	not	possible	with	
information-theoretic	security	
• Yu,	Perez-Delgado,	Fitzsimons	2014

• Quantum	homomorphic encryption	with	information	
leakage	(not	IND	secure)
• Tan,	Kettlewell,	Ouyang,	Chen,	Fitzsimons	2014

(based	on	Stacey	Jeffery’s	slides)

require	
interaction	
between	
encryptor and	
evaluator



ü(Classical)	Homomorphic Encryption

üQuantum	Homomorphic Encryption

n Computation	 by	Teleportation

n Our	scheme

Roadmap



Classical	
Homomorphic	
Encryption

Quantum
One-Time	Pad

Quantum	homomorphic encryption	
for	polynomial-sized	circuits

Computation	by	
teleportation

[GC99]	Daniel	Gottesmanand	 Isaac	L.	Chuang.	Quantum	Teleportation	 is	a	Universal	Computational	Primitive.	Nature ’99



• Teleportation transfers	a	quantum bit	using an EPR	pair	and two
classical bits

Entanglement	and	Quantum	Teleportation
• Entanglement

EPR	pair:	 𝟏𝟐 𝟎𝟎 + 𝟏
𝟐 |𝟏𝟏⟩,	state	can	not	be	written	as	

two	separate	qubits

𝝍
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t outcomes	𝑎, 𝑏 ← 0,1 T

𝑋Z𝑍[ 𝜓



Teleportation	of	Clifford	gates
• Start	with modified EPR	pair:

\
T 00 + 𝑖 \

T |11⟩

• Teleportation:

P

[GC99]	Daniel	Gottesmanand	 Isaac	L.	Chuang.	Quantum	Teleportation	 is	a	Universal	Computational	Primitive.	Nature ’99

𝑃 = 1 0
0 𝑖

P
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𝑋Z𝑍[𝑃 𝜓



Creating	a	T-gate	gadget

𝐏𝐚 𝛙 , Enc(𝑎) 𝐗𝐜𝐙𝐝 𝛙 , Enc(𝑐), Enc(𝑑)

𝑇𝑋Z𝑍[ 𝜓
= 𝑃Z𝑋Z𝑍[𝑇 𝜓 , 𝐸𝑛𝑐 𝑎 , 𝐸𝑛𝑐(𝑏)

Who	can	remove	this	extra	P-gate?
Evaluator	only	has	encrypted	version	of	𝑎, 𝑏,	
while	encrypting	party	knows	the	key

Depending	 on	𝑎,	
a	phase	gate	 is	applied



Toy	example	of	gadget
Encrypting party	has: k ∈ {0,1}
Evaluator	has:	 c = Enc a = 𝑎 ⊕ 𝑘 ∈ {0,1}
Want	to	apply	a	phase	gate	if	𝑐 ⊕ 𝑘 = 𝑎 = 1

En
cr
yp
to
rp

re
pa
re
s	g

ad
ge
t:

Evaluator	uses	gadget:

k
=
0

P

𝑘
=
1

P

𝑐 = 1𝑐 = 0



Toy	example	of	gadget
Encrypting party	has: k ∈ {0,1}
Evaluator	has:	 c = Enc a = 𝑎 ⊕ 𝑘 ∈ {0,1}
Want	to	apply	a	phase	gate	if	𝑐 ⊕ 𝑘 = 𝑎 = 1

P

k
=
0

P𝑘
=
1

P

𝑋i𝑍j

𝑐 = 0

P

𝑋i𝑍j𝑃

𝑋i𝑍j𝑃P

𝑋i𝑍j

P

𝑐 = 1
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Evaluator	uses	gadget:

Using	a	fixed	
Bell	state	is	
insecure,	but	
choice	of	Bell	
state	can	be	
randomized



Construction	of	T-gate	gadget
• Using	Barrington’s	theorem,	we	can	construct	gadgets	for	decryption	
functions	computable	in	poly-sized	log-depth	circuits.
• Using	techniques	from	the	garden-hose	model,	we	can	create	
gadgets	for	any	decryption	function	computable	in	log-space.
• Fortunately	for	us:	all	known	classical	homomorphic	encryption	
schemes	have	a decryption	function	computable	in	log-space

[BFSS13]	Harry	Buhrman,	Serge	Fehr,	Christian	Schaffner,	and	Florian	Speelman.	The	garden-hose	model.	ITCS	 ‘13



Homomorphic	decryption
Most	current	schemes	are	based	on Learning	With	Errors	(LWE)

Brakerski-Vaikuntanathan (2011):
Key: 𝒔 ∈ ℤ�� (vector	of	length	𝑘 over	ℤ�)
Ciphertext:	 𝒗,𝑤 ∈ ℤ��×ℤ�

Decryption: 𝑚 = 𝑤 −∑ 𝒔y𝒗𝒊�
y�\ (mod	𝑝)(mod	2)



Putting	the	scheme	together
• Encryption:
• Encrypt	qubits using	Quantum	One-Time	Pad
• Use	classical	HE	to	encrypt	the	key	to	the	one-time	pad
• Create	extra	helper-gadgets	 from	private	key:

• Evaluation:
• Clifford	gates:	execute	and	update	keys
• T	gates:	execute	and	use	gadget	to	correct	the	state

measurement	 choices	are	given	by
classical	encrypted	 information

P
P



Summary
• Scheme	for	quantum	homomorphic	encryption
• Single	quantum	gadget	for	every	T	gate
• Polynomial-size	for	all	current	classical	homomorphic schemes
• We	require	the	computational	assumptions	of	classical	scheme

• Main	ingredients:
• Classical	homomorphic encryption	
• Quantum	one-time	pad
• EPR	gadgets	(depending	on	secret	key)	to	conditionally	remove	
errors



Open	questions	/	Future	work
• Quantum	Fully	Homomorphic	Encryption
• Currently:	helper	gadgets	required	for	evaluation	of	each	T	gate

• Other	cryptographic	primitives
• (round-efficient)	delegated	quantum	computation
• Quantum	Multi-Party	Computation	
• Quantum	circuit	obfuscation
• …?



Thank	you	for	your	attention!

Questions



Barrington’s	Theorem

=

[1989]

NC1
Boolean	circuits	with
n Fan-in	2	gates
n Polynomial	size
n Depth	is	log(n)

Branching	 Programs
n Polynomial	 size
n Permutations	 from	S5

Width-5	PBP

𝑥T

or

not

and

𝑥D𝑥\

𝑓(𝑥)
contains	many	non-trivial	functions:
• Majority,	Parity,	Equality	
• Decryption	of	common	FHE	schemes

P

NP

NC1
LNo	proof	that

NP	≠ NC1



Width-5	Permutation	Branching	Programs

instructions: 𝜎\�, 𝜎\\ , 𝜎T�, 𝜎T\ , 𝜎��, 𝜎�\ , 𝜎]�,𝜎]\ , … , 𝜎��,𝜎�\ 	
𝑥\ = 0
𝑥\ = 1

function:		𝑓: 0,1 � → {0,1} (this	example:	𝑛 = 3)input:	𝑥\𝑥T𝑥�

𝜎�y ∈ 𝑆 



Width-5	Permutation	Branching	Programs

instructions: 𝜎\�, 𝜎\\ , 𝜎T�, 𝜎T\ , 𝜎��, 𝜎�\ , 𝜎]�,𝜎]\ , … , 𝜎��,𝜎�\ 	
𝑥\ = 0
𝑥\ = 1

function:		𝑓: 0,1 � → {0,1}

𝑥T = 0
𝑥T = 1

…

𝑥� = 0
𝑥� = 1

𝑥\ = 0
𝑥\ = 1 …

𝜎\
¡¢ ⋅ 𝜎T

¡£ ⋅ 𝜎�
¡¤ ⋅ 𝜎]

¡¢ ⋯ 𝜎�
¡¦	§¨©	¤ = 	ª𝑖𝑑					if	𝑓 𝑥\𝑥T𝑥� = 1

𝜋						if	𝑓 𝑥\𝑥T𝑥� = 0

(this	example:	𝑛 = 3)input:	𝑥\𝑥T𝑥�



Width-5	Permutation	Branching	Programs

instructions: 𝜎\�, 𝜎\\ , 𝜎T�, 𝜎T\ , 𝜎��, 𝜎�\ , 𝜎]�,𝜎]\ , … , 𝜎��,𝜎�\ 	
𝑥\ = 0
𝑥\ = 1

function:		𝑓: 0,1 � → {0,1}

𝑥T = 0
𝑥T = 1

…

𝑥� = 0
𝑥� = 1

𝑥\ = 0
𝑥\ = 1 …

𝜎\
¡¢ ⋅ 𝜎T

¡£ ⋅ 𝜎�
¡¤ ⋅ 𝜎]

¡¢ ⋯ 𝜎�
¡¦	§¨©	¤ = 	ª𝑖𝑑					if	𝑓 𝑥\𝑥T𝑥� = 1

𝜋						if	𝑓 𝑥\𝑥T𝑥� = 0

𝜋 ∈ 𝑆  a	fixed 5-cycle

(this	example:	𝑛 = 3)input:	𝑥\𝑥T𝑥�



𝜎\�, 𝜎\\ , 𝜎T�, 𝜎T\ , 𝜎��, 𝜎�\ , 𝜎]�,𝜎]\ , …………… , 𝜎��, 𝜎�\ 	

From	Perm	Branching	Programs	to	Quantum	Gadgets

instructions:

…

𝜎\
¡¢ ⋅ 𝜎T

¡£ ⋅ 𝜎�
¡¤ ⋅ 𝜎]

¡¢ ⋯⋯⋯𝜎�
¡⋅ = 	 ª𝑖𝑑					if	𝐷𝑒𝑐(𝑠𝑘, 𝐸𝑛𝑐 𝑎 ) = 1

𝜋						if	𝐷𝑒𝑐(𝑠𝑘, 𝐸𝑛𝑐 𝑎 ) = 0

function:	𝐷𝑒𝑐(	) input:	𝒔𝒌,𝑬𝒏𝒄(𝒂)

…

encryptor evaluator



𝜎\�, 𝜎\\ , 𝜎T�, 𝜎T\ , 𝜎��, 𝜎�\ , 𝜎]�,𝜎]\ , …………… , 𝜎��, 𝜎�\ 	

From	Perm	Branching	Programs	to	Quantum	Gadgets

instructions:

𝜎\
¡¢ ⋅ 𝜎T

¡£ ⋅ 𝜎�
¡¤ ⋅ 𝜎]

¡¢ ⋯⋯⋯𝜎�
¡⋅ = 	 ª𝑖𝑑					if	𝐷𝑒𝑐(𝑠𝑘, 𝐸𝑛𝑐 𝑎 ) = 1

𝜋						if	𝐷𝑒𝑐(𝑠𝑘, 𝐸𝑛𝑐 𝑎 ) = 0

function:	𝐷𝑒𝑐(	) input:	𝒔𝒌,𝑬𝒏𝒄(𝒂)

…

encryptor evaluator

P

• Finally,	run	all	instructions	in	reverse	to	get	the	qubit to	a	known	location


