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• Cryptosystems based on the hardness of 
factoring or discrete logarithms are broken 
by quantum computers

• Remaining assumptions:

• lattices (e.g. NTRU)

• codes (e.g. McEliece, Niederreiter)

• hashes (Merkle’s hash-tree signatures)

• multi-variate polynomials 

Post-Quantum Crypto 



• Several lattice-based schemes have been proven 
secure in the classical ROM:

• Signatures [GPV08, GKV10, BF11]

• Encryption [GPV08]

• Identification [CLRS10]

• Are they really secure in the quantum world?

Post-Quantum Crypto and the 
Random-Oracle Model (ROM) 
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• Does security in CROM imply security in QROM ?

“quantum adversary may 
query RO in superposition”
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complex amplitudes: α, β ∈ C, |α|2 + |β|2 = 1
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Two Qubits

two classical bits:	

 00 , 01, 10, 11

quantum state:

complex amplitudes: 

|ϕ� = α00|00�+ α01|01�+ α10|10�+ α11|11� =
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|x� = |x1x2 . . . xn� = |x1� ⊗ |x2� ⊗ . . .⊗ |xn�

n-Qubit States

classical n-bit strings:	



n-qubit state:

complex amplitudes: 

x ∈ {0, 1}n
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Quantum Operations

linear unitary transformations on n qubits: U

• 2n x 2n dimensional matrix

• U*⋅U = id,  i.e. rows and columns of U form 
orthonormal bases

• U preserves inner products

U : C2n → C2n

|x� �→ U |x�
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quantum-accessible RO:

U : |x�|y� �→ |x�|y ⊕O(x)�

O : {0, 1}n → {0, 1}n

x �→ O(x)

• oracle can be accessed “in superposition”
• a single quantum query can involve O(x) for all x

U
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• quantum states need to be measured to 
extract classical information from them

• outcome is probabilistic

• example: measuring
(in the computational basis) gives outcome
x with probability

• quantum computers can not perform 
exponentially many classical computations 
in parallel!

Quantum Measurements
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• Search in unstructured database with N entries

• classical: brute force, requires Ω(N) lookups

• quantum: Grover’s algorithm:               lookupsO(
√
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• Factoring: Given N, find its prime factors
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• Collision search for an r-to-1 function f with 
domain size N
• classical: requires 	

	

 	

 	

    evaluations of f

• quantum: Brassard et al:                   evaluations
Θ(

�
N/r)

O( 3
�

N/r)

Results in Quantum Information Processing

• Search in unstructured database with N entries

• classical: brute force, requires Ω(N) lookups

• quantum: Grover’s algorithm:               lookupsO(
√
N)

• Factoring: Given N, find its prime factors
• classical: General Number Field Sieve: 

• quantum: Shor’s algorithm: O((logN)3)

e(O((logN)1/3(log logN)2/3)



Roadmap

• What’s the problem?

• Separation of QROM from CROM

• Secure Schemes in the QROM

• Open Problems
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• quantum adversary can query oracle on 
exponentially values right at the beginning

• Extractability / Preimage Awareness

• classical simulator learns exact pre-images which 
interest the adversary

• Efficient Simulation

• lazy-sampling does not carry over

• Rewinding / Partial Consistency

• unnoticed changing of hash values is difficult
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Consequence

• All Post-Quantum cryptosystems proven in the 
RO model need to be revisited

• Good news:

• Digital Signatures Schemes with “history-free” 
reductions are secure in the QROM

• Encryption Schemes: CPA security of [BR93] and 
CCA security of hybrid encryption [BR93]

⇒
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✓ What’s the problem?

✓ Separation of QROM and CROM

• Secure Schemes in the QROM

• Open Problems
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[GPV08] signatures

• Hash-and-sign principle:

• Signsk(m) = f-1sk(H(m))

• Vrfypk(m,σ) accepts if and only if fpk(σ)=H(m)

Theorem: Suppose (G,f,f-1) is a quantum-secure 
preimage-sampleable function and quantum-
accessible PRFs exist, then GPV signatures are 
secure in the QROM.
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• fpk(x) is efficiently computable 
and uniformly distributed for random x

• f-1sk(y) samples randomly from those x with fpk(x)=y

• (G,f,f-1) is secure if it is one-way, collision-resistant 
and has high preimage min-entropy

• secure construction from lattices [GPV08]

Central Tool: Trapdoor Functions
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PseudoRandom Functions (PRF)

• efficiently computable function family such that for 
all efficient quantum distinguishers D:

is negligible.

However, currently no constructions are known

���Pr[DPRF (k,·)(1n) = 1]− Pr[DO(·)(1n) = 1]
���

quantum accessquantum access
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Other History-Free Reductions

• Signatures from claw-free permutations:

• Full-Domain Hash [Coron00]

• Katz-Wang Signatures [KW03]



Encryption

• history-freeness is complicated by the challenge 
query. Easier to prove security in QROM directly.



Encryption

• history-freeness is complicated by the challenge 
query. Easier to prove security in QROM directly.

• CPA-security of Bellare-Rogaway encryption 
[BR93]:

where r random and f is a trapdoor permutation.

Epk(m) = fpk(r) �m⊕O(r)



Encryption

• history-freeness is complicated by the challenge 
query. Easier to prove security in QROM directly.

• CPA-security of Bellare-Rogaway encryption 
[BR93]:

where r random and f is a trapdoor permutation.

Epk(m) = fpk(r) �m⊕O(r)

• CCA-security of hybrid encryption scheme:

where f is a trapdoor permutation and Esym is a 
CCA-secure private-key encryption

Epk(m) = fpk(r) �Esym
O(r)(m)
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Summary

• Explanation of  “querying oracles in superposition”

• In general, classical security reductions do not carry 
over to the quantum world

• Restricted classes of classical security proofs do 
imply quantum security

• GPV signatures and BR encryption are secure in the 
QROM
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Open Problems

• Generic Full-Domain Hash

• lattice-based identity-based encryption [GPV08]

• Signatures from Identification Protocols 
[Fiat Shamir 86]

• is history-freeness necessary?

• CCA-security from weaker security notions
[Fujisaki Okamoto 99]

• Quantum-accessible PRFs from one-way functions
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