Quantum Cryptography

Christian Schaffner
ILLC, University of Amsterdam
Centrum Wiskunde & Informatica

Logic, Language and Computation
Monday, 21 September 2015
1969: Man on the Moon

The Great Moon-Landing Hoax?

- How can you prove that you are at a specific location?

http://www.unmuseum.org/moonhoax.htm
What will you Learn from this Talk?

- Classical Cryptography
- Quantum Computation & Teleportation
- Position-Based Cryptography
- Garden-Hose Model
Classical Cryptography

- 3000 years of fascinating history
- until 1970: *private communication* was the only goal
Modern Cryptography

- is everywhere!
- is concerned with all settings where people do not trust each other
Secure Encryption

Goal: Eve does not learn the message

Setting: Alice and Bob share a secret key k
eXclusive OR (XOR) Function

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>(x \oplus y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Some properties:
- \(\forall x : x \oplus 0 = x \)
- \(\forall x : x \oplus x = 0 \)
- \(\Rightarrow \forall x, y : x \oplus y \oplus y = x \)
One-Time Pad Encryption

- **Goal:** Eve does not learn the message
- **Setting:** Alice and Bob share a key k
- **Recipe:**
 - $m = 0000 \ 1111$
 - $k = 0101 \ 1011$
 - $c = m \oplus k = 0101 \ 0100$

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$x \oplus y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- $c = m \oplus k = 0000 \ 1111$
- $c \oplus k = m \oplus k \oplus k = m \oplus 0 = m$

- **Is it secure?**
Perfect Security

Given that

- is it possible that $m = 0000\ 0000$?
 - Yes, if $k = 0101\ 0100$.
- is it possible that $m = 1111\ 1111$?
 - Yes, if $k = 1010\ 1011$.
- it is possible that $m = 0101\ 0101$?
 - Yes, if $k = 0000\ 0001$

In fact, every m is possible.

Hence, the one-time pad is perfectly secure!
Problems With One-Time Pad

- The key has to be **as long as** the message (Shannon’s theorem)
- The key can only be **used once**.

Alice

- $m = 0000\ 1111$
- $k = 0101\ 1011$

Bob

- $m = c \oplus k = 0000\ 1111$
- $k = 0101\ 1011$

Eve

- $c = m \oplus k = 0101\ 0100$

- $m = c \oplus k = 0101\ 0100$

- $k = \ ?$
Information Theory

- 6 ECTS MoL course, given in 2nd block: Nov/Dec 2015
- mandatory for Logic & Computation track
- first lecture: Tuesday, 28 October 2015, 9:00, G3.13
- http://homepages.cwi.nl/~schaffne/courses/inftheory/2015/
Problems With One-Time Pad

- The key has to be as long as the message (Shannon’s theorem)
- The key can only be used once.
- In practice, other encryption schemes (such as AES) are used which allow to encrypt long messages with short keys.
- One-time pad does not provide authentication: Eve can easily flip bits in the message
Symmetric-Key Cryptography

- Encryption insures secrecy: Eve does not learn the message, e.g. one-time pad.
- Authentication insures integrity: Eve cannot alter the message.
- General problem: players have to exchange a key to start with.
Introduction to Modern Cryptography

- 6 ECTS MoL course, usually given in Feb/March
- 2016: probably not
- http://homepages.cwi.nl/~schaffne/courses/crypto/2015/
What to Learn from this Talk?

- Classical Cryptography
- Quantum Computing & Teleportation
- Position-Based Cryptography
- Garden-Hose Model
Quantum Bit: Polarization of a Photon

qubit as unit vector in \mathbb{C}^2
Qubit: Rectilinear/Computational Basis

|0⟩₊ |1⟩₊
Detecting a Qubit

Alice

Bob

no photons: 0
Measuring a Qubit

Alice

Bob

measurement:

with prob. 1 yields 1

0/1

no photons: 0 photons: 1

|1⟩+
|0⟩+

19
Diagonal/Hadamard Basis

Measurement:

\[\frac{\uparrow \downarrow + \downarrow \uparrow}{\sqrt{2}} = \begin{cases} \uparrow \downarrow & \text{with prob. } \frac{1}{2} \text{ yields } 0 \\ \downarrow \uparrow & \text{with prob. } \frac{1}{2} \text{ yields } 1 \end{cases} \]
Illustration of a Superposition

Measurement:

\[
\begin{pmatrix}
\text{↔} \\
\text{↓}
\end{pmatrix} + \begin{pmatrix}
\text{↓} \\
\text{↔}
\end{pmatrix} = \begin{pmatrix}
\text{↔} \\
\text{↓}
\end{pmatrix}
\]

with prob. \(\frac{1}{2} \) yields 0

with prob. \(\frac{1}{2} \) yields 1
Illustration of a Superposition

\[
\begin{align*}
|0\rangle_+ & \quad |1\rangle_+ \\
|0\rangle_\times & \quad |1\rangle_\times
\end{align*}
\]
Quantum Mechanics

+ basis

|0⟩_+

|1⟩_+

× basis

|0⟩_x

|1⟩_x

Measurements:

with prob. 1 yields 1

with prob. ½ yields 0

with prob. ½ yields 1
Wonderland of Quantum Mechanics
Quantum is Real!

- generation of random numbers

![Diagram](image)

(diagram from idQuantique white paper)

- no quantum computation, only quantum communication required
Can We Build Quantum Computers?

- Possible to build in theory, no fundamental theoretical obstacles have been found yet.

- Canadian company “D-Wave” claims to have built a quantum computer with 1024 qubits. Did they?
- 2014: Martinis group “acquired” by Google
- 2014/15: 135+50 Mio € investment in QuTech centre in Delft
- 2015: QuSoft center in Amsterdam
No-Cloning Theorem

Quantum operations: U

Proof: copying is a non-linear operation
Quantum Key Distribution (QKD) [Bennett Brassard 84]

- secure communication
- cannot copy them
- honest players can check whether Eve interfered
- technically feasible: no quantum computation required, only quantum communication
EPR Pairs

“spukhafte Fernwirkung” (spooky action at a distance)

EPR pairs do not allow to communicate
(no contradiction to relativity theory)

can provide a shared random bit
Quantum Teleportation

[Bennett Brassard Crépeau Jozsa Peres Wootters 1993]

- does not contradict relativity theory
- teleported state can only be recovered once the classical information σ arrives
What to Learn from this Talk?

✓ Classical Cryptography

✓ Quantum Computing & Teleportation

- Position-Based Cryptography
- Garden-Hose Model
How to Convince Someone of Your Presence at a Location

The Great Moon Landing Hoax

http://www.unmuseum.org/moonhoax.htm
Position-Based Cryptography

Can the geographical location of a player be used as sole cryptographic credential?

Possible Applications:
- Launching-missile command comes from within the military headquarters
- Talking to the correct country
- Pizza-delivery problem / avoid fake calls to emergency services
- ...

Gamer krijgt SWAT-team in z'n nek: swatting

Zit je lekker een oorlogsspel te spelen, valt er ineens een SWAT-team binnen. Dat gebeurde een Amerikaanse gamer. Hij had net in de livestream van z'n spel *Counter Strike* tegen zijn medespelers 'I think we're being swatted' - toen de deur openbrak en inderdaad een zwaarbewapend arrestatieteam binnenviel.

Dat was allemaal live te zien op de webcam:

https://youtu.be/TiW-BVPCbZk?t=117
Basic task: Position Verification

- Prover wants to convince verifiers that she is at a particular position
- no coalition of (fake) provers, i.e. not at the claimed position, can convince verifiers

Assumptions:
- communication at speed of light
- instantaneous computation
- verifiers can coordinate
Position Verification: First Try

Verifier1

Verifier2

Prover

distance bounding [Brands Chaum ‘93]
Position Verification: Second Try

Verifier1 Prover Verifier2

$\begin{align*}
 f(x, y) & = (a, b) \\
 f(x, y) & = f(x, y)
\end{align*}$

position verification is classically impossible!

[Chandran Goyal Moriarty Ostrovsky: CRYPTO ’09]
Equivalent Attacking Game

\[f(x, y) = (a, b) \]

- independent messages \(m_x \) and \(m_y \)
- copying classical information
- this is impossible quantumly
Let us study the attacking game
Attacking Game

- impossible
- but **possible** with entanglement!!
Entanglement attack

done if $b=1$
Entanglement attack

- The correct person can reconstruct the qubit in time!
- The scheme is completely broken
more complicated schemes?

- Different schemes proposed by
 - Chandran, Fehr, Gelles, Goyal, Ostrovsky [2010]
 - Malaney [2010]
 - Kent, Munro, Spiller [2010]
 - Lau, Lo [2010]

- Unfortunately they can all be broken!
 - general no-go theorem [Buhrman, Chandran, Fehr, Gelles, Goyal, Ostrovsky, S 2014]
Most General Single-Round Scheme

Let us study the attacking game
Distributed Q Computation in 1 Round

- using some form of back-and-forth teleportation, players succeed with probability arbitrarily close to 1
- requires an exponential amount of EPR pairs
No-Go Theorem

- Any position-verification protocol can be broken using an exponential number of EPR-pairs

- **Question:** is this optimal?
- Does there exist a protocol such that:
 - any **attack** requires many EPR-pairs
 - **honest** prover and verifiers efficient
Single-Qubit Protocol: SQP_f

$[\text{Kent Munro Spiller 03/10}]$

$x \in \{0, 1\}^n$

$y \in \{0, 1\}^n$

if $f(x, y) = 0$

if $f(x, y) = 1$

$f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}$

efficiently computable
Define $E(SQP_f)$:= minimum number of EPR pairs required for attacking SQP_f
What to Learn from this Talk?

✓ Classical Cryptography
✓ Quantum Computing & Teleportation
✓ Position-Based Cryptography

Garden-Hose Model

http://arxiv.org/abs/1109.2563
Buhrman, Fehr, S, Speelman
The Garden-Hose Model

\[f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\} \]

\[x \in \{0, 1\}^n \]

\[y \in \{0, 1\}^n \]

share \(s \) waterpipes
The Garden-Hose Model

\[f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\} \]

- \[f(x, y) = 0 \] if water exits @ Alice
- \[f(x, y) = 1 \] if water exits @ Bob

- Based on their inputs, players connect pipes with pieces of hose
- Alice also connects a water tap
The Garden-Hose Model

\[f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\} \]

\[f(x, y) = 0 \text{ if water exits } @ \text{ Alice} \]
\[f(x, y) = 1 \text{ if water exits } @ \text{ Bob} \]

\[x \in \{0, 1\}^n \]
\[y \in \{0, 1\}^n \]

Garden-Hose complexity of \(f \):
\(\text{GH}(f) := \text{minimum number of pipes needed to compute } f \)
Demonstration: Inequality on Two Bits

\[x = x_1 x_2 \]

\[x_1 = 0 \]

\[x_1 = 1 \]

\[x_2 = 0 \]

\[x_2 = 1 \]

\[y = y_1 y_2 \]

\[y_1 = 0 \]

\[y_1 = 1 \]

\[y_2 = 0 \]

\[y_2 = 1 \]

\[x = y \]

\[x \neq y \]
n-Bit Inequality Puzzle

- **GH(Inequality) \(\leq \)**
- demonstration: 3n
- challenge: 2n + 1 (first student to email me solution wins)

- world record: \(~1.359n\) [Chiu Szegedy et al 13]
- **GH(Inequality) \(\geq n \)** [Pietrzak ‘11]
Relationship between $E(SQP_f)$ and $GH(f)$
$\text{Garden-Hose} \quad \text{Attacking Game}$

$\text{GH}(f) \geq E(\text{SQP}_f)$
GH(f) ≥ E(SQP_f)

- using x & y, can follow the water/qubit
- correct water/qubit using all measurement outcomes

x, Alice’s telep. keys

y, Bob’s telep. keys
\(\text{GH}(f) = E(\text{SQP}_f) \)?

- last slide: \(\text{GH}(f) \geq E(\text{SQP}_f) \)
- The two models are not equivalent:
 - exists \(f \) such that \(\text{GH}(f) = n \), but \(E(\text{SQP}_f) \leq \log(n) \)

- Quantum garden-hose model:
 - give Alice & Bob also entanglement
 - research question: are the models now equivalent?
Garden-Hose Complexity Theory

- every f has $\text{GH}(f) \leq 2^{n+1}$
- if f in logspace, then $\text{GH}(f) \leq \text{polynomial}$
 - efficient f & no efficient attack $\Rightarrow P \neq L$
- exist f with $\text{GH}(f)$ exponential (counting argument)
- for $g \in \{\text{equality, IP, majority}\}$: $\text{GH}(g) \geq n / \log(n)$
 - techniques from communication complexity

- Many open problems!
What Have You Learned from this Talk?

✓ Classical Cryptography

✓ Quantum Computing & Teleportation

| 0 ⟩_+ | 1 ⟩_+
| 0 ⟩× | 1 ⟩×
What Have You Learned from this Talk?

- **Position-Based Cryptography**
- **No-Go Theorem**
 - Impossible unconditionally, but attack requires unrealistic amounts of resources
- **Garden-Hose Model**
 - Model of communication complexity
Take on the crypto challenge!

- $\text{GH(Inequality)} = 2n + 1$ pipes
- the first person to tell me (cschaffner@uva.nl) the protocol wins:
 - course “Information Theory”
- see you in the next block on 28 October 2015!
Any f has $\text{GH}(f) \leq 2^{n+1}$

$f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}$

- $x_1 x_2 \ldots x_n$ connects iff $f(00\ldots0, y) = 0$
- $x_1 x_2 \ldots x_n$ connects iff $f(x, y) = 0$
- $x_1 x_2 \ldots x_n$ connects iff $f(11\ldots1, y) = 0$
- $11\ldots1$ connects iff $f(11\ldots1, y) = 0$
- $00\ldots0$ connects iff $f(00\ldots0, y) = 0$
- $00\ldots0$ connects iff $f(x, y) = 0$

$f(x, y) = 1$

$f(x, y) = 0$

2^{n+1} pipes
Any f has $\text{GH}(f) \leq 2^{n+1}$

$f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}$
Open Problems

- Is Quantum-GH(f) equivalent to $E(SQP_f)$?
- Find good lower bounds on $E(SQP_f)$
- Does $P \neq L/poly$ imply f in P with $GH(f) > poly$?
- Are there other position-verification schemes?
- **Parallel repetition**, link with Semi-Definite Programming (SDP) and non-locality.
- **Implementation**: handle noise & limited precision
- Can we achieve other position-based primitives?
Quantum Operations

- are linear isometries
- can be described by a unitary matrix: \(UU^\dagger = U^\dagger U = \text{id} \)
- examples:
 - identity
 - bitflip (Pauli X): mirroring at \(|0\rangle_X \) axis
Quantum Operations

- are linear isometries
- can be described by a unitary matrix: $UU^\dagger = \text{id}$
- examples:
 - identity
 - bitflip (Pauli X): mirroring at $|0\rangle_x$ axis
 - phase-flip (Pauli Z): mirroring at $|0\rangle_+ \text{ axis}$
 - both (Pauli XZ)
Quantum Key Distribution (QKD)

Quantum states are unknown to Eve, she cannot copy them.

Honest players can check whether Eve interfered.

Technically feasible: no quantum computation required, only quantum communication.
Early results of QIP

- Efficient quantum algorithm for factoring [Shor’94]
 - breaks public-key cryptography (RSA)
- Fast quantum search algorithm [Grover’96]
 - quadratic speedup, widely applicable
- Quantum communication complexity
 - exponential savings in communication
- Quantum Cryptography [Bennett-Brassard’84,Ekert’91]
 - Quantum key distribution