Quantum Cryptography

Christian Schaffner

Institute for Logic, Language and Computation (ILLC)
University of Amsterdam

Centrum Wiskunde & Informatica

DESDA symposium, Nijmegen

Friday, 5 June 2015
1969: Man on the Moon

The Great Moon-Landing Hoax?

http://www.unmuseum.org/moonhoax.htm

How can you prove that you are at a specific location?
What will you learn from this Talk?

- Classical Cryptography
- Quantum Mechanics
- Quantum Key Distribution
- Position-Based Cryptography
Classical Cryptography

- 3000 years of fascinating history
- Until 1970: private communication was the only goal

Scytale

Enigma
Modern Cryptography

- is everywhere!
- is concerned with all settings where people do not trust each other
Secure Encryption

Goal: Eve does not learn the message
Setting: Alice and Bob share a secret key k

m = I love you

k = 0101 1011

Alice

Eve

k = 0101 1011

Bob
eXclusive OR (XOR) Function

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>x ⊕ y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Some properties:

- \(\forall x : x \oplus 0 = x \)
- \(\forall x : x \oplus x = 0 \)

\[\Rightarrow \forall x, y : x \oplus y \oplus y = x\]
One-Time Pad Encryption

- **Goal:** Eve does not learn the message
- **Setting:** Alice and Bob share a key k
- **Recipe:**
 - $m = 0000\ 1111$
 - $k = 0101\ 1011$
 - $c = m \oplus k = 0101\ 0100$
 - $c = 0000\ 1111$
 - $k = 0101\ 1011$
 - $c \oplus k = m \oplus k \oplus k = m \oplus 0 = m$

- **Is it secure?**
Perfect Security

- Given that $c = 0101 \ 0100$,
 - is it possible that $m = 0000 \ 0000$?
 - Yes, if $k = 0101 \ 0100$.
 - is it possible that $m = 1111 \ 1111$?
 - Yes, if $k = 1010 \ 1011$.
 - it is possible that $m = 0101 \ 0101$?
 - Yes, if $k = 0000 \ 0001$
- In fact, every m is possible.
- Hence, the one-time pad is perfectly secure!
Problems With One-Time Pad

- The key has to be as long as the message.
- The key can only be used once.
- In practice, other encryption schemes (such as AES) are used which allow to encrypt long messages with short keys.
- One-time pad does not provide authentication: Eve can easily flip bits in the message.
Symmetric-Key Cryptography

- Encryption ensures **secrecy**: Eve does not learn the message, e.g. **one-time pad**
- Authentication ensures **integrity**: Eve cannot alter the message
- General problem: players have to exchange a key to start with
Public-Key Cryptography

- Solves the key-exchange problem.
- Everyone can encrypt using the public key.
- Only the holder of the secret key can decrypt.

- **Digital signatures**: Only secret-key holder can sign, but everyone can verify signatures using the public-key.
RSA Public-Key Encryption

- Key generation: pick two large primes \(p \) and \(q \), set \(N = p \times q \)
- public key: \(N, \ e \in \mathbb{Z}_N^* \), secret key: \(d = e^{-1} \mod \phi(N) \)
- Enc\(_{pk}(m) = m^e \mod N \)
- Dec\(_{sk}(c) = c^d \mod N \)
- security relies on the difficulty of factoring \(N \), because \(\phi(N) = (p-1)(q-1) \)
What will you Learn from this Talk?

- Classical Cryptography
- Quantum Mechanics
- Quantum Key Distribution
- Position-Based Cryptography
Quantum Mechanics (of Photons)

+ basis \[|0\rangle_+ \quad \vdash \quad |1\rangle_+ \]

× basis \[|0\rangle_\times \quad \vdash \quad |1\rangle_\times \]
Quantum Mechanics

+$ basis $ |0\rangle_{\pm} + |1\rangle_{\mp}$

\times basis $ |0\rangle_{\times} + |1\rangle_{\times}$

Measurements:

- with prob. 1 yields 1
- with prob. $\frac{1}{2}$ yields 0
- with prob. $\frac{1}{2}$ yields 1

0/1
Wonderland of Quantum Mechanics
Can We Build Quantum Computers?

- Possible to build in theory, no fundamental theoretical obstacles have been found yet.

- Canadian company “D-Wave” claims to have built one. Did they?

- 2014: Martinis group “acquired” by Google

- 2014: 1.35 Mio € investment in QuTech centre in Delft
Demonstration of Quantum Technology

- generation of random numbers

![Diagram of photon source, semi-transparent mirror, and single-photon detectors](image)

(diagram from idQuantique white paper)

- no quantum computation, only quantum communication required
No-Cloning Theorem

|0⟩⁺ |1⟩⁺
|0⟩ₓ |1⟩ₓ

Quantum operations: [U]

Proof: copying is a non-linear operation
Quantum Key Distribution (QKD) [Bennett Brassard 84]

- Offers a quantum solution to the key-exchange problem
- Puts the players into the starting position to use symmetric-key cryptography (encryption, authentication etc.).
Quantum Key Distribution (QKD)

[Bennett Brassard 84]

$k = 110$
Quantum Key Distribution (QKD) [Bennett Brassard 84]

- Quantum states are unknown to Eve, she cannot copy them.
- Honest players can test whether Eve interfered.
Quantum Key Distribution (QKD)

[Benett Brassard 84]

- technically feasible:
 - no quantum computer required,
 - only quantum communication

- BenneP Brassard 84

©2008 Vadim Makarov www.vad1.com
What will you Learn from this Talk?

✔ Classical Cryptography
✔ Quantum Mechanics
✔ Quantum Key Distribution

Position-Based Cryptography
Position-Based Cryptography

- Typically, cryptographic players use credentials such as
 - secret information (e.g. password or secret key)
 - authenticated information
 - biometric features

Can the geographical location of a player be used as cryptographic credential?
Position-Based Cryptography

Can the geographical location of a player be used as sole cryptographic credential?

Possible Applications:
- Launching-missile command comes from within the military headquarters
- Talking to the correct country
- Pizza-delivery problem / avoid fake calls to emergency services
- ...
Gamer krijgt SWAT-team in z'n nek: swatting

Zit je lekker een oorlogsspel te spelen, valt er ineens een SWAT-team binnen. Dat gebeurde een Amerikaanse gamer. Hij had net in de livestream van z'n spel Counter Strike tegen zijn medespelers 'I think we're being swatted' - toen de deur openbrak en inderdaad een zwaarbewapend arrestatieteam binnenviel.

Dat was allemaal live te zien op de webcam:
https://youtu.be/TiW-BVPCbZk?t=117
Basic task: Position Verification

- Prover wants to convince verifiers that she is at a particular position.
- No coalition of (fake) provers, i.e. not at the claimed position, can convince verifiers.
- Assumptions:
 - Communication at speed of light
 - Instantaneous computation
 - Verifiers can coordinate
Position Verification: First Try

Verifier1

Prover

Verifier2

distance bounding [Brands Chaum ‘93]
Position Verification: Second Try

Verifier1 Prover Verifier2

position verification is classically impossible!
The Attack

- copying classical information
- this is impossible quantumly
Can we brake the scheme now?
Attacking Game

- Impossible to cheat due to non-cloning theorem
- Or not?
It is possible to cheat with entanglement!!

Quantum teleportation allows to break the protocol perfectly.
No-Go Theorem

[Buhrman, Chandran, Fehr, Gelles, Goyal, Ostrovsky, Schaffner 2010]

- Any position-verification protocol can be broken using an exponential number of entangled qubits.

Question: Are so many quantum resources really necessary?

- Does there exist a protocol such that:
 - honest prover and verifiers are efficient, but
 - any attack requires lots of entanglement
What Have You Learned from this Talk?

✓ Classical Cryptography

- Long history
- One-time pad

\[m = 0000 \ 1111 \]

Alice

\[k = 0101 \ 1011 \]

\[c = m \oplus k = 0101 \ 0100 \]

Bob

\[k = 0101 \ 1011 \]

Eve

- Public-key cryptography
What Have You Learned from this Talk?

✓ Quantum Mechanics

- **Qubits**
- **Quantum Computer**
- **No-cloning**
- **Entanglement**
- **Quantum Teleportation**
What Have You Learned from this Talk?

✓ Quantum Key Distribution (QKD)

✓ Position-Based Cryptography
Thank you for your attention!

Questions