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Introduction

Let’s focus on symmetric-key encryption schemes
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Adversaries

Adversary = PPT circuit family (classical security)

Adversary = QPPT circuit family (post-quantum security)
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Not enough

Quantum security beyond post-quantum: quantum interaction with
classical schemes
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Other examples
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Previous work

[DFNS13] Ivan Damgård, Jesper Buus Nielsen, Jakob Løvstad
Funder, Louis Salvail: "Superposition Attacks on Cryptographic

Protocols", ICITS 2013

[BZ13] Dan Boneh, Mark Zhandry: "Secure Signatures and Chosen
Ciphertext Security in a Quantum Computing World", CRYPTO

2013

Model encryption as unitary operator defined by:∑
x ,y

|x , y〉 7→
∑
x ,y

|x ,Enck(x)⊕ y〉

(because we want to recover x 7→ Enck(x) classically)
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Results from [BZ13] & Our Contribution

• A ‘natural’ notion of security (fqIND-qCPA) is unachievable
• Compromise: ‘almost classical’ notion of security (IND-qCPA)
• IND-qCPA is achievable and stronger than IND-CPA

Situation:

Our contribution!
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Classical Indistinguishability (IND)

Game-based security: A plays an interactive game against a
challenger C.

IND game (challenge query): A sends C two plaintexts x0, x1 ∈M.

C flips a random bit b $←− {0, 1}, computes y ← Enck(xb), and
finally sends ciphertext y to A. A’s goal is to guess b.

Classical Indistinguishability (IND)

For any efficient adversary A and any message x0, x1:∣∣∣∣Pr[A(y) = b]− 1
2

∣∣∣∣ ≤ negl (n) .

Theorem
IND ⇐⇒ SEM.
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Quantum CPA (qCPA)

qCPA phase: A and C share a quantum channel:

• A sends query:
∑

x αx ,i |x , 0〉
• C replies with:

∑
x αx ,i |x ,Enck(x)〉

• repeat for i = 1, . . . , q ≤ poly (n) times.

IND-qCPA
An encryption scheme is IND-qCPA secure if it is secure according
to the (classical) IND notion, augmented by a qCPA learning phase.

Theorem [BZ13]

IND-qCPA is achievable and stronger than classical IND-CPA.

This makes sense for the public-key scenario, but in general it is
clearly a ‘compromise’... Why no better choice?
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Fully Quantum Indistinguishability (fqIND)

fqIND phase: A and C share three quantum registers:

• A prepares state: ∑
x0,x1

αx0,x1 |x0, x1, 0〉

• C flips b $←− {0, 1} and transforms the last register to:∑
x0,x1

αx0,x1 |x0, x1,Enck(xb)〉

• A must guess b.

Theorem [BZ13]

fqIND is unachievable (too strong).

(attack exploits entanglement between ciphertext and plaintext)
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BZ13 Attack (against fqIND schemes)

(example for 1-bit messages, with normalization amplitudes omitted)

A initializes register to: H |0〉 ⊗ |0〉 ⊗ |0〉 =
∑

x |x , 0, 0〉
and then calls the encryption oracle with unknown bit b. Now:
• if b = 0, the state becomes:

∑
x |x , 0,Enc(x)〉

(notice the entanglement between 1st and 3rd register);
• if b = 1 instead, the state becomes:∑

x |x , 0,Enc(0)〉 = H |0〉 ⊗ |0〉 ⊗ |Enc(0)〉.

Then A applies a Hadamard on the 1st register and measures:
• if b = 0, the first register is completely mixed (irrespective of
the Hadamard), and the measurement outcome is random;

• if b = 1 instead, the first register is: H2 |0〉 = |0〉, and the
outcome is 0.
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The Road to qIND

(only focus on qIND- phase, but also assume a -qCPA phase)

For fqIND-qCPA many assumptions were implicitly made. In our
work, we explore every option: ‘security tree’ of definitions:
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Model: (O) vs. (C)

(O)

(C)
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(O) (C)

13



Model: (Q) vs. (c)

(Q)

(c)

Classical description of a quantum state ρ: a classical bitstring
describing the quantum circuit outputting ρ from |0 . . . 0〉.

Notice: if we restrict to BQP adversaries, the (c) model only differs
from (Q) in the sense that the adversary is not allowed to entangle

himself with the plaintext states.
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Model: Type-(1) vs. Type-(2) Transformations

Type-(1)

Type-(2)

Type-(2) oracles are also called minimal oracles1.

Notice: in our specific case, and limited to the qIND phase, the two
types are both meaningful.

1

E. Kashefi et al., ‘A Comparison of Quantum Oracles’, Phys. Rev. A 65
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Quantum Indistinguishability (qIND)

qIND challenge query: A and C are two QPPT machines sharing a
classical channel and a quantum channel.

A sends C two classical, poly-sized descriptions of plaintext states
ρ0, ρ1.

C flips a random bit b $←− {0, 1}, creates ρb and computes:

ψ = UEncρbU
†
Enc

and finally sends ciphertext state ψ to A.

A’s goal is to guess b.
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qIND and qSEM

qIND challenge query: as the classical IND, but:
• A and C are two QPPT machines sharing a quantum channel;
• A can only choose classical descriptions of states;
• C performs type-(2) operations;
• the adversary has to distinguish the encryptions.

qSEM challenge query: similar to classical SEM, but:
• template consisting of (descriptions of) quantum circuits;
• two copies of the plaintext are used to generate ciphertext and
advice state (relies on classical descriptions);

• the goal is to produce a state computationally
indistinguishable from the target state.
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Separation Example

Theorem
IND-qCPA ; qIND-qCPA.

Consider [Gol04]2 : sample r
$←− R and use a PRF

f : K ×R →M. Then: Enck(x) := (x ⊕ fk(r), r).

Theorem [BZ13]

The Goldreich scheme is IND-qCPA secure, provided the PRF is
quantum-secure.

Theorem
The Goldreich scheme is not qIND-qCPA secure.

2O. Goldreich: ‘Foundations of Cryptography: Volume 2’
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Impossibility Result

quasi–length-preserving (QLP): core function is bijective (m = m′).

• Goldreich’s scheme

• OTP

• ECB block ciphers

• stream ciphers

Theorem
If a symmetric scheme is QLP, then it is not qIND-qCPA secure.

19
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The Attack

|+〉 =
1√
2
|0〉+

1√
2
|1〉 Enck−→ 1√

2
|π(0)〉+

1√
2
|π(1)〉 = |+〉

Enck(|+〉) is easy to distinguish from Enck(|0〉),
e.g. by applying a Hadamard and measuring.
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Secure Construction

Π family of quantum-secure pseudorandom permutations (QPRP).

Construction

• Generate key: sample (π, π−1)← Π;
• Encrypt message x : pad with n bits of randomness r and set
y = π(r‖x);

• Decrypt y : truncate the first n bits of π−1(y).

Theorem
The above scheme is qIND-qCPA secure.

(Idea of proof: show that for every two plaintext states |φ0〉 , |φ1〉,
the trace distance of the states ρ0, ρ1 obtained by considering their

encryption under a mixture of every possible key is negligible)
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Conclusions

Future directions:
• public-key encryption;
• CCA security;
• qIND-qCPA security for longer messages, block-cipher mode of
operations;

• ‘fully quantum’ IND and relation to our (Q2) notion;
• security of our construction also in the (Q2) model;
• patch IND-qCPA ⇒ qIND-qCPA (using a HMAC).
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End of this talk

Thanks for your attention!

c.schaffner@uva.nl
http://arxiv.org/abs/1504.05255
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Classical Semantic Security (SEM)

Simulation-based security: A is simulated by S in two different
‘worlds’ (real VS ideal).

SEM challenge query: A chooses a challenge template:
• a message distribution X on plaintext spaceM,
• an advice function h :M→ N,
• a target function f :M→ N.

x is sampled from X and A receives (Enck(x), h(x)),
but S only receives h(x). The goal for both is to compute f (x).

Classical Semantic Security (SEM)

For any efficient adversary A there exists an efficient simulator S
such that the two ‘worlds’ are indistinguishable.

This definition is cumbersome.
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Chosen Plaintext Attack (CPA)

CPA ‘learning’ phase: A chooses C up to q = poly (n) plaintexts
x1, . . . , xq ∈M (possibly adaptively) and receives ciphertexts

Enck(x1), . . . ,Enck(xq).

Can be done both before and/or after another challenge query.
Can be combined with other security notions:

CPA phase + SEM phase ⇒ SEM-CPA security.
CPA phase + IND phase ⇒ IND-CPA security.

Theorem
IND-CPA ⇐⇒ SEM-CPA.

Note: deterministic schemes are insecure ⇒ need for
randomization.
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BZ Attack

(example for 1-bit messages, with normalization amplitudes omitted)

A initializes register to: H |0〉 ⊗ |0〉 ⊗ |0〉 =
∑

x |x , 0, 0〉
and then calls the encryption oracle with unknown bit b. Now:
• if b = 0, the state becomes:

∑
x |x , 0,Enc(x)〉 (notice

entanglement between 1st and 3rd registers);
• if b = 1 instead, the state becomes:∑

x |x , 0,Enc(0)〉 = H |0〉 ⊗ |0〉 ⊗ |Enc(0)〉.

Then A applies a Hadamard on the 1st register and measures:
• if b = 0, the Hadamard maps the state to a complete mixture,
and the measurement outcome is random;

• if b = 1 instead, the first register is: H2 |0〉 = |0〉, and the
outcome is 0.
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Quantum Indistinguishability (qIND)

qIND challenge query: A and C are two QPPT machines sharing a
classical channel and a quantum channel.

A sends C two classical, poly-sized descriptions of plaintext states
ρ0, ρ1.

C flips a random bit b $←− {0, 1}, and computes:

ψ = UEncρbU
†
Enc

and finally sends ciphertext state ψ to A.

A’s goal is to guess b.
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Quantum Indistinguishability (qIND)

Quantum Indistinguishability (qIND)

For any QPPT adversary A and any ρ0, ρ1 with efficient classical
representations: ∣∣∣∣Pr[A(ψ) = b]− 1

2

∣∣∣∣ ≤ negl (n) ,

where ψ = UEncρbU
†
Enc, and b

$←− {0, 1}.

Quantum Indistinguishability under qCPA (qIND-qCPA)

An encryption scheme is IND-qCPA secure if it is secure according
to the qIND notion, augmented by a qCPA learning phase.

what about quantum semantic security?
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Quantum Semantic Security

Classical Semantic Security under qCPA (SEM-qCPA)

An encryption scheme is SEM-qCPA secure if it is secure according
to the SEM notion, augmented by a qCPA learning phase.

Theorem
IND-qCPA ⇐⇒ SEM-qCPA.

Proof Idea:
‘⇒’: provide S with A’s code

through h, impersonate C and use
IND to argue same prob.

‘⇐’: assume distinguisher A,
choose constant h, then no S can
infere anything w/o ciphertext. BOOOOORING...
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Quantum Semantic Security

qSEM challenge query: A chooses a challenge template consisting
of classical descriptions of:

• a quantum generator circuit G : N→ HM ,
• a quantum advice circuit h : HM → Hh,
• a quantum target circuit f : HM → Hf .

G is run twice on the same randomness, producing two copies of ρ
(consider purification here);

• the first copy gets encrypted to ψ = UEncρU
†
Enc,

• the second copy is used to compute h(ρ).

A receives (ψ, h(ρ)); but S only gets h(ρ).

Goal is to compute a state ϕ computationally indistinguishable
from f (ρ).
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qSEM challenge query: A chooses a challenge template consisting
of classical descriptions of:

• a quantum generator circuit G : N→ HM ,
• a quantum advice circuit h : HM → Hh,
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Quantum Semantic Security

Quantum Semantic Security (qSEM)

For any efficient quantum adversary A there exists an efficient
quantum simulator S such that their qSEM templates are
identically distributed, and:

|Pr[A(ψ, h(ρ)) wins qSEM ]− Pr[S(h(ρ)) wins qSEM ]| ≤ negl (n)

Quantum Semantic Security under qCPA (qSEM-qCPA)

An encryption scheme is qSEM-qCPA secure if it is secure according
to the qSEM notion, augmented by a qCPA learning phase.

Theorem
qIND-qCPA ⇐⇒ qSEM-qCPA.
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qSEM ⇒ qIND

By contradiction: let A be an efficient qIND distinguisher. We show that
there exists an efficient A′ for qSEM which does not admit simulator.
A′ invokes A, which starts a qIND challenge query consisting of two

classical descriptions s0, s1 of states ρ0, ρ1.
A′ records this template, then prepare his own qSEM challenge template

consisting of:

• as generator G , the circuit outputting ρ0 or ρ1 uniformly;

• as advice h, a ‘dumb’ (constant output) circuit;

• as target f , the identity circuit f (ρ) = ρ.

A′ receives C’s response, forwards the ciphertext to A, and observes
output.

Since A recovers b with non-negligible probability, A′ can then
reconstruct the correct ρb (having recorded its description) and compute

the target state f (ρb).
Any simulator S, on the other hand, only receives a constant state, and

then cannot do better than guessing.
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qSEM ⇐ qIND

Let A be any QPT adversary against qSEM. Then its circuit has a
short classical representation ξ.

Then here is a simulator S with the same success probability:
1 S receives ξ as nonuniform advice (this is allowed);
2 then S implements and run A through ξ;
3 when A produces a qSEM challenge template (G , h, f ), S

forwards it to C;
4 when C replies with its advice state, S forwards it to A,

together with the encryption of a bogus state;
5 finally, S outputs whatever A does.

The presence of the bogus encryption state instead of the right one
does not affect A’s success probability. In fact, if this were the

case, we could turn S into an efficient distinguisher against qIND.
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The (C) model

Objection:

The (C) model is a problem if you need rewinding: how do you
rewind the challenger?

Our response: rewinding the challenger would represent a scenario
where the adversary has almost total control of the environment. In
some cases, it would also allow unlimited superposition access to a
decryption oracle.
In fact, if you could rewind the challenger, this would be equivalent
to the (O) model (which we prove to be unachievable in our
‘security tree’).
Existing rewinding techniques (Watrous, Unruh) have nothing to do
with this scenario. In fact, they rewind the adversary instead.
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The (c) model

Objection:
Your (c) model is too restrictive. Consider the following example:

1 consider a collision-resistant hash function h;

2 prepare the state
∑

x |x , h(x)〉;

3 trace out 2nd register, obtaining ψy =
∑

h(x)=y |x〉 〈x | for random y .
Now, ψy was generated in poly-time, and is not entangled to anything
else. But it cannot have a classical description! Otherwise we could make
two copies of it and find collisions for h.

Our response: true, but ψy is not a meaningful state for the (Q)
model, either! Any BQP adversary which can produce ψy can be
purified to an adversary producing the mixture Ψ =

∑
y Pr(y)ψy -

which has a classical description, and cannot be used to find
collisions for h.
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The Type-(2) model

Objection:

It is well known that type-(2) oracles are more powerful than
type-(1). In fact, building an efficient circuit for a type-(2) oracle
requires the secret key (or exponential loss).

Our response: true, but recall that we are in the (C) model, so this
computation is performed by the challenger, who already knows the

secret key! In fact, for the challenger it is equivalent:

Moreover, if we use type-(1) operators we recover the (weaker)
IND-qCPA notion by [BZ13] (modulo some caveats because of

composition scenarios, see paper).
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