Quantum Cryptography

Christian Schaffner

Institute for Logic, Language and Computation (ILLC)
University of Amsterdam

Centrum Wiskunde & Informatica

Bachelor vak cryptografie Tuesday, 10 March 2015

1969: Man on the Moon

http://www.unmuseum.org/moonhoax.htm

How can you prove that you are at a specific location?

What will you learn from this Talk?

- Recap of Classical Cryptography
- Introduction to Quantum Mechanics
- Post-Quantum Cryptography
- Quantum Key Distribution
- Position-Based Cryptography

Classical Cryptography

- 3000 years of fascinating history
- Until 1970: private communication was the only goal

Modern Cryptography

- is everywhere!
- is concerned with all settings where people do not trust each other

6

- Goal: Eve does not learn the message
- Setting: Alice and Bob share a secret key k

Quiz: eXclusive OR (XOR) Function

Which of the following are correct?

	X	y	$x \oplus y$
a.)	10	01	10
b.)	110	010	100
c.)	0011	0100	0000
d.)	1011	1101	0110

eXclusive OR (XOR) Function

X	y	$x \oplus y$
0	0	0
1	0	1
0	1	1
1	1	0

Some properties:

 $\forall x : x \oplus 0 = x$

 $\forall x: x \oplus x = 0$

 $\Rightarrow \forall x,y : x \oplus y \oplus y = x$

One-Time Pad Encryption

m = 0000 1111Alice k = 0101 1011

 $m = c \oplus k = 0000 1111$

 $x \oplus y$

0

0

- Goal: Eve does not learn the message
- Setting: Alice and Bob share a key k
- Recipe:

$$c = m \oplus k = 0101 \ 0100$$

$$c = 0101 0100$$

 $k = 0101 1011$

$$c \oplus k = 0000 1111$$

 $c \oplus k = m \oplus k \oplus k = m \oplus 0 = m$

Is it secure?

Perfect Security

- Given that
 - is it possible that
 - Yes, if
 - is it possible that
 - Yes, if
 - it is possible that
 - Yes, if

- c = 0101 0100,
- m = 0000 0000?
- k = 0101 0100.
- m = 1111 1111 ?
- $k = 1010 \ 1011.$
- m = 0101 0101 ?
- k = 0000 0001
- In fact, every m is possible.
- Hence, the one-time pad is perfectly secure!

х	у	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

11

Problems With One-Time Pad

- The key has to be as long as the message.
- The key can only be used once.
- In practice, other encryption schemes (such as <u>AES</u>) are used which allow to encrypt long messages with short keys.
- One-time pad does not provide <u>authentication</u>:
 Eve can easily flip bits in the message

Quiz: Encryption & Authentication

- Which of the following are correct?
- a. Secure encryption guarantees that an eavesdropper cannot learn a message.
- b. Secure encryption guarantees that a message cannot be altered.
- Authentication guarantees that an eavesdropper cannot learn a message.
- d. Authentication detects altering of a message.

Symmetric-Key Cryptography

- Encryption ensures secrecy:
 Eve does not learn the message, e.g. one-time pad
- Authentication ensures integrity:
 Eve cannot alter the message
- General problem: players have to exchange a key to start with

Public-Key Cryptography

- Solves the key-exchange problem.
- Everyone can encrypt using the <u>public key</u>.
- Only the holder of the secret key can decrypt.
- <u>Digital signatures</u>: Only <u>secret-key</u> holder can sign, but everyone can verify signatures using the <u>public-key</u>.

Quiz: RSA

- Which of the following are correct?
- a. RSA is a public-key encryption scheme.
- The security of RSA encryption relies on the computational hardness of factoring large integer numbers.
- c. The security of RSA encryption relies on the computational hardness of taking discrete logarithms in a finite field.
- d. RSA encryption is secure against adversaries with unlimited computing power.

RSA Public-Key Encryption

secret key

public key

- Key generation: pick two large primes p and q, set N=p*q
- public key: N, $e \in Z_N^*$, secret key: $d = e^{-1} \mod \phi(N)$
- $Enc_{pk}(m) = m^e \mod N$
- $Dec_{sk}(c) = c^d \mod N$
- security relies on the difficulty of factoring N, because $\phi(N)=(p-1)(q-1)$

What will you Learn from this Talk?

- ✓ Recap of Classical Cryptography
- Introduction to Quantum Mechanics
- Post-Quantum Cryptography
- Quantum Key Distribution
- Position-Based Cryptography

Quantum Bit: Polarization of a Photon

qubit as unit vector in \mathbb{C}^2

Qubit: Rectilinear/Computational Basis

Detecting a Qubit

Measuring a Qubit

Diagonal/Hadamard Basis

Measuring Collapses the State

Measuring Collapses the State

Quantum Mechanics

+ basis

 $|0\rangle_{+}$

 $|1\rangle_{+}$

 \times basis

 $|0\rangle_{\times}$

 $|1\rangle_{\times}$

Measurements:

with prob. 1 yields 1

with prob. ½ yields 0

with prob. ½ yields 1

Wonderland of Quantum Mechanics

What will you Learn from this Talk?

- ✓ Recap of Classical Cryptography
- ✓ Introduction to Quantum Mechanics
- Post-Quantum Cryptography
- Quantum Key Distribution
- Position-Based Cryptography

Many Qubits

- 1 qubit lives in a 2-dimensional space,
 can be in a superposition of 2 states
- 2 qubits live in a 4-dimensional space,
 can be in a superposition of 4 states

$$\frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2}$$

- 3 qubits can be in superposition of 8 states
- n qubits can be in superposition of 2ⁿ states
- So, with 63 qubits, one can do 2⁶³ = 9223372036854775808 calculations simultaneously!
- Problem: Measuring this huge superposition collapses everything and yields only one random outcome

Quantum Computing

- With n qubits, one can do 2ⁿ calculations simultaneously
- Problem: Measuring this huge superposition will collapse the state and only give one random outcome
- Solution: Use quantum interference to measure the computation you are interested in!

seems to work for specific problems only

Quantum Algorithms: Factoring

 [Shor '94] Polynomial-time quantum algorithm for factoring integer numbers

- Classical Computer : Exponential time
- Quantum Computer : Poly-time: n²
- For a 300 digit number:
 - Classical: >100 years
 - Quantum: 1 minute

Can We Build Quantum Computers?

Possible to build in theory, no fundamental theoretical

obstacles have been found yet.

Martinis group (UCSB) 9 qubits

- Canadian company "D-Wave" claims to have build one. Did they?
- 2014: Martinis group recently "acquired" by Google
- 2014: QuTech centre in Delft

Post-Quantum Cryptography

 [Shor '94] A large-scale quantum computer breaks most currently used public-key cryptography (everything based on factoring and discrete logarithms)

(qubits)

 It is high time to think about alternative computational problems which are hard to solve also for quantum computers

 Post-Quantum Cryptography studies classical cryptographic schemes that remain secure in the presence of quantum attackers.

Lattice-Based Cryptography

For any vectors v₁,...,v_n in Rⁿ, the lattice spanned by v₁,...,v_n is the set of points
L={a₁v₁+...+a_nv_n | a_i integers}

 Shortest Vector Problem (SVP): given a lattice, find a shortest (nonzero) vector

- Shortest Vector Problem (SVP): given a lattice, find a shortest (nonzero) vector
- no efficient (classical or quantum) algorithms known
- public-key encryption schemes can be built on the computational hardness of SVP

Quiz: Post-Quantum Crypto

- Which of the following are correct?
 - Post-quantum cryptography uses quantum computers to do cryptography
- Post-quantum cryptography studies which classical cryptoschemes remain secure against quantum attackers
- Finding the shortest vector in a high-dimensional lattice is hard for a quantum computer
- d. Quantum computers are commercially available
- e. Large-scale quantum computers can never be built.

What will you Learn from this Talk?

- ✓ Recap of Classical Cryptography
- ✓ Introduction to Quantum Mechanics
- ✓ Post-Quantum Cryptography
- Quantum Key Distribution
- Position-Based Cryptography

Demonstration of Quantum Technology

generation of random numbers

(diagram from idQuantique white paper)

 no quantum computation, only quantum communication required

38

No-Cloning Theorem

Proof: copying is a non-linear operation

Quantum Key Distribution (QKD)

[Bennett Brassard 84]

- Offers an quantum solution to the key-exchange problem
- Puts the players into the starting position to use symmetric-key cryptography (encryption, authentication etc.).

Quantum Key Distribution (QKD) [Bennett Brassard 84]

Quantum Key Distribution (QKD) [Bennett Brassard 84]

- Quantum states are unknown to Eve, she cannot copy them.
- Honest players can test whether Eve interfered.

Quantum Key Distribution (QKD)

[Bennett Brassard 84]

Alice

Bob

Eve

 technically feasible: no quantum computer required, only quantum communication Quantum Key Distribution (QKD)
[Bennett Brassard 84]

Quiz: Quantum Key Distribution

- Which of the following are correct?
- a. The no-cloning theorem guarantees the security of quantum key distribution
- A quantum computer is required to perform quantum key distribution
- c. All public-key systems (e.g. RSA) can be broken by an eavesdropper with unlimited computing power. Hence, QKD is insecure against such eavesdroppers as well.
- d. The output of QKD for honest players Alice and Bob is a shared classical key.

What will you Learn from this Talk?

- ✓ Recap of Classical Cryptography
- ✓ Introduction to Quantum Mechanics
- ✓ Quantum Key Distribution
- ✓ Post-Quantum Cryptography
- Position-Based Cryptography

Position-Based Cryptography

- Typically, cryptographic players use credentials such as
 - secret information (e.g. password or secret key)
 - authenticated information

biometric features

Can the geographical location of a player be used as cryptographic credential?

Position-Based Cryptography

Can the geographical location of a player be used as sole cryptographic credential?

- Possible Applications:
 - Launching-missile command comes from within the military headquarters
 - Talking to the correct country
 - Pizza-delivery problem / avoid fake calls to emergency services
 - . . .

Position-Based Cryptography

Gamer krijgt SWAT-team in z'n nek: swatting

© 29-08-2014, 05:49 AANGEPAST OP 29-08-2014, 05:49

Zit je lekker een oorlogsspel te spelen, valt er ineens een SWAT-team binnen. Dat gebeurde een Amerikaanse gamer. Hij had net in de livestream van z'n spel Counter Strike tegen zijn medespelers 'I think we're being swatted' - toen de deur openbrak en inderdaad een zwaarbewapend arrestatieteam binnenviel.

Dat was allemaal live te zien op de webcam:

Basic task: Position Verification

- Prover wants to convince verifiers that she is at a particular position
- no coalition of (fake) provers, i.e. not at the claimed position, can convince verifiers
- assumptions:
- communication at speed of light
- instantaneous computation
- verifiers can coordinate

Position Verification: First Try

distance bounding [Brands Chaum '93]

Position Verification: Second Try

position verification is classically impossible!

The Attack

Position Verification: Quantum Try

Can we brake the scheme now?

Attacking Game

- Impossible to cheat due to noncloning theorem
- Or not?

EPR Pairs

55 [Einstein Podolsky Rosen 1935]

- "spukhafte Fernwirkung" (spooky action at a distance)
- EPR pairs do not allow to communicate (no contradiction to relativity theory)
- can provide a shared random bit

Quantum Teleportation

56 [Bennett Brassard Crépeau Jozsa Peres Wootters 19

- does not contradict relativity theory
- teleported state can only be recovered once the classical information σ arrives

Quantum Teleportation

[Bennett Brassard Crépeau Jozsa Peres Wootters 1993]

- does not contradict relativity theory
- teleported state can only be recovered once the classical information σ arrives

Teleportation Attack

- It is possible to cheat with <u>entanglement</u>!!
- Quantum teleportation allows to break the protocol perfectly.

[Buhrman, Chandran, Fehr, Gelles, Goyal, Ostrovsky, Schaffner 2010]

- Any position-verification protocol can be broken using an exponential number of entangled qubits.
- Question: Are so many quantum resources really necessary?

- Does there exist a protocol such that:
 - honest prover and verifiers are efficient, but
 - any attack requires lots of entanglement

Quiz: Position-Based Q Crypto

- Which of the following are correct?
- a. Position verification using classical protocols is impossible against unbounded colluding attackers
- b. Position verification using quantum protocols is impossible against unbounded colluding attackers
- Quantum teleportation can send information faster than the speed of light
- d. Entangled qubits are difficult to create in practice.
- e. Entangled qubits are difficult to store for 1 second in practice.

What have you learned today?

- ✓ Recap of Classical Cryptography
- ✓ Introduction to Quantum Mechanics
- ✓ Quantum Key Distribution
- **✓** Post-Quantum Cryptography
- ✓ Position-Based Cryptography

Recap of Classical Cryptography

- Long <u>history</u>
- One-time pad

62

Public-key cryptography, e.g. RSA

Quantum Mechanics

Qubits

$$\begin{array}{c|c} & \bullet & |0\rangle_{+} & \bullet & |1\rangle_{+} \\ \hline / & |0\rangle_{\times} & \bullet & |1\rangle_{\times} \\ \hline \end{array}$$

No-cloning

Entanglement

Quantum Teleportation

Quantum Computing

Post-Quantum Cryptography

Quantum Key Distribution (QKD)

✓ Position-Based Cryptography

Thank you for your attention!

Quiz: Quantum Crypto

- Which of the following are correct?
 - Quantum Crypto studies the impact of quantum technology on the field of cryptography
- b. As RSA encryption will be broken by quantum computers, we should switch to other systems already now (in order to secure information for more than 10 years)
- c. Position-based cryptography exploits the fact that information cannot travel faster than the speed of light
- d. Quantum Key Distribution is fundamentally more secure than classical public-key cryptography