
University of Amsterdam

April 2018

Privately Training CNNs using
Two-Party SPDZ
Ruben Seggers & Koen van der Veen
Supervisor: Christian Schaffner

Abstract. The success of deep learning algorithms is greatly attributed to the increased
availability of large datasets. However, there exist many tasks where privacy concerns pre-
vent data sharing. Some efforts to solve this problem use secure multi-party computation,
with the cost of extra computation and communication. A recently developed multi-party
computation protocol is SPDZ. In this work, deep convolutional neural nets are trained
in a simulated SPDZ environment. Various methods are proposed to enable training, as
SPDZ does not support all necessary functionalities used in typical CNNs. Training is eval-
uated on computation and communication overhead and the trained models are compared
to their non-private equivalents. The proposed models achieve similar accuracy and training
is successfully optimized to minimize communication overhead, increasing the feasibility of
training deeper architectures.

1 Introduction

Convolutional Neural Networks (CNNs) achieve state of the art performance in various image and
other machine learning tasks. Large amounts of data need to be gathered to train these networks.
However, there exist many tasks where the need for privacy complicates or prevents data sharing,
e.g. in the medical discourse. In recent research this problem is addressed using secure Multi Party
Computation (MPC) protocols to share computations over multiple parties without needing to
share the actual data. Various MPC protocols designed for arithmetic circuit evaluation support
efficient addition and multiplication methods. However, nonlinear functions are very expensive to
compute, preventing the use of e.g. the ReLU activation function. Therefore, activation functions
and loss functions have to be approximated by continuous polynomials. This decreases the efficiency
of training and the performance of the models. It should be noted that the privacy vulnerabilities
due to the data learning capabilities of the models themselves are not addressed using MPC; to
this end differential privacy techniques are currently the state of the art solution. However, this is
out of the scope of this research.

2 Related work

Efforts to train machine-learning models without the need for sharing data typically use one of the
following approaches: Either i) the data is encrypted using Homomorphic Encryption (HE) and



2 Privately Training CNNs Using Two-Party SPDZ

sent to a server to train models; Or ii) the the model is trained jointly while keeping the inputs
private using an MPC protocol.

2.1 HE approach

An example of a CNN trained using HE is CryptoNets [6]. CryptoNets shows high accuracy and
throughput. However, it does lose on accuracy in deeper architectures due to the vanishing gradi-
ents problem caused by the use of the sigmoid activation function. This problem is addressed in
subsequent work by approximating the ReLU by polynomials that can be of low order by approx-
imation on a small interval, combined with batch normalization [4]. CryptoDL explores this idea
even further, but focuses on HE inference: The model is trained on a plain text public dataset.
Afterwards, predictions are generated on encrypted data. These predictions can only be decrypted
by the data owner [8]. For inference CryptoDL shows state of the art performance on inference in
both accuracy and efficiency.

Deep learning using HE shows the best accuracy efficiency trade-off. However, as models are
trained on encrypted data, this approach will only work on data that is encrypted with the same
key used during training. Therefore, either the model can only be used by the data owner, or the
key has to be shared with the model owner, meaning the data can be decrypted by the model owner,
mitigating all benefits gained with encryption in the first place. In other words, this approach is
only feasible for a limited scenario with only one data owner who also is the only one who can use
the trained model.

2.2 MPC approach

MPC is well established subfield of cryptography research. However, using MPC for privacy-
preserving machine learning is a novel approach and considerably less researched compared to
HE. MPC protocols typically use some or all of the following techniques: Circuit Garbling (GC),
secret sharing and Oblivious Transfer (OT).

SecureML is a learning scheme in which an NN is trained using MPC [10]. The MPC implemen-
tation of SecureML makes use of both GC and OT, used to evaluate the ReLU activation function.
For weight matrix multiplications, techniques similar to SPDZ are used, which is explained below.
The only results reported are the accuracy achieved by a relatively shallow network without convo-
lutional layers. As there is no information on CPU time, communication cost and synchronization
cost, it is hard to judge how their approach compares to others. Furthermore, their implementation
is based on a use-case where two non-colluding servers share the user data, which requires trust.
SecureML proves security against a semi-honest adversary.

DeepSecure is based on Yao’s GC protocol and enables deep learning with multiple decentralized
data owners and a single model owner [13]. This variety of GC requires more computation, as all
functions are rewritten to binary circuits. It does yield the advantage that there is no need for
communication between layers; only the inputs and outputs have to be communicated. DeepSecure
protects against honest-but-curious adversaries.

2.3 SPDZ

SPDZ is an MPC protocol aimed at arithmetic circuit evaluation based on secret sharing. The
SPDZ MPC software package developed by the University of Bristol is based mainly on [2] and
[12] for secret sharing and message authentication codes, and [11] to perform preprocessing aimed
at reducing the communication during the actual execution. The latter is achieved in an offline
phase where so called triples are created and pre-shared that can be used during the execution of
a desired computation. The communication cost when using SPDZ is relatively high. However, the
computational cost during execution is low, as SPDZ is specifically designed for arithmetic circuit
evaluation. Furthermore, the protocol is suited for a generic setup similar to DeepSecure. Moreover,
where DeepSecure offers protection against honest-but-curious adversaries, SPDZ is UC-secure



Privately Training CNNs Using Two-Party SPDZ 3

against a dishonest majority. To the best of our knowledge there exist no scientific publication
on using SPDZ for machine learning besides SecureML, which has limitations as described in the
previous section. However, Morten Dahl wrote a blog post on this approach together with a proof
of concept implementation [1].

Shared arithmetic circuit evaluation in a finite field
In SPDZ, participants secret share all inputs among all parties to evaluate an arithmetic circuit. In
the case of machine learning, this translates to training a shared model on shared data. To enable
sharing, a private value x is split in a privacy-preserving manner into N pieces xi, for which holds∑

i xi = x. The mechanism behind the generation of secret shares, or the generation of triples
in the offline phase, is not described in this report. However, it is important to understand how
secret shared values and triples are used to do joint computation, as they are extended to achieve
efficient training of a CNN.

When a computation is performed on shared values, the participants each perform an applicable
local computation on their shares of the involved values. The notation of shared computation is as
follows: when the desired global computation would be e.g.: x+y = z, the values x and y are shared
to create secret-shared values [x] and [y]. The intended MPC computation is now represented as:
[x] + [y] = [z]. Each individual i performs operations on xi and yi to obtain zi. To obtain the value
of z from [z], the participants broadcast their shares zi to a designated location, where summing
over the shares yields the actual result.

The two main operations defined in SPDZ are addition and multiplication. Addition is per-
formed by simply adding the shares locally, i.e. the shared computation [x] + [y] = [z] is achieved
by local computation of xi + yi = zi. Multiplication is more complex: To compute [x] · [y] = [z]
a triple (a,b,c) is constructed for which holds: a · b = c. This triple is secret shared such that
every participant can compute a masked version of their shares αi = (xi − ai), and βi = (yi − bi).
Subsequently, all individuals broadcast their masked shares αi and βi. Now α and β are publicly
available to every user, zi can be computed by:

zi = ci + αbi + βai

= ci + (x− a)bi + (y − b)ai

To retrieve the actual value of zi, an extra term αβ has to be added to the sum over zi:

z = αβ +
∑
i

zi = αβ + c+ αb+ βa

= c+ (x− a)b+ (y − b)a+ (x− a)(y − b) = xy

Computations in NNs are performed on real numbers represented as floats. In SPDZ, real
numbers have to be encoded as either fixed point or floating point representations. The former is
the more common approach, where the real numbers are scaled by a certain precision value and
subsequently rounded to an integer:

xencoded = round(xreal ∗ 10precision) mod Q,

where modulo Q defines a finite field and Q is some large prime number. The precision should
be low enough compared to Q, such that the maximum value of x does not ‘wrap around’ when
encoded. When two values in the field are multiplied, the maximum precision required by the
resulting value is doubled. Therefore, truncation is used to reduce the precision of the result after
every multiplication [3].

The lion’s share of computation in training NNs are matrix multiplications, which consist
of scalar multiplications and additions, both readily available in SPDZ. However, various other



4 Privately Training CNNs Using Two-Party SPDZ

common computations are non-linear functions, e.g. the widely used ReLU activation function.
These functions cannot be evaluated as an arithmetic circuit, and thus not using SPDZ. A common
approach to address this shortcoming is to approximate these functions using polynomials, as they
only require multiplication and addition; This is also the approach used in this research.

3 Proposed architecture

The goal of this project is to implement all necessary components to train a CNN on SPDZ to
enable training that is UC-secure against a dishonest majority. This solution will build on existing
components of NNs on SPDZ already developed, as described below. The proposed method enables
two-party MPC between two non-colluding servers, one with data and one with a model; as well
as a hub-spoke setup, where the model owner has multiple two-party MPC connections with
independent data owners. In the former setup, there remains a choice in whether the model share is
broahttps://www.sharelatex.com/project/5ab2803fe2f64a7a8b625b8ddcast from the data-holding
server to the model owner making it fully available, or to keep the model share such that the model
owner can only make predictions when the data server allows it to do so.

3.1 Existing components

The idea to apply SPDZ to machine learning is not novel. A recent informal research blog post
describes how a shared model can be trained by two non-colluding parties on shared data [1]. Table
1 shows the architecture of this implementation; the encoding column lists which components make
use of SPDZ, i.e. whether components are privately or publicly evaluated.

Table 1: Model architecture of the existing implementation.

Layer Encoding

conv2d (32, (3,3)) Public
sigmoid Public
conv2d (32, 3,3)) Public
sigmoid Public
average pooling2d (2,2) Public
dropout Private
dense(128, 6272) Private
dropout Private
dense(5, 128) Private
softmax Public
cross-entropy loss Private

Convolutional layers can be pre-trained: a model is trained on a certain task and dataset.
Subsequently, the weights of the convolutional layers are used when training another model. This
method is known as transfer learning, as knowledge gained in training one model is transferred
to another model. Often, these pre-trained weights are used as a starting point and fine-tuned
by training on the new task. Note that the first layers of the architecture are public. Here, the
convolution layers are fixed, i.e. not fine-tuned on the new task. In this setting, the convolution
layers are used to extract features from the data. These features and the remaining part of the
model are shared among two servers and a shared output is produced. This output is broadcast
and used to compute the final softmax layer and cross-entropy loss.

The private components of this architecture make use of two main operations: the dot product
(for dense layers) and the sigmoid function (for activation layers). Dot products consist of multipli-
cations and additions, which are supported by SPDZ. However, a naive implementation of the dot
product masks every value x in a matrix multiple times, resulting in a high communication cost.



Privately Training CNNs Using Two-Party SPDZ 5

To prevent this, an optimized triple of matrices (A,B,C) can be used such that A ·B = C. For two
matrices A and B of size M ×N and N ×L this reduces the number of communicated values from
M ×N × L to M ×N + N × L [1]. For a simple dense layer in a neural network with 100 input
nodes and 10 output nodes and a batch of 128 examples this results in 128 ·100+ 100 ·10 = 13, 800
communicated values instead of 128 ·100 ·10 = 128, 000 communicated values, which is a reduction
in communication by nearly a factor 10.

The sigmoid function contains exponentiation, which is not defined in SPDZ. Therefore, the
sigmoid function is approximated using a polynomial. The used polynomial is of order 9, where
only the uneven powers are used as they influence the precision of approximation more than the
even powers, and using all powers would drastically increase communication cost.

In this model, the shares of the output of the dense layer are revealed before the softmax
function is applied. This is a substantial privacy leak as at least one of the two parties now sees
the predictions of the network on the data. However, if these outputs are only revealed to the data
owner, the privacy leak is relatively small, since the outputs of the model do not reveal much about
its parameters. After the softmax function, the outputs are combined with the privately shared
labels in the cross-entropy loss function, yielding a shared output.

To be able to test the feasibility of the setup proposed in this project, the experimental setup
from [1] is used. This implementation simulates SPDZ by splitting the values of a tensor into
shares and storing them in separate attributes of a tensor class, i.e. there will be a simulated
shared computation rather than actual separate parties communicating over a network. There are
three different types of tensor classes defined to compare experimental results: a native tensor,
used to do tensor operations as usual on 32 bit floats; a public encoded tensor, used to do tensor
operations in a finite field on 128 bit integers used as fixed-point representation of real numbers;
and a private encoded tensor, used to emulate the secret-sharing mechanism from SPDZ, also using
128 bit integers. All tensors are implemented as NumPy classes to ensure fair comparison. The
public encoded tensor shows the effects of training with integers in a finite field instead of floats;
The private tensor shows the effects on training using SPDZ.

3.2 Desirable extensions

As stated above, the existing implementation does not allow private training of convolutional layers,
i.e. the convolutional layers can only be used as a feature extractor and cannot be fine-tuned for
the task at hand. Furthermore, for some tasks there is no large similar public dataset available
and weights of the convolutional layers have to be trained from scratch, increasing the need to
be able to privately train these. When using convolutional layers, it is common to also decrease
the number of parameters by using max pooling, greatly reducing training time. Including these
convolutional and pooling layers results in a deeper architecture, which gives rise to the vanishing
gradients problem: As the sigmoid activation function downscales the values between every two
layers, many values decrease to zero. The most common approach to tackle this problem, is to
use the ReLU activation layer, which simply sets all negative values to zero and leaves positive
values unchanged. Especially combined with convolutional layers, the ReLU has become a powerful
standard in machine learning.

3.3 Implementation

To fully privately train a CNN on SPDZ the existing implementation has to be extended with
SPDZ implementations of: i) Convolutional layer; ii) Average pooling layer; iii) ReLU activation
function; And iv) loss function.

i) Convolutional layer
A convolution layer computes the output of sliding a set of convolution filters over an input space.
One implementation of the convolutional layer extracts patches from the input, subsequently flat-



6 Privately Training CNNs Using Two-Party SPDZ

tening and concatenating these patches into a single matrix. The weights of the filters are flattened
and transposed accordingly. This technique enables an efficient computation of the convolution
layer by a single dot product between the two resulting matrices. This process of extracting patches
from the input into a single matrix is called the im2col operation [5].

ii) Average pooling layer
Most CNNs use max pooling to down-sample the resolution of feature maps, where for every M×N
values the maximum value is selected. The max pooling operation is a non-linear function, which
is not compatible with SPDZ. A popular alternative for max pooling is average pooling, where the
average value of every M ×N pixels is selected using a sum and a division by a public constant.

iii) ReLU activation function
As for the max pooling, the ReLU function is non-linear and not compatible with SPDZ. A solution
is to approximate this function with a polynomial. Where the regular ReLU simply sets all negative
values to zeros, a rather cheap operation, a polynomial requires computation of several powers of
x according to the order of the polynomial, and a dot product with the public coefficients of the
approximation. Preliminary experiments showed that higher orders only slightly increase model
performance (i.e. prediction accuracy), for a high price in computation and communication cost.
Figure 1 shows the approximations of orders 3 and 9 next to the actual (exact) ReLU function in
the relevant domain [-1,1].

Fig. 1: Approximation of the ReLU activation function.

iv) Loss function
The cross-entropy loss function is commonly used for classification tasks, as it conveniently yields
outputs that sum to 1, so the outputs are interpretable as probabilities. However, as it contains
exponentiation which is not available in SPDZ, again a solution has to be found. Unfortunately,
approximating an exponent with a polynomial is hard. Both other loss functions or other approx-
imation methods can be used to solve this problem. Due to time constraints, these solutions are
not evaluated in this research. To be able to run simulations, the output of the model is broadcast
and the softmax is computed publicly. The cross-entropy loss is computed privately. Indeed, this
yields a privacy risk and solutions have to be considered in future work.

3.4 Optimization

Many frameworks exist for machine learning, for a great deal to enable efficient computation
using CPU/GPU instructions that massively speed up training. However, as the encoded tensors



Privately Training CNNs Using Two-Party SPDZ 7

make use of integers in a finite field instead of regular floats, these optimization cannot be used
directly. Therefore, other optimization techniques can drastically improve CPU time of training.
Furthermore, using specialized triples for several matrix operations can decrease the amount of
information that has to be communicated significantly.

CPU time optimization
For the convolutional layer the col2im and im2col operations are used. As these operations are the
most expensive parts of the network, they are performed in Cython, which compiles the operations
on the NumPy tensors to C code.

Communication-complexity optimization
As in the communication optimization for dot product and convolutions, the main purpose of
specialized triples is that every value that is to be kept private is only masked once. The specialized
triple for the dot product is used in all experiments. Furthermore, specialized triples are developed
for several operations as further described below.

As mentioned earlier, the convolutional layer uses the im2col operation to extract patches from
the input. As patches are often overlapping, the resulting matrix of the im2col operation often
contains many duplicates of the input. When specialized dot-product triples are used, this still
incurs an extra communication cost as the unique values in the input are masked more than once.
Therefore, a convolution triple (A,B,C) is proposed, for which holds: im2col(A) ·B = C. Using this
triple, no input value is masked more than once and a minimal communication cost is achieved.
For the backward phase of a convolutional layer, a similar problem holds. The im2col operation
is again applied to the input of the layer, before a dot product with the backpropagated gradient
matrix resulting in the weight-update matrix. Therefore, a similar triple is introduced for this
operation for which holds im2col(A) ·B = C, which again results in minimal communication cost.

When the ReLU function is approximated by a polynomial, x2 is evaluated. As the value of x is
multiplied by itself, it can be masked twice with the same value, resulting in less communication.
The corresponding triple is A ·A = B.

In the backpropagation phase through the average-pooling layer, values in the backpropagated
gradient on the output side of the layer are copied into the backpropagated gradient on the input
side of the layer. Subsequently, these values are multiplied with the input and weight matrices of
the previous (conv) layer to compute the weight update and backpropagation matrices. However,
by masking the backpropagated gradients before copying communication can be reduced. Two
specialized triples are introduced: For the weight update convbackward(A) · im2col(B) = C. And
for the backpropagated gradient convbackward(A) ·B = C

Communication complexity optimization: re-using of masks
The last optimization considers the re-using of masks. Whenever there exists a matrix which occurs
in two operations: [x] · [y] = [z] and [x] · [q] = [w] the values that are used to mask x can be re-used.
This occurs in many places across the network. In the forward phase this is used for the ReLU
approximations as to evaluate x2 = x · x and x3 = x2 · x, where x is used twice.

For the backward phase this idea can be exploited even further: In the forward phase, each
layer with weights masks the input x and the weights w to evaluate the output. In the backward
phase, the weight update and backpropagated gradient are computed by matrix multiplications of
the incoming backpropagated gradients with the layer input x and layer weights w, from which the
masks can be re-used. As the backpropagated gradient is also used twice, in the second operation,
its mask can be re-used also. Finally, for the backward phase of the ReLU, the incoming gradient
is multiplied by the derivative of the ReLU approximation. This derivative contains all but the
last powers of the original polynomial approximating the ReLU function, which already have been
evaluated and can therefore be re-used.



8 Privately Training CNNs Using Two-Party SPDZ

4 Experiments and results

4.1 Setup

For all experiments one or both of the following two architectures are used: one with a single-
convolutional layer as described in Table 2, and one with double-convolutional layers as described
in Table 3. For brevity, these will also be referred to as the shallow convnet and deep convnet.

The models are trained with the following details: The models are trained on batches of size
128 of the MNIST dataset with plain stochastic gradient descent (SGD) without momentum and
a learning rate of 0.01 [9]. For the softmax function the log-sum-exp function is used, where the
maximum activation value in a layer is subtracted from all activation values in order to prevent
exploding gradients [7]. In the backward pass through the network, the backpropagated gradient
with respect to the input through the first layer of the model is not computed, since it is never
used and requires extra communication for private tensors. The ReLU activation function is placed
after the average pooling, as preliminary experiments showed that this does not yield a significant
decrease in performance in this specific setup, while reducing communication cost and CPU time.
A design choice specific to the deep architecture is the pooling layer between the two convolution
layers, decreasing both CPU time and communication cost. As there is no private solution im-
plemented for the loss function, the non-scaled output before the softmax is broadcast, and the
output is privately shared during the computation of the loss.

The hardware used for the experiments is an Amazon EC2 c5.xlarge server with 4 cores and
8GB RAM. All software is written in Python, making use of the NumPy library when appropriate
and Cython for the im2col and col2im operations.

Various parts of the system will be evaluated on one or more of the following measures: i)
Model performance: the accuracy of the final model; ii) Time complexity: The CPU time it takes
to train the neural net; and iii) Communication complexity: The number of values sent around the
network.

Table 2: Single convlayer architecture
(shallow convnet).

Layer Encoding

conv2d (32, (3,3)) Private
average pooling2d (2,2) Private
ReLU (approx) Private
dense(10, 6272) Private
softmax Public
cross-entropy loss Private

Table 3: Double convlayer architecture
(deep convnet).

Layer Encoding

conv2d (32, (3,3)) Private
average pooling2d (2,2) Private
ReLU (approx) Private
conv2d (32, (3,3)) Private
average pooling2d (2,2) Private
ReLU (approx) Private
dense(10, 1568) Private
softmax Public
cross-entropy loss Private

4.2 Experiment 1: Approximating the ReLU activation function

This experiment aims to show whether a reasonable model performance can be achieved using
a low-order (3) polynomial approximation of the ReLU activation function. Figure 2 shows the
training accuracy, which is smoothed by taking the average training accuracy per every 10 training
steps. Figure 3 shows the accuracy on the test set after every epoch. The final test accuracy
does not differ for the exact and approximated ReLU functions. However, for the single convlayer
architecture it takes 2 epochs instead of 1 epoch to converge; and for the two convlayer architecture
it takes 4 instead of 2 epochs. It is, of course, suboptimal to train longer, especially when there is



Privately Training CNNs Using Two-Party SPDZ 9

an extra communication cost to consider. However, for many tasks the advantage of being able to
train on private data could outweigh this extra cost. Furthermore, it should be noted that the final
accuracy could suffer from the ReLU approximation when introducing other model-performance-
increasing measures.

Fig. 2: Train accuracy. Fig. 3: Test accuracy.

4.3 Experiment 2: Computation in the finite field

In this experiment, the increase in time and difference in accuracy after one epoch is measured
when using public and private computations in the finite field. For the private computations, an
approximation of the ReLU is necessary. As shown in Table 4, the accuracy after one epoch of
training the single convlayer architecture in the SPDZ finite field encoding is the same when using
the same ReLU function. This shows that the precision is high enough to adequately encode the
floating point values of the weights in the network. The execution time is increased by a factor
99.0 when taking the exact same network, and a factor 114.4 when also encoding the values used
for the polynomial approximation of the ReLU. This time increase is mostly due to the 128 bit
representation of integers, preventing use of many CPU/GPU instructions and the possibility to
chain operations. The latter entails that the python interpreter has to wait for the result after
every matrix operation before being able to call a new matrix operation (in optimized C). The
listed CPU time increase is problematic. However, it is not a theoretical increase, but rather a
technical one; Methods and/or hardware have to be developed to compute operations on these
representations more efficiently.

Table 4: CPU time overhead of finite field encoding.

Tensor Time Time increase Accuracy

Native 00h 00m 59s - 86.3%
Public encoded (ReLU exact) 01h 37m 22s 99.0x 86.3%
Public encoded (ReLU approx) 01h 52m 28s 114.4x 83.2%

4.4 Experiment 3: Computation on secret-shared values

In order to research the actual effect on CPU time of secret-sharing rather than finite-field encoding,
the private encoding is compared against the public encoding. The CPU time for one epoch is
listed for both encodings using the single convlayer architecture. A time increase of a factor 7.5 is
acceptable for many application. It should be noted that other aspects in a real-world setting would



10 Privately Training CNNs Using Two-Party SPDZ

increase training time for other reasons than computations, i.e. waiting on another participant that
hasn’t finished computation or the time it takes to communicate the secret-shared values.

Table 5: CPU time overhead of secret-sharing computation.

Tensor Time Time increase Accuracy

Public encoded (ReLU approx) 01h 52m 28s - 83.2%
Private encoded (ReLU approx) 14h 05m 24s 7.5x 83.2%

4.5 Experiment 4: Communication cost and optimization

To measure the effect of the communication optimization, the number of values that is exchanged
from one party to the other for one iteration is reported. The iteration consists of one forward
and one backward phase through the network with a batch size of 128. For one epoch, these
numbers have to be multiplied by 60K

128 , as there are 60K examples in the MNIST training dataset.
The communication is reported for the shallow and the deep convnet, both with and without the
proposed communication optimization in Table 6 and Table 7. The models without the optimization
only use a specialized triple in the dot product.

For the shallow convnet the amount of communication is reduced from 13.2M to 4.2M: a factor
3.3; For the deep convnet it is reduced from 29.6M to 5.1M: a factor 5.8.

When comparing the shallow convnet to the deep convnet, the difference in extra communi-
cation when using the proposed optimization is reduced from a factor 2.24 to a factor 1.23. This
improvement is largely achieved by the optimization of the convolutional layer, which communi-
cates 1M values instead of 16M values. This result shows that the proposed optimization make a
large difference when expanding the use of SPDZ to deeper CNNs.

Table 6: Communicated # of 128 bit values per iteration in the single convlayer architecture.

Baseline Optimized
Layer Forward Backward Total Forward Backward Total

conv2D (32,3,3) 903K 4,114K 5,018K (38%) 101K 803K 903K (22%)
avg pooling2D (2,2) - - - - - -
ReLU (approx) 3,211K 3,211K 6,423K (49%) 1,605K 803K 2,408K (58%)
dense (10,6272) 866K 868K 1,734K (13%) 866K 1K 867K (21%)
total 4,980K 8,194K 13,174K (100%) 2,572K 1,607K 4,179K (100%)

Table 7: Communicated # of 128 bit values per iteration in the double convlayer architecture.

Baseline Optimized
Layer Forward Backward Total Forward Backward Total

conv2D (32,3,3) 903K 4,114K 5,018K (17%) 101K 803K 903K (18%)
avg pooling2D (2,2) - - - - - -
ReLU (approx) 3,211K 3,211K 6,423K (22%) 1,606K 803K 2,408K (47%)
conv2D (32,3,3) 7,235K 8,840K 16,075K (54%) 812K 201K 1,013K (20%)
avg pooling2D (2,2) - - - - - -
ReLU (approx) 803K 803K 1,606K (5%) 401K 201K 602K (12%)
dense (10,1568) 216K 219K 435K (1%) 216K 1K 218K (4%)
total 12,368K 17,188K 29,556K (100%) 3,136K 2,008K 5,144K (100%)



Privately Training CNNs Using Two-Party SPDZ 11

For both baseline and optimized models, the ReLU layer accounts for a substantial part of the
communication. This is mainly due to repeated masking of the input to compute the various terms
of the polynomial.

For the baseline models, the backward phase is more expensive in terms of communication than
the forward phase, which is intuitive, since the backward phase requires computations of both the
parameter updates and the backpropagated gradients. However, the optimized models utilize the
re-use of masks of layer inputs, layer parameters and incoming backpropagated gradients to reduce
communication in the backward phase. As a result, the backward phase is even less expensive in
terms of communication than the forward phase for the optimized models.

5 Conclusion and discussion

The proposed architecture was able to successfully privately train a converging convolutional neural
network with ReLU approximations and average pooling on the MNIST dataset. The accuracy of
the networks are comparable to their non-private equivalents, although they converge somewhat
slower.

Training the CNNs using the proposed method is not fully private as the outputs of the softmax
layer are public. It is hard to quantify what this entails in either an honest-but-curious or a
malicious majority setting, but both encryption methods for exponentiation, loss functions without
exponentiation and other ways to secure this part are available. As this research has a focus on
the feasibility of using SPDZ for more generic deep-learning architectures, this is left to future
research.

The experiments have shown that communication cost can be decreased greatly using special-
ized triples. Especially for deeper CNNs this is of great importance. On the contrary, the ReLU
approximation requires a large amount of communication and alternatives may outperform this
method. Furthermore, corresponding SPDZ pre-processing methods to create specialized triples
have to be developed, and the computation power and communication complexity this entails in
the preprocessing phase of SPDZ has to be researched. Furthermore, where the need for scalar
multiplication triples in general shared computation is ubiquitous, it might be less so for e.g. con-
volution triples, especially when using uncommon filter sizes. These costs have to be researched to
further evaluate the feasibility of this approach.

A great optimization possibility is expected in a more efficient encoding of the integers in a
finite field. As SPDZ is not developed for matrix multiplication of large floating-point matrices,
it is to be expected that the system is not optimized for such computation. Furthermore, many
other optimization techniques should be evaluated whether they can be translated to a finite-field
representation.

Various other approaches to decrease CPU time and communication complexity can be re-
searched. Both from an AI perspective, e.g. reducing the need for high precision in the finite field;
as from an MPC perspective, e.g. combining GC methods with SPDZ. As this is a novel field where
various disciplines cross, many interesting paths are yet to be explored.



12 Privately Training CNNs Using Two-Party SPDZ

References

1. Private image analysis with mpc. https://mortendahl.github.io/2017/09/19/

private-image-analysis-with-mpc/. Accessed: 2018-01-18.
2. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption

and multiparty computation. Cryptology ePrint Archive, Report 2010/514, 2010. https://eprint.

iacr.org/2010/514.
3. Octavian Catrina and Amitabh Saxena. Secure computation with fixed-point numbers. In Financial

Cryptography, volume 6052 of Lecture Notes in Computer Science, pages 35–50. Springer, 2010.
4. Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel, and Emmanuel Prouff.

Privacy-preserving classification on deep neural network. IACR Cryptology ePrint Archive, 2017:35,
2017.

5. Kumar Chellapilla, Sidd Puri, and Patrice Simard. High Performance Convolutional Neural Net-
works for Document Processing. In Guy Lorette, editor, Tenth International Workshop on Fron-
tiers in Handwriting Recognition, La Baule (France), October 2006. Université de Rennes 1, Suvisoft.
http://www.suvisoft.com.

6. Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing.
Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. Technical
report, February 2016.

7. Bolin Gao and Lacra Pavel. On the properties of the softmax function with application in game theory
and reinforcement learning. 04 2017.

8. Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryptodl: Deep neural networks over en-
crypted data. CoRR, abs/1711.05189, 2017.

9. Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.
10. Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving machine

learning. Cryptology ePrint Archive, Report 2017/396, 2017. https://eprint.iacr.org/2017/396.
11. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new ap-

proach to practical active-secure two-party computation. Cryptology ePrint Archive, Report 2011/091,
2011. https://eprint.iacr.org/2011/091.

12. I. Damg̊ard, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty computation from somewhat homo-
morphic encryption. Cryptology ePrint Archive, Report 2011/535, 2011. https://eprint.iacr.org/
2011/535.

13. Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. Deepsecure: Scalable provably-secure
deep learning. CoRR, abs/1705.08963, 2017.

https://mortendahl.github.io/2017/09/19/private-image-analysis-with-mpc/
https://mortendahl.github.io/2017/09/19/private-image-analysis-with-mpc/
https://eprint.iacr.org/2010/514
https://eprint.iacr.org/2010/514
https://eprint.iacr.org/2017/396
https://eprint.iacr.org/2011/091
https://eprint.iacr.org/2011/535
https://eprint.iacr.org/2011/535

	Introduction
	Related work
	HE approach
	MPC approach
	SPDZ

	Proposed architecture
	Existing components
	Desirable extensions
	Implementation
	Optimization

	Experiments and results
	Setup
	Experiment 1: Approximating the ReLU activation function
	Experiment 2: Computation in the finite field
	Experiment 3: Computation on secret-shared values
	Experiment 4: Communication cost and optimization

	Conclusion and discussion

