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Abstract
We propose a new framework for lower bounding the quantum query complexity of certain
problems by viewing these problems as relations. We combine this framework with the new
compressed-oracle technique by Zhandry [Zha18], which we �rst formalize and construct a
unitary implementation for. �is implementation is given in both an high-level pseudocode,
as well as a unitary algorithm in ProjectQ. Based on recent work by [LZ18] the application
of the compressed-oracle technique to our new framework allows for a general method to
�nd lower bounds on the quantum query complexities.
Our results improve upon the current known quantum query lower bound of �nding k

r−collisions, extending the result of Ω
(
k2/(r+1)N1/(r+1)

)
for k ≤ N1/2r to hold for k ≤

√
N
r

.
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Chain of Values and Multiclaw problem.
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Introduction
Since the idea of a quantum computer has been suggested by [Fey82], the academic world has
been ge�ing closer to building a quantum computer capable of computations beyond that of
its classical counterpart. Whereas this broadens the capabilities of our society to model the
world around us [BC98], it also increases the power of potential adversaries in the context
of cryptography.

Since it has been shown that under the presence of a quantum computer RSA-based cryp-
tographic schemes are no longer secure [Sho94], many quantum cryptographers have been
trying and succeeding in proving the security of existing schemes under the presence of ad-
versaries with quantum capabilities [Bon+11; Cza+18; TU16; Unr17]. Many of these use the
quantum random-oracle model (QROM, see Section 2.1) as a proving tool, just as the random-
oracle model is used in classical security proofs. None of the existing QROM techniques
however were capable of recording queries done by the adversary, up until this problem was
recently resolved by Zhandry [Zha18]. �is technique is aptly named the compressed-oracle
technique, as will be shown in Section 2.3.

�is new technique has immediately resulted in numerous security proofs of schemes in
the presence of quantum adversaries, where in the classical proofs some recording of the ad-
versary’s query was necessary [Cza+19; HI19; LZ19; Zha18]. In these proofs the compressed-
oracle technique is used to upper bound the success probability of the adversary distinguish-
ing between a simulator and the real case [Cor+05; MRH04]. �is new method also serves
as an alternative to the already existing methods of �nding lower bounds on the quantum
query complexity of complexity problems like the adversary method [Amb02] and polyno-
mial method [Bea+01].

�is work
In this thesis we build forth on the innovating ideas as presented by Zhandry [Zha18]. We
use these as blueprints to create and program a quantum algorithm that simulates a random
oracle and is indistinguishable from a random oracle to any adversary interacting with this
algorithm. �e algorithm is a speci�c instance of the more general result by Czajkowski, Ma-
jenz, Scha�ner and Zur [Cza+19], where an algorithm is given to quantum lazy sample from
any function distribution, instead of just the uniform distribution. We present this algorithm
in a high level (Algorithm 1), using smaller subroutines instead of explicit gates. As a formal
check this implementation is then programmed by making use of only unitary operations
[Zur19] into ProjectQ [HST17].
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�e main result of this thesis is a generalisation of the recent result by [LZ18], where the
compressed-oracle technique is used to give a tight bound (an algorithm matching this bound
is also given in the same work) on the quantum query complexity of the Collision problem.
In this problem an adversary is tasked with �nding r di�erent inputs of a given function
F : {0, 1}m → {0, 1}n which map to the same output value. �is problem holds great
signi�cance in the context of cryptography when analyzing hash functions [CN08; Din+14;
Nai+13]. We have managed to improve on the quantum query lower bound of �nding k
r−collisions, extending the result of Ω

(
k2/(r+1)N1/(r+1)

)
for k ≤ N1/2r to hold for k ≤

√
N
r

.
�is technique has then been generalised, such that it can be applied to lower bound the
quantum query complexity of various problems:

• �e K-Sum problem (Corollary 3.4.4), where an adversary is tasked with �nding r out-
put values summing to zero (viewed over Z2n).

• �e Chain of Values problem (Corollary 5.1.2), where an adversary is tasked with �nd-
ing a sequence x, F (x), F (F (x)), ..., F r−1(x).

• �e Multiclaw problem (Corollary 5.2.2), where an adversary is tasked with �nding a
input value for each function Fi : {0, 1}mi → {0, 1}n with i ∈ [r] such that all these
input values map to the same output value.

To derive these results, we have constructed a framework for computational-complexity
problems by modelling them as relations. We divide these relations into two categories; it-
erative relations (Chapter 3) and non-iterative relations (Chapter 4). �e intuitive di�erence
between these two categories is that iterative relations are created from smaller relations. An
example would be the Collision problem, where every r−collisions is also a (r−1)−collision.
For both of these categories an upper bound is given on the quantum query solvability, i.e. the
probability of success as a function of the number of queries. �e lower bound on the quan-
tum query complexity can then be derived from this upper bound on the quantum query
solvability. To illuminate on this technique we �rst start with a speci�c problem of both
classes before lastly generalising the technique.

Relatively li�le research has been done on quantum parallel query complexity [JMW17].
In this se�ing the adversary is allowed to query multiple non-adaptive queries with every
query step. �e versatility of the compressed-oracle technique also proves itself here, as it
has allowed us to derive bounds on the quantum query complexity of non-iterative relations
in this se�ing. For iterative relations this also succeeded in the case of the Collision problem,
but for general iterative relations we have only managed to bound the quantum query com-
plexity in the event of a single fully parallel query. �is fully parallel result (Corollary 4.4.1)
showcases that we need sequential queries to achieve a speedup over the classical case.

For a summary of our quantum query complexity lower bounds see Section 6.2.
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Overview
We start the thesis by providing a small introduction into the subject of quantum computing
and introducing the necessary preliminaries, de�nitions, and notation necessary to under-
stand the rest of the thesis. In Chapter 2 we start with further elaborating on the motivation
behind Zhandry’s compressed-oracle technique, before introducing and explaining the tech-
nique itself. From this we derive the algorithm and also discuss the programmed implemen-
tation. In Chapter 3 we make the leap to quantum query solvabililty, where we introduce
the notion of (iterative/non-iterative) relations. A�er demonstrating the compressed-oracle
technique on the K-sum problem we move on to generalising/parallelising the results for
any non-iterative relation. In Chapter 4 we extend the technique based on [LZ18] and then
generalise/parallelise the corresponding result. �e thesis is then concluded with some extra
applications of the proven theorems to either create new or improve upon existing quantum
query complexity results.

10



1. �antum Computation
�is chapter will only be a brief introduction to quantum computing. For a more in depth in-
troduction we recommend [Wol11] or (if there is a need for either more thorough background
or some light reading ma�er) [NC02].

1.1. Notation
We will assume basic familiarity with linear algebra and probability theory. �e trace of a
linear operator A is denoted by Tr[A] and its conjugate transpose as A∗. �roughout this
thesis we will work on complex Hilbert spaces Cd of some �nite dimension d, equipped
with the canonical Hermitian inner product. �is inner product induces a norm on vectors
|ψ〉 ∈ Cd, which we denote by ‖|ψ〉‖ =

√
Tr[|ψ〉〈ψ|]. For the identity matrix we shall write

I. |x| is used interchangeably to denote either the cardinality of a set x or the norm of a
complex number x.
�e set of n-bit strings is denoted by {0, 1}n. Mathematically this set is equivalent to Zn

2 ,
where Z2 is the cyclic group of order 2. �e group operation on these n-bit strings is the
bitwise XOR, denoted by x ⊕ y, which corresponds to the coordinate-wise addition on Zn

2 .
For the bitwise inner product of two n-bit strings we write x · y. Here the usage of the term
’inner product’ is quite footloose, as we will not be viewing Zn

2 as the vector space Fn2 . At rare
occassions ·will also be used to denote the multiplication operator whenever this is required
for readability. If we refer to the i-th bit of x ∈ {0, 1}n, we denote this with the subscript xi.
We will abbreviate | {0, 1}n | = 2n = N and | {0, 1}m | = 2m = M .
�e following two functions will be used in this thesis:

• �e indicator function 1a≤b :=

{
1, if a ≤ b

0, else
,

• �e Kronecker delta function δa,b :=

{
1, if a = b

0, else
.

Lastly we use the following notation from complexity theory: for f a complex function and
g a positive function, we write f(x) = O(g(x)) if lim sup

x→∞

∣∣∣f(x)
g(x)

∣∣∣ <∞ and f(x) = Ω(g(x)) if

lim sup
x→∞

∣∣∣ g(x)
f(x)

∣∣∣ <∞. All other notation will be introduced throughout this thesis.
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1.2. �antum states

1.2.1. �bits
Where in classical computer science the basic unit of information is a bit, in quantum com-
puting this unit is the qubit, which is represented by a unit vector in C2. �e standard basis
on C2 is referred to as the computational basis {|0〉 , |1〉}, where

|0〉 :=

(
1
0

)
, |1〉 :=

(
0
1

)
(1.1)

represent the classical bits. Here we have wri�en the vectors in Dirac notation. We thus see
from the above de�nition that any qubit can be wri�en as

|ψ〉 = α0|0〉+ α1|1〉 (1.2)
with α0, α1 ∈ C and |α0|2 + |α1|2 = 1. Here |ψ〉 is said to be a superposition of the classical
states |0〉, |1〉.
Multiple qubits can be combined by taking the tensor product over the individual qubits:

|ψφ〉XY := |ψ〉X ⊗ |φ〉Y ∈
(
C2
)⊗2

. (1.3)
�e registers (denoted by the subscript) clarify to which Hilbert space each qubit belongs.
We will omit these registers whenever this is clear from the context. It follows that n-qubit
states live in the 2n-dimensional Hilbert space (C2)

⊗n, spanned by the computational basis
consisting of the n-bit strings. In general the underlying Hilbert space in quantum mechanics
does not need to be (C2)

⊗n. For |ψ〉 living in any such general Hilbert space H we refer to
|ψ〉 as a quantum state instead of an n-qubit state.

1.2.2. Pure and mixed states
Another way of describing quantum states is by density matrices. �ese are positive semi-
de�nite Hermitian operators with trace 1. Every quantum state can be assigned a density
matrix as follows: ρ := |ψ〉〈ψ|. Since Hermitian operators form a group under addition (and
using the linearity of the trace), we see that any convex combination of density matrices
again results in a density matrix ρ =

∑
i λi|ψi〉〈ψi|. Whenever there are at least two λi > 0,

this state can not be wri�en as |φ〉〈φ| and thus is not pure. �ese density matrices will be
referred to as mixed states. Such a mixed state can been thought of as an ensemble of pure
states {|ψi〉}, each occurring with probability λi.
We can always transform a mixed state into a pure state, although this comes at the expensive
of adding an extra register. To do this, we �rst need to introduce the partial trace. For any
two Hilbert spacesHX ,HY the partial trace overHX is de�ned as the unique operator TrX
such that

∀ρX ∈ HX , σY ∈ HY : TrX [ρX ⊗ σY ] := Tr[ρX ]σY . (1.4)
Now by �eorem 4.1 from [Wat18] for every ρX there exists a puri�cation |ψ〉XY such that

TrY [|ψ〉〈ψ|XY ] = ρX (1.5)
if and only if dim(HY ) ≥ dim(ρX).
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1.3. �antum operations

1.3.1. Gates
�antum algorithms can manipulate qubits (or quantum states in general), just as classical
algorithms manipulate bits. When transforming a quantum state, we want the result to still
satisfy the de�nition of what a quantum state entails; a unit vector over some Hilbert space.
So any such transformation should correspond to a norm-preserving linear endomorphism,
i.e. a unitary matrix U , called a gate. Since unitary matrices are invertible, this implies that
any gate is reversible, which does not always hold in the classical case. �e gate U is applied
to a quantum state by

U : |ψ〉 → U |ψ〉, U : ρ→ UρU∗. (1.6)

If we wish to emphasize on which particular register the gate is applied, we add a superscript
to the gate: (

IX ⊗ UY
)
|ψ〉XY . (1.7)

If the underlying Hilbert space of register X is an n-fold tensor product of a smaller space,
for example (C2)

⊗n, and we wish to apply U coordinate-wise, we abbreviate the total gate
U⊗n = UX .

An example of a gate that we will use is the Hadamard transform H . When describing a
gate, one can either give the matrix representation or describe how the gate works on basis
states:

H =
1√
2

(
1 1
1 −1

)
, H|0〉 =

1√
2
|0〉+

1√
2
|1〉,

H|1〉 =
1√
2
|0〉 − 1√

2
|1〉. (1.8)

1.3.2. Measurements
Instead of only applying the above reversible operations, one can also measure a quantum
state. �is is done by a measurement; a countable set of positive semi-de�nite matrices {Pi}i
that sum to the identity. �e probability of an outcome i is the squared norm of the resulting
state, i.e. ‖Pi|ψ〉‖2 = Tr[Pi|ψ〉〈ψ|] (or ‖PiρPi‖2 = Tr[Piρ] when working with density ma-
trices). Since the resulting state Pi|ψ〉 is not always necessarily a unit vector, the convention
is to normalize the result. In this thesis we will restrict ourselves to projective measurements,
where the Pi have the extra property being pairwise orthogonal projections. As a result the
respective spaces that the Pi project onto will also be an orthogonal, a property that we will
make plenty of use of in this work to establish equality in the Cauchy–Schwarz inequality.

A canonical example of a projective measurement is the measurement in the computa-
tional basis: {|i〉〈i|}i∈{0,1}n . �is measurement projects anyn-qubit state |ψ〉 =

∑
i∈{0,1}n αi|i〉

onto the classical n-bit string i with probability |αi|2

13



1.4. �antum Fourier transform
�antum algorithms consist of the previously mentioned gates and measurements. By ex-
ploiting superposition some of these algorithms manage to signi�cantly outperform their
classical counterparts [Sho94; Gro96]. One of these algorithms that we will make use of
in this thesis is the �antum Fourier Transform. Classically the discrete Fourier Transform
[CT65] has many applications, ranging from signal-processing to complexity theory. �e
discrete Fourier Transform FN is de�ned as the following N ×N matrix

FN =


1 1 1 · · · 1
1 ωN ω2

N · · · ω−1
N

1 ω2
N ω4

N · · · ω−2
N... ... ... . . . ...

1 ω−1
N ω−2

N · · · ωN

 , (1.9)

where ωN = e2πi/N is the N -th root of unity. �e inner product of any two columns k, l
results in

1

N

N−1∑
j=0

(
ωjkN

)∗
ωjlN =

1

N

N−1∑
j=0

ω
j(l−k)
N = δk,l (1.10)

and thus FN is a unitary matrix. �is equality will come to our assistance o�en throughout
the thesis. As a result of FN being a unitary matrix, it can be applied to any quantum state
living on a Hilbert space of dimension N . In this quantum se�ing FN is instead referred to
as QFTN . In this work we will always consider N = 2, but the general case is needed when
we wish to quantum lazy sample more general distributions [Cza+19]. We abbreviate this
QFT2 by QFT:

QFT|y〉 := H⊗n|y〉 =
1√
2n

∑
η∈{0,1}n

(−1)η·y|η〉. (1.11)

�e resulting image of the computational basis under QFT will be referred to as the Fourier
basis.
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2. Compressed Oracles

2.1. Random-oracle model

2.1.1. Classical
Cryptographic hash functions are constructed to be as close to a deterministic uniform ran-
dom function as possible. We se�le on ’as close to’ because creating an actually e�cient
deterministic random function is infeasible. To guarantee the randomness the output needs
to be sampled uniformly random. Combining this with the deterministic nature however
would require some sort of lookup-table to maintain consistency in the output. By adding
e�ciency to this stew of properties we end up at a contradiction, as any such lookup-table
would be exponential in the input size. A workaround is lazy-sampling, where an entry is
only added to the lookup-table whenever an input value is queried for the �rst time by the
adversary. �is guarantees that the lookup-table will be polynomial in size, assuming that
the adversary is only allowed to make polynomially many queries.

In the �eld of cryptography, it sometimes turns out to be di�cult to �nd a proper and rig-
orous mathematical proof of the security of some cryptographic system. One devised tool to
ease this process is the random-oracle model (ROM) [BR93]. In the ROM, every hash func-
tion is replaced by a random oracle, a theoretical black box that generates output precisely in
the deterministic and uniform random way that we would like it to. If the system is proven
to be secure under this substitution, one has proven the system to be secure in the ROM.
Even though this does not provide absolute certainty that the original scheme was secure,
it is widely believed that security in the ROM provides practical security in the real world
[BR93].

In practice many schemes [Ber+07; Dam89; Mer89] implement hash functions constructed
out of smaller functions, which are called internal functions. When these internal functions
are public, it is not hard for any adversary to see that the hash construction itself is not a
random function. It has been suggested in [MRH04] that the ROM is still an excellent tool
in proving the security of these constructions, by instead modelling the internal functions as
random oracles.

2.1.2. �antum
It would be convenient if our ROM extended to the quantum se�ing. �is would allow the
ROM to be used to proof security in the case of a quantum adversary that can query a su-
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perposition of input values to the given hash function. �e model where the adversary is
allowed to make queries in superposition to the random oracle model is called the quantum
random-oracle model (QROM) [Bon+11]. �is does set the stage for a potential problem:
how should the random oracle remain deterministic without using an exponential amount
of memory if an adversary can query a superposition over exponentially many input values?
A workaround for this problem has been created by not storing any information about the
queries done by the adversary, called history-free reductions [Bon+11], but this method fails
in the case of proving security hash functions containing internal functions.

2.2. Oracle variations
In [Zha18] a simple, but nevertheless elegant solution is given to the aforementioned problem
of recording the queries of the adversary. We will show di�erent, but equivalent interpreta-
tions of an oracle for a function D : {0, 1}m → {0, 1}n. �e truth table of this function can
be represented as a vector in

(
C2m

)⊗2n where the x-th entry of D contains the n-bit string
D(x). �is vector can be seen as a database, which is why the le�er D has been chosen.

2.2.1. Standard and phase oracle
�e two most canonical oracles are the standard and phase oracle. �e standard oracle StO
works as follows on any joint basis state of the query in the database:

StO (|x, y〉XY ⊗ |D〉D) = |x, y ⊕D(x)〉XY ⊗ |D〉D. (2.1)

Here the XY registers belong to the adversary, whereas D is inaccessible for the adversary.
Since in the QROMD is a random function, we want theD register to be a uniform probabil-
ity distribution over all possible truth tables. We have seen in Section 1.2.2 that this uniform
probability distribution can be realised with mixed states.

StO

(
1

2n2m

∑
D

|x, y〉〈x, y|XY ⊗ |D〉〈D|D

)
StO∗

=
1

2n2m

∑
D

|x, y ⊕D(x)〉〈x, y ⊕D(x)|XY ⊗ |D〉〈D|D . (2.2)

By tracing out the D register, we �nd that the adversary’s register a�er the query is equal to

1

2n2m

∑
D

|x, y ⊕D(x)〉〈x, y ⊕D(x)|XY . (2.3)

Had we instead opted to initializeD to the uniform superposition over all truth tables, which
is a puri�cation ofD being mixed over all possible truth tables, by Equation 2.1 the state a�er
the query is equal to

1√
2n2m

∑
D

|x, y ⊕D(x)〉XY . (2.4)
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So both interpretations of the oracle result in the same resulting state on the adversary’s side.
Since working with pure states is in general easier than with mixed states, we will use this
puri�cation approach.

A well known variation of the StO oracle implementation is the phase oracle (PhO). Here
the output of D is provided in the Fourier basis, by applying QFT to the Y -register of the
adversary. For clarity we will use Greek le�ers to emphasize whenever we are working in
the Fourier basis (as opposed to the regular basis).

PhO = (IX ⊗ QFTY ⊗ ID)StO(IX ⊗ QFTY ⊗ ID). (2.5)

Lemma 2.2.1. Let StO be de�ned as in Equation 2.1 and PhO as in Equation 2.5. �en for any
query to PhO of the form |x, η〉XY ⊗ |D〉D it holds that

PhO (|x, η〉XY ⊗ |D〉D) = (−1)η·D(x)|x, η〉XY ⊗ |D〉D. (2.6)

Proof. Writing out the de�nitions of StO and PhO results in

PhO (|x, η〉XY ⊗ |D〉D) = (IX ⊗ QFTY ⊗ ID)StO(IX ⊗ QFTY ⊗ ID) (|x, η〉XY ⊗ |D〉D)

= (IX ⊗ QFTY ⊗ ID)StO

(
1√
2n

∑
y

(−1)y·η|x, y〉XY ⊗ |D〉D

)

= (IX ⊗ QFTY ⊗ ID)

(
1√
2n

∑
y

(−1)y·η|x, y ⊕D(x)〉XY ⊗ |D〉D

)

=
1

2n

∑
y,ω

(−1)ω·(y⊕D(x))(−1)y·η|x, ω〉XY ⊗ |D〉D

=
1

2n

∑
y,ω

(−1)y·(ω⊕η)(−1)ω·D(x)|x, ω〉XY ⊗ |D〉D

=
∑
ω

δω,η(−1)ω·D(x)|x, ω〉XY ⊗ |D〉D

= (−1)η·D(x)|x, η〉XY ⊗ |D〉D, (2.7)

where in the second-to-last equality we have used the n-fold tensor product of Equation
1.10.

2.2.2. Fourier oracle
�is change of basis we just applied to the Y -register can also be applied to the D-register.
We will call the resulting oracle operation the Fourier oracle (FO).

FO = (IX ⊗ IY ⊗ QFTD)PhO(IX ⊗ IY ⊗ QFTD). (2.8)

As we initialized D to the uniform superposition over all D, this corresponds to 0 in the
Fourier basis. Before we show the usefulness of this extra basis transformation, we will �rst
show how this operator looks in more detail, just as we did with PhO. Let Px,η denote the
point function where Px,η(x

′) = η · δx,x′ , then the following holds:
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Lemma 2.2.2. Let PhO be de�ned as in Equation 2.5 and FO as in Equation 2.8. �en for any
query to FO of the form |x, η〉XY ⊗ |∆〉D it holds that

FO(|x, η〉XY ⊗ |∆D〉) = |x, η〉XY ⊗ |∆⊕ Px,η〉D, (2.9)

where Px,η(x′) = η · δx,x′ is the point function.

Proof. Writing out the de�nitions of StO and PhO in combination with Lemma 2.2.1 results
in

FO(|x, η〉XY ⊗ |∆〉D) = (IX ⊗ IY ⊗ QFTD)PhO(IX ⊗ IY ⊗ QFTD)(|x, η〉XY ⊗ |∆〉D)

= (IX ⊗ IY ⊗ QFTD)PhO

(
1√

2n2m

∑
D

(−1)D·∆|x, η〉XY ⊗ |D〉D

)

= (IX ⊗ IY ⊗ QFTD)

(
1√

2n2m

∑
D

(−1)D·∆(−1)η·D(x)|x, η〉XY ⊗ |D〉D

)
=

1

2n2m

∑
D,Ω

(−1)Ω·D(−1)D·∆(−1)η·D(x)|x, η〉XY ⊗ |Ω〉D

=
1

2n2m

∑
D,Ω

(−1)D·(Ω⊕∆⊕Px,η)|x, η〉XY ⊗ |Ω〉D

=
∑

Ω

δΩ,∆⊕Px,η |x, η〉XY ⊗ |Ω〉D

= |x, η〉XY ⊗ |∆⊕ Px,η〉D, (2.10)

where in the second-to-last equality we have used the m2n-fold tensor product of Equation
1.10.

2.3. Compressed Oracle
Using Lemma 2.2.2 we can show the ingenuity of looking at the oracle from this speci�c per-
spective. As we have seen in the classical case, a�er q queries by the adversary, our database
contains at most q entries. As we in practice assume the adversary to make at most poly-
nomially many queries, we thus are required to save a polynomially sized database. In the
quantum se�ing however the size of the database would have to be exponential in the input
size of the query, because the adversary can query the superposition over all input values in
a single query.

When we look at FO however, we notice that a�er q queries the resulting database ∆ is
the sum of at most q point functions, since the initialization of ∆ was the all-zero vector. As
every point function Px,η can be represented by a tuple (x, η), we can actually compress ∆
to a list of at most q tuples (x, η). We will call this compressed-oracle variant the compressed
Fourier oracle (CFO). �is operation acts by

CFO(|x, η〉XY ⊗ |∆〉D) = |x, η〉XY ⊗ |∆⊕ (x, η)〉D. (2.11)
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By looking at Lemma 2.2.2 and the point function, we derive that this ∆⊕ (x, η) operation
has the following properties: ∀x, x′ ∈ {0, 1}m and ∀η, η′ ∈ {0, 1}n it holds that

• Px,0(x′) = 0. �us ∆⊕ (x, 0) should return ∆.

• Px,η(x
′) + Px,η′(x

′) = (η ⊕ η′) · δx,x′ = Px,(η⊕η′)(x
′). So if there is already a pair (x, η)

for any η 6= η′ in ∆, then ∆ ⊕ (x, η′) should replace (x, η) with (x, η ⊕ η′) in ∆ and
return the updated ∆.

• If we look at the previous case whenever η = η′, we �nd Px,η(x
′) +Px,η′(x

′) = 0. �us
in this case (x, η) is removed from ∆ and the updated ∆ is returned.

• Conversely if there is no (x, η) for any η in ∆, (x, η) is added to ∆ and the updated ∆
is returned.

By linearity it follows how CFO acts on any quantum state. �ere remains the question of
how we order the list of tuples in our compressed database. Since FO stays invariant under
permutations on the order of the queries, so should CFO. As such we decide to order the tu-
ples by x value, from smallest to largest. It is clear from the properties of CFO that ∆ never
contains more two tuples with the same x value, so this ordering is unambiguous. From here
on ∆ will refer to the compressed version, while we will denote the original truth table of D
in the Fourier basis by F∆.

For proof purposes we will use the high level implementation of CFO, as described in Al-
gorithm 1. Both the detailed and high level algorithms as stated here are speci�c instances
of the algorithms described in [Cza+19], where a general CFO is given that samples for any
given distribution instead of just the uniform distribution. In this more general implementa-
tion QFTN is used instead of QFT2.

Algorithm 1: High level CFO
Input : Adversary query and database: |x, η〉XY |∆〉D
Output: |x, η〉XY |∆′〉D

1 if x 6∈ ∆X then // add entry to the database

2 Add x to ∆X in the right place // keep ∆X sorted properly

3 XOR η into ∆Y (x) // update entry with x

4 for i = 1, 2, . . . , q do
5 if ∆Y

i = 0 then // remove faulty entries

6 Remove x from ∆X
i

7 return |x, η〉XY |∆′〉D // ∆′ is the modified database
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We have decided to keep CFO a unitary operation and as such the size of ∆ is �xed to have
space for precisely q queries. Any extra space is implemented as empty registers, which are
padded behind the entries of ∆. One can choose to change the functioning CFO by allowing
the creation and removal of registers, which as a result turns CFO into an isometry.

As we claim equivalence between CFO and FO, there should be some invertible Dec such
that the following holds:

Dec ◦ CFO = FO ◦ Dec. (2.12)

�e construction of such a decompressing algorithm is actually surprisingly simple, as de-
scribed in Algorithm 2. Just as with CFO, one can choose to change the implementation of

Algorithm 2: Dec
Input : Empty Fourier database and compressed Fourier database: |F∆〉F∆|∆〉D
Output: |F∆′〉F∆|∆′〉D

1 Set |a〉A = |0 ∈ [q]〉A // initialize auxiliary register A

2 for i = 1, ..., q do
3 |F∆∆X

i
〉
F∆

∆X
i

→ |F∆∆X
i
⊕∆Y

i 〉F∆
∆X
i

// Fill F∆

4 |∆Y
i 〉DYi → |∆

Y
i ⊕ F∆∆X

i
〉
DYi

// Empty ∆Y
i

5 for i = 1, ..., 2m do
6 if F∆i 6= 0 then // For non-zero entries

7 |∆X
a 〉DXa → |∆

X
a ⊕ i〉DXa // Empty ∆X

a

8 |a〉A → |a+ 1〉A // Keep ∆X sorted properly

9 |a〉A → |a〉A // Uncompute register A

10 return |F∆′〉F∆|∆′〉D // F∆′ is the filled Fourier

// database, ∆′ is the empty compressed database

Dec and allow the size of ∆ to be not �xed to q (or the number of non-zero entries in F∆ for
Dec−1), which as a result turns Dec into an isometry (and requires to take Dec∗ instead of
Dec−1 for the compressing).

We will show that Equation 2.12 holds.

�eorem 2.3.1. Let CFO be de�ned as in Algorithm 1 and Dec as in Algorithm 2. �en for any
query of the form |x, η〉XY ⊗ |∆〉D it holds that

Dec ◦ CFO(|x, η〉XY ⊗ |∆〉D) = FO ◦ Dec(|x, η〉XY ⊗ |∆〉D). (2.13)

Proof. We will begin by writing out the action of CFO on the query,where we will refer to
the di�erent subroutines of Algorithm 1 as follows:

• Lines 1-2: Add.
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• Line 3: Upd.

• Lines 4-6: Rem.

AsCFO starts withAdd, which results into adding (x, 0) to ∆ in the case that x /∈ ∆X , we can
assume there to be a pair (x, η′) ∈ ∆. Also by looking at the construction of both CFO and
Dec (and speci�cally the for statements), we see that we can simplify to the case of q = 1.
�e only di�erence with the q > 1 case rests in the proper sorting of ∆, for which we refer
to Appendix A. CFO now updates the entry containing x by running Upd and a�erwards in
Rem checks whether this results in an incorrect entry that should be removed.

|x, η〉XY ⊗ |x, η
′〉D)

Upd−−→ |x, η〉XY ⊗ |x, η
′ ⊕ η〉D)

Rem−−→

{
|x, η〉XY ⊗ |x, η′ ⊕ η〉D), for η′ 6= η

|x, η〉XY ⊗ |0, 0〉D), for η′ = η
. (2.14)

Now applying Dec on the resulting state will yield

Dec

{
|x, η〉XY ⊗ |x, η′ ⊕ η〉D), for η′ 6= η

|x, η〉XY ⊗ |0, 0〉D), for η′ = η

= |x, η〉XY ⊗ |0〉F∆1
⊗ · · · ⊗ |η′ ⊕ η〉F∆x

⊗ · · · ⊗ |0〉F∆2m

= |x, η〉XY ⊗ |Px,(η′⊕η)〉F∆
. (2.15)

�e right side of Equation 2.13 becomes

FO ◦ Dec(|x, η〉XY ⊗ |x, η
′〉D) = FO

(
|x, η〉XY ⊗ |0〉F∆1

⊗ · · · ⊗ |η′〉F∆x
⊗ · · · ⊗ |0〉F∆2m

)
= FO

(
|x, η〉XY ⊗ |Px,(η′)〉F∆

)
= |x, η〉XY ⊗ |Px,η′ ⊕ Px,η〉F∆

= |x, η〉XY ⊗ |Px,(η′⊕η)〉F∆
. (2.16)

�eorem 2.3.1 shows us that CFO is equivalent to FO for the adversary and thus by Lemma
2.2.1 and Lemma 2.2.2 also to StO and PhO. More formally, let ACFO be an algorithm inter-
acting with CFO andAFO the same algorithm but interacting with FO. �en the equivalence
of CFO and FO means that Pr[ACFO returns 1] = Pr[AFO returns 1]. As in most applications
the Fourier basis is less intuitive than the standard basis, it would actually be preferred to
have a compressed variant of the regular StO and PhO. �is is achieved by just applying a
basis transformation to CFO. We will call these variants CStO and CPhO.

CStO =
(
IX ⊗ QFTY ⊗ QFTD

)
CFO

(
IX ⊗ QFTY ⊗ QFTD

)
,

CPhO =
(
IX ⊗ IY ⊗ QFTD

)
CFO

(
IX ⊗ IY ⊗ QFTD

)
. (2.17)
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2.4. Parallel queries
We can extend all the previously mentioned oracle variations from the sequential query
model to the p-parallel query model [JMW17] . Here any adversary interacting with the
oracle makes up to p queries at once, which looks as follows for StO:

StO
(
|x1, y1, ..., xp, yp〉XY ⊗ |D〉D

)
= |x1, y1 ⊕D(x1), ..., xp, yp ⊕D(xp)〉XY ⊗ |D〉D.

(2.18)
From here on we will abbreviate x := x1, ..., xp. �is notation will be extended to all
p−tuples, for instance x, y := x1, y1, ..., xp, yp.

Just as in the sequential case we can apply QFT on all the Y -registers of the adversary,
which results in

PhO (|x, η〉XY ⊗ |D〉D) = (−1)η·D(x)|x, η〉XY ⊗ |D〉D. (2.19)

Now recall for FO (and thus also CFO) that a�er every single query only the database
register is modi�ed (note that the adversary’s register does get entangled with the database
register in the case of η 6= 0). But the database has no way of registering whether the adver-
sary is making p queries in parallel or sequential! �us in the following chapters when we
analyse the state of the database a�er a p-parallel query to CFO we can simply assume that
the adversary is making p sequential queries, with the extra constraint that these p queries
are non-adaptive.

From the above we see that when an adversary queries the same |x, η〉 twice in parallel to
FO/CFO, this does not a�ect F∆/∆. While this seems unexpected, it is consistent with the
de�nition of PhO for parallel queries. �e phase of the output state (−1)η·D(x) is normally
thought of to be returned to the adversary’s register, but we can also choose to transfer it to
the database register. Since (−1)η·D(x)(−1)η·D(x) = 1, the output state is una�ected.

2.5. Implementation
Some of the readers might already be convinced that CFO is a unitary operation, as all of
mentioned query cases are reversible. Nevertheless we provide a full detailed implemen-
tation of CFO in Appendix A, consisting of only unitary operations. �is implementation
has also been fully programmed in ProjectQ to test whether the detailed algorithm was cor-
rect [Zur19]. �e number of qubits used by this implementation is (q + 1)(n + m + 1) +
max {n, q + 3m}. Due to hardware limitations we were only able to simulate the database
up to 25 qubits, our most used con�guration has been q = 3, n = 1,m = 2.

2.5.1. ProjectQ
ProjectQ is a Python module created by [HST17] to allow for the simulation of quantum
computers. We will brie�y discuss the syntax used in our own program.
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Every ProjectQ program contains the following two lines of code:

eng = MainEngine(), eng.�ush(), (2.20)

which respectively create the quantum circuit and run the circuit.

�bit registers can be added to the circuit by calling

eng.allocate qubit(), eng.allocate qureg(n), (2.21)

for respectively a single qubit register or an n-qubit register. Such a n-qubit register is a
list of single qubit registers and inherits all list features in Python. �e qubits in these new
registers are automatically initialised to the all-zero state.

To increase performance we can delete a register A by using

del A. (2.22)

Note that this does require the qubits in this register to be set to the all-zero state before
deletion.

As an illustration, assume that we have two registers: A contains a single qubit state and
B contains a n−qubit state. We can apply the Hadamard gate H as follows to these states:

H | A, All(H) | B, All(H) | (A, B). (2.23)

�e �rst line of code applies H to register A, the second line applies H⊗n to register B and
the third line applies H⊗(n+1) to A⊗B. �e same syntax works for all other gates and mea-
surements.

Lastly we discuss how to implement controlled gates in ProjectQ. If we want to apply the
H gate on each qubit in register B controlled on register A, this can be realised by

C(All(H), len(A)) | (A, B), with Control(eng, A):
All(H) | B. (2.24)

�e �rst option is preferred when only a single gate controlled, while the second option
allows to control a whole block of code. For all other ProjectQ syntax which we have not
implemented we refer to [HST17].

2.5.2. CFO.py
In [Zur19] we have created a program that simulates CFO and allows the user to query
this oracle. A�er starting the program the user is faced (Figure 2.1) with the option of either
viewing a random query to a random initialized database for parameters q = 3, n = 1,m = 2
or to truly interact with a simulated CFO.
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Figure 2.1.: Choice to either run a test query or simulate CFO.

(a) Progress during a query. (b) Joint state before and a�er the query.

Figure 2.2.: Output during and a�er a test query.

A�er choosing option 0, the program starts showing the progress through all subroutines of
the total algorithm (Figure 2.2a). A�er this the program displays the joint state, both from be-
fore and a�er the query, along with the number of qubits used by the algorithm (Figure 2.2b).

If the user chooses option 1, a prompt appears to set the register sizes and input the query
(Figure 2.3). We strongly recommend to stay under 25 total qubits, as a higher number might
crash the device that the program runs on. Just as in option 0 the program starts showing the
progress through all subroutines, before giving the user another choice: stop the program
or query again (Figure 2.4). If the user decides to stop the simulation the �nal state of the
database is returned (Figure 2.5).

Figure 2.3.: Specify parameters for the simulation
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Figure 2.4.: Continue querying or measure the database

Figure 2.5.: Database a�er two queries

2.5.3. Challenges
When programming a quantum algorithm, one has to be wary as even the most fundamental
programming commands may not so easily translate into a unitary operation. While main-
taining an ordered database of pairs could be implemented in a simple fashion classically,
our implementation owes most of its complexity due to the fact that sorting is inherently
non-reversible. �is requires us for every new query where this query should be added to
the database or in the case of a removal how to properly resort the database again. While
classically one is allowed to change the value of a variable that we condition on during an
’if statement’, this is again a non-reversible operation. In the quantum se�ing this requires
extra auxiliary qubits, which at the end of the algorithm need to be recomputed into their
original values.
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3. �antum�ery Complexity for
Non-iterative Relations

3.1. Connection to compressed oracles
In complexity theory there are several problems where an adversary is tasked to �nd input
and output pairs of a given function satisfying some set of constraints. Well known examples
of these problems are the Collision problem and the K-sum problem. We will analyze and �nd
lower bounds on the average-case quantum query complexity of these problems by se�ing
the underlying function that the adversary can query to a random function fromm to n bits,
F : {0, 1}m → {0, 1}n.

3.1.1. �antum query solvability
While in complexity theory one is usually interested in a lower bound on the worst-case
complexity of the number of quantum queries needed to solve the problem (quantum query
complexity), in cryptography one is more interested in upper bounding the probability of
success in the average case (quantum query solvability [Zha15]). �e former can also be
easily derived from the la�er, but not vice versa (which should be reason enough for any
mathematician to prefer the la�er). Other reasons as to why quantum query solvability is
preferred over quantum query complexity are:

• While quantum query complexity is asymptotic in the number of queries, there are
problems (such as the quantum oracle interrogation problem [Dam98]) where the prob-
ability of success can become trivial by just adding a single query. As a result non-
asymptotic bounds in q are preferred.

• In the context of keyed cryptographic systems, the worst case might only prove the
security for a certain set of keys, while the average case proves security for randomly
chosen keys.

• �antum query complexity says something about the queries needed for constant suc-
cess probability, while in cryptography we also want our schemes to be secure for
lower-than-constant success probabilities (if the success probability of breaking into a
bank would be proportional to 1

log(n)
, some cryptoanalysts might be tempted to change

into a more criminal and lucrative career path).
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3.1.2. Relations
In the following chapters we will model our complexity problems in the context of relations.
Such a relation Rr for r ≥ 0 on some set X can be viewed as a function Rr : Xr → {0, 1},
where an element x ∈ Xr satis�es Rr whenever Rr(x) = 1. �e case r = 0 results in the
trivial relation, which is always satis�ed. For a non-trivial example, we can translate the
Collision problem to the relation RrCol as follows:

De�nition 3.1.1. An r-tuple (x1, y1), ..., (xr, yr) ∈ ({0, 1}m × {0, 1}n)
r satis�es the Collision

relation RrCol when:

• ∀i, j ∈ [r] it holds that xi 6= xj ⇐⇒ i 6= j.

• ∀i, j ∈ [r] it holds that yi = yj .

�us �nding an r-collision is equivalent to �nding an r-tuple that satis�es RCol.

In the context of collisions it might be confusing how many distinct collisions the database
precisely contains. As an illustration, let our database consist of the input and output pairs
(0, 1), (1, 1), (2, 1), (3, 1). One could argue that this database contains

(
4
2

)
= 6 distinct 2-

collisions. �is seems contradictory however, as then there are more collisions than actual
database entries. To avoid this confusion, we will precisely de�ne whenever we view two
collisions as di�erent, or in general, whenever we view two r-tuples satisfying some relation
R of size r are distinct.

De�nition 3.1.2. Two r-tuples (x1, y1), ..., (xr, yr), (x
′
1, y
′
1), ..., (x′r, y

′
r) ∈ ({0, 1}m × {0, 1}n)

r

are called distinct if ∀i, j ∈ [r] it holds that xi 6= x′j .

Whenever a relation does not satisfy this property we refer to it as a non-iterative relation.
Returning to our example of the database containing (0, 1), (1, 1), (2, 1), (3, 1), we see that
the database contains

• 4 distinct collisions of size 1,

• 2 distinct collisions of size 2,

• 1 distinct collision of size 3,

• 1 distinct collision of size 4.

In [Zha18] the connection is shown between the compressed oracle and quantum query
bounds of random functions. As seen in Section 2.3, all the information the adversary knows
about the random function F can be represented by the entries of the database ∆ of CFO.
To have a be�er understanding of the adversary’s queries, we apply QFT on the database
registers a�er having done the queries and thus look at D instead of ∆ and CPhO instead of
CFO. Whenever the adversary is tasked with �nding for instance a x such that F (x) = y, the
adversary can only know this x if the database D contains the pair (x, y). �is does ignore
the case that the adversary did not know x, but just happened to be lucky enough to guess
it. �is is formalized in Lemma 5 from [Zha18], which we have slightly rephrased below to
be consistent with our notation:
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Lemma 3.1.3. Consider a quantum algorithm A making quantum queries to a random oracle
F : {0, 1}m → {0, 1}n. Let R be some relation of size r and suppose with probability p, A
outputs an r-tuple that satis�es R and H(xi) = yi for all i. Consider running A with the
oracle CPhO and suppose the databaseD is measured a�er A produces its output. Let p′ be the
probability that the r-tuple satis�es R and (xi, yi) ∈ D for all i. �en

√
p ≤
√
p′ +

√
r
N
.

Our analysis consists of �nding an upper bound on the probability of the database con-
taining tuples that satisfy some relation R. �en by applying the above lemma we can bound
the probability that any quantum algorithm can solve the corresponding complexity problem
and then derive a lower bound on the query complexity of the respective problem. In the
following chapters we will always assume the total number of queries qp to be larger than
k, as otherwise the database will never contain the desired k distinct r−tuples.

3.2. Sum problem
As the title of the chapter suggests, we make a distinction between iterative and non-iterative
relations.

De�nition 3.2.1. A relation Rr is called iterative if ∀(x1, y1), ..., (xr, yr) satisfying Rr and
∀t ∈ [r] it holds that (x1, y1), ..., (xr, yr) contains a (r − t)-subtuple satisfying Rr−t.

Going back to our example, we see that RrCol is an iterative relation, since every
(r − t)-subtuple of an r-collision forms a (r − t)-collision. Another example of an iterative
relation would be the trivial relation, which is satis�ed by every tuple. Upper bounding the
probability of success of these iterative relations proves to be slightly harder than the case
with non-iterative relations, so to get a be�er understanding of the technique we start with
the non-iterative relations �rst. Before immediately jumping to a general bound, we start
with an example of a non-iterative relation: the K-sum problem. Since we use the variable r
to specify the length of relations, we will refer to this problem as the Sum problem to avoid
confusing the variables.

De�nition 3.2.2. An r-tuple (x1, y1), ..., (xr, yr) ∈ ({0, 1}m × {0, 1}n)
r satis�es the Sum

relation RrSum when:

• ∀i, j ∈ [r] it holds that xi 6= xj if and only if i 6= j.

•
∑r

i=1 yi = 0.

Here we view the yi ∈ ZN under modular addition. Since it does not always hold that
there exists an (r−1)-sized subset of {y1, ..., yr}with elements summing up to 0, we see that
the Sum problem is a non-iterative relation. In this section we work towards the following
theorem:

�eorem 3.2.3. Let Pr,k denote the projector which projects onto the database containing at
least k distinct r-tuples satisfying RrSum, as de�ned in De�nition 3.2.2. Denote by |ψq〉 the joint
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state of the adversary and the database a�er q queries. �en for k ≥ 1 and constant r ≥ 1 it
holds that

‖Pr,k|ψq〉‖ ≤

(
eq
√
qr−1

k
√
N

)k

. (3.1)

Before we continue, there are some useful identities which we will use in our proofs:
• ∀k, i ≥ 0 it holds that ‖P0,k|ψi〉‖ = 1, since the only relation of size 0 is the trivial

relation.

• ∀r, i ≥ 0 it holds that ‖Pr,0|ψi〉‖ = 1, since there are always at least 0 r-tuples satisfy-
ing the relation.

• ∀k, r ≥ 1 it holds that ‖Pr,k|ψ0〉‖ = 0, since an empty database can only satisfy the
trivial relation.

To prove �eorem 3.2.3, we look at how much the norm ‖Pr,k|ψi〉‖ increases a�er every
query.

‖Pr,k|ψi+1〉‖ = ‖Pr,kCPhO|ψi〉‖
= ‖Pr,kCPhOPr,k|ψi〉+ Pr,kCPhO(I− Pr,k)|ψi〉‖
≤ ‖Pr,kCPhOPr,k|ψi〉‖+ ‖Pr,kCPhO(I− Pr,k)|ψi〉‖
= ‖Pr,kCPhO|ψi,kr〉‖‖Pr,k|ψi〉‖+ ‖Pr,kCPhO|ψi,kr〉‖‖(I− Pr,k)|ψi〉‖
≤ ‖Pr,k|ψi〉‖+ ‖Pr,kCPhO|ψi,kr〉‖‖(I− Pr,k)|ψi〉‖, (3.2)

where we applied the triangle inequality in the �rst inequality and in the third equality we
introduced the subscripts |ψi,kr〉 =

Pr,k|ψi〉
‖Pr,k|ψi〉‖

, |ψi,kr〉 =
(I−Pr,k)|ψi〉
‖(I−Pr,k)|ψi〉‖ .

An important remark is that the projectors in the set {Pr,k : r, k ≥ 0} all commute with
each other, since these are de�ned by projecting onto a set of computational basis states.
An explicit construction of Pr,k is shown in Appendix B. For there to be k ≥ 1 distinct r-
tuples satisfying RrSum a�er the query, there had to have been at least k − 1 distinct r-tuples
satisfying RrSum before the query. Rephrasing this in term of our projectors yields

‖Pr,k(CPhO|ψi,kr〉)‖‖(I− Pr,k)|ψi〉‖
= ‖Pr,kCPhOPr,k−1|ψi,kr〉+ Pr,kCPhO(I− Pr,k−1)|ψi,kr〉‖‖(I− Pr,k)|ψi〉‖
= ‖Pr,kCPhOPr,k−1|ψi,kr〉‖‖(I− Pr,k)|ψi〉‖
= ‖Pr,kCPhO|ψi,kr,(k−1)r

〉‖‖Pr,k−1|ψi,kr〉‖‖(I− Pr,k)|ψi〉‖
= ‖Pr,kCPhO|ψi,kr,(k−1)r

〉‖‖Pr,k−1(I− Pr,k)|ψi〉‖, (3.3)

where in the third equality we introduced the subscript |ψi,kr,(k−1)r
〉 =

Pr,k−1|ψi,kr
〉

‖Pr,k−1|ψi,kr
〉‖ . To

shorten our notation, we will use an apostrophe to denote the state a�er a query to CPhO:

‖Pr,kCPhO|ψi,kr,(k−1)r
〉‖ = ‖Pr,k|ψ′i,kr,(k−1)r

〉‖. (3.4)

We introduce a lemma which will aid us in proving �eorem 3.2.3.
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Lemma 3.2.4. Let Pr,k be the projector which projects onto the database containing at least k
distinct r-tuples satisfying RrSum, as de�ned in De�nition 3.2.2. �en for k ≥ 1 and constant
r ≥ 1 it holds that

‖Pr,k|ψ′i,kr,(k−1)r
〉‖ ≤

√
qr−1

N
. (3.5)

.

Proof. We start by taking a more detailed look at our state before the query:

|ψi,kr,(k−1)r
〉 =

∑
x,η,z,D

αx,η,z,D|x, η, z〉A ⊗ |D〉D, (3.6)

where D contains all the necessary requirements speci�ed by the subscript of ψ, i.e. D
contains precisely (k − 1) r−tuples satisfying RrSum, as de�ned in De�nition 3.2.2. Let us
split the basis states into the following cases:

• |Zero〉 : |x, 0, z〉A ⊗ |D〉D.

• |Add〉 : |x, η 6= 0, z〉A ⊗ |D〉D such that ∀y ∈ {0, 1}n @(x, y) ∈ D.

• |Change〉 : |x, η 6= 0, z〉A ⊗ |D〉D such that ∃(x, y) ∈ D with y ∈ {0, 1}n.

We will analyze the state a�er the query and corresponding norm a�er projecting with Pr.k
for each of these cases. Before we do so though let us introduce GRrSum,1

as the set of ’good’
w’s. �is set contains the possible values for w such that adding (x,w) for some x to the
database completes a (r − 1)-tuple into an r-tuple satisfying RrSum.

• For any basis state in the case of |Zero〉 we have

CPhO (|x, 0, z〉A ⊗ |D〉D) = |x, 0, z〉A ⊗ |D〉D, (3.7)

since CPhO leaves the database invariant whenever η = 0 A�er the projection it holds
that

‖Pr,kCPhO (|x, η, z〉A ⊗ |D〉D)‖ = 0. (3.8)

• For the case of |Add〉, we simply add (x, η) to ∆. Returning this to the standard basis
results in the following:

CPhO (|x, η, z〉A ⊗ |D〉D) ‘
QFTD

= CFO (|x, η, z〉A ⊗ |∆〉D)

= |x, η, z〉A ⊗ |∆ ∪ (x, η)〉D
QFTD

= |x, η, z〉A ⊗
∑
w

(−1)w·η√
N
|D ∪ (x,w)〉D. (3.9)
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By using the orthogonality of the basis states we �nd

‖Pr,kCFO (|x, η, z〉A ⊗ |D〉D)‖ =

√√√√‖ ∑
w∈GRr

Sum
,1

(−1)w·η√
N
|D ∪ (x,w)〉D‖2

=

√√√√ ∑
w∈GRr

Sum
,1

‖(−1)w·η√
N
|D ∪ (x,w)〉D‖2

=

√
|GRrSum,1

|
N

. (3.10)

• For the case of |Change〉 a slightly larger calculation is necessary. Since ∃(x, y) ∈ D,
we can split D = D′ ∪ (x, y) where ∀y′ ∈ {0, 1}m @(x, y) ∈ D′ and accordingly write
∆′ for D′ in the Fourier basis.

CPhO (|x, η, z〉A ⊗ |D〉D) = CPhO (|x, η, z〉A ⊗ |D
′ ∪ (x, y)〉D)

QFTD
= CFO

(
|x, η, z〉A ⊗

∑
λ

(−1)λ·y√
N
|∆′ ∪ (x, λ)〉D

)

= |x, η, z〉A ⊗

(∑
λ 6=η

(−1)λ·y√
N
|∆′ ∪ (x, λ⊕ η)〉D +

(−1)η·y√
N
|∆′〉D

)
QFTD

= |x, η, z〉A ⊗

(∑
λ 6=η,w

(−1)λ·y√
N

(−1)w·(λ⊕η)

√
N

|D′ ∪ (x,w)〉D +
(−1)η·y√

N
|D′〉D

)
,

(3.11)

where in the third equality we have distinguished between λ 6= η and λ = η. By using
Equation 1.10 we �nd

|x, η, z〉A ⊗

(∑
λ 6=η,w

(−1)λ·y√
N

(−1)w·(λ⊕η)

√
N

|D′ ∪ (x,w)〉D +
(−1)η·y√

N
|D′〉D

)

= |x, η, z〉A ⊗

(∑
λ 6=η,w

(−1)λ·(y⊕w)

√
N

(−1)w·η√
N
|D′ ∪ (x,w)〉D +

(−1)η·y√
N
|D′〉D

)

= |x, η, z〉A ⊗

(∑
λ,w

(−1)λ·(y⊕w)

√
N

(−1)w·η√
N
|D′ ∪ (x,w)〉D

−
∑
w

(−1)w·η

N
|D′ ∪ (x,w)〉D +

(−1)η·y√
N
|D′〉D

)

= |x, η, z〉A ⊗

(
(−1)y·η|D〉D −

∑
w

(−1)w·η

N
|D′ ∪ (x,w)〉D +

(−1)η·y√
N
|D′〉D

)
.

(3.12)
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A�er the projection it holds that

‖Pr,kCFO (|x, η, z〉A ⊗ |D〉D)‖ =

√√√√‖ ∑
w∈GRr

Sum
,1

(−1)w·η

N
|D′ ∪ (x,w)〉D‖2

=

√√√√ ∑
w∈GRr

Sum
,1

‖(−1)w·η

N
|D′ ∪ (x,w)〉D‖2

=

√
|GRrSum,1

|
N2

. (3.13)

For the total state we conclude

‖Pr,k|ψ′i,kr,(k−1)r
〉‖ =

√
‖Pr,k

∑
x,η,z,D

αx,η,z,D|x, η, z〉A ⊗ |D〉D‖2

=
√
‖αZeroPr,k|Zero〉+ αAddPr,k|Add〉+ αChangePr,k|Change〉‖2

=
√
‖αZeroPr,k|Zero〉‖2 + ‖αAddPr,k|Add〉‖2 + ‖αChangePr,k|Change〉‖2

=

√
‖αAdd‖2

|GRrSum,1
|

N
+ ‖αChange‖2

|GRrSum,1
|

N2

≤

√
|GRrSum,1

|
N

. (3.14)

We are le� with computing the value |GRrSum,1
|. Since for every (r − 1)-tuple there exists at

most a unique w such that adding (x,w) creates an r-tuple satisfying RrSum, we can bound
|GRrSum,1

| by the number of (r−1)-tuples in the database, which is at most
(
q
r−1

)
≤ qr−1 a�er

i < q queries.

We now possess all the tools to prove �eorem 3.2.3, which we have restated below.

�eorem 3.2.3. Let Pr,k denote the projector which projects onto the database containing at
least k distinct r-tuples satisfying RrSum, as de�ned in De�nition 3.2.2. Denote by |ψq〉 the joint
state of the adversary and the database a�er q queries. �en for k ≥ 1 and constant r ≥ 1 it
holds that

‖Pr,k|ψq〉‖ ≤

(
eq
√
qr−1

k
√
N

)k

. (3.15)
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Proof. By combining Equation 3.2 with Lemma 3.2.4 we arrive at the following recursion:

‖Pr,k|ψq〉‖ ≤
q−1∑
i=0

√
qr−1

N
‖Pr,k−1(I− Pr,k)|ψi〉‖

≤
q−1∑
i=0

√
qr−1

N
‖Pr,k−1|ψi〉‖

≤
q−1∑
i1=0

√
qr−1

N

i1−1∑
i2=0

√
qr−1

N
‖Pr,k−2|ψi2〉‖

≤
∑

0≤ik<···<i2<i1≤q−1

(√
qr−1

N

)k

. (3.16)

To be able to iterate all the way to Pr,0 in the �nal step we need q ≥ k, but note that any

Rr with r ≥ 1 is trivial for q < k (because in that case ‖Pr,k|ψq〉‖ = 0). Since
(√

qr−1

N

)k
is independent of i1, ..., ik, we can compute

∑
0≤ik<···<i2<i1≤q−1 =

(
q
k

)
separately. Using the

inequality that k! ≥ (k/e)k, we bound
(
q
k

)
≤ qk

k!
≤
(
eq
k

)k which completes the theorem.

As we have said at the beginning of this chapter, Lemma 3.1.3 allows us to connect the
above theorem to the upper bound on the probability of success.

Corollary 3.2.5. Any quantumalgorithmAmaking q queries to a random oracleF : {0, 1}m →
{0, 1}n �nds k distinct solutions to the r-Sum problem, for k ≤

√
N
r
and constant r ≥ 1, with

probability at most (eq√qr−1

k
√
N

)k

+ k

√
r

N

2

(3.17)

. As a result, any quantum algorithm A needs to make Ω
(
k2/(r+1)N1/(r+1)

)
queries to �nd k

distinct solutions to the r-Sum problem with constant probability.

If we substitute k = 1 our resulting query complexity is consistent with the tight result of
[BS12], where they give an query complexity bound of Ω

(
M r/(r+1)

)
under the assumption

that M ≥ N r.

3.3. General non-iterative relations
We can adapt �eorem 3.2.3 to the case of any non-iterative relation R. Recall the set of
constraints of RrSum:

• ∀i, j ∈ [r] it holds that xi 6= xj ⇐⇒ i 6= j.

•
∑r

i=1 yi = 0.
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We never took the �rst r constraints into account when proving the upper bound, as these
are automatically satis�ed by the construction of our database. General relations could how-
ever have di�erent constraints on the xi values. We want to �nd a way to remove these
constraints, such that when adding a new (x, y) value to the database a�er a new query,
we only have to check the y-value if we want to know whether this new entry has created a
new r-tuple satisfying Rr. �is will allow us to keep our proof analogous to the RrSum variant.

We introduce the following procedure which reduces any relation Rr to a maximally re-
duced relation R̂r̂.

• Always remove every constraint on xi which only depends on all other xj’s.

• If for every constraint on xi there exists a value of yi such that the constraint is not
satis�ed, we call the relation maximally reduced.

• Otherwise, remove this constraint and replace xi by its constraint in every other con-
straint in the relation.

�e reasoning behind these steps is that without loss of generality we can change the order
of the queries such that all other xj, yj’s have already been queried by the adversary before
xi is queried. �e adversary can measure these registers on the adversary’s side such that
when he queries a new xi this xi will satisfy the needed constraint. �ere is no method for
the adversary however to have any information about yi before querying xi, because we are
querying random functions. As a result such a constraint can not be removed.

To give an example of a reduction, let us look at the following set of constraints for some
r ≥ 3:

• ∀i ∈ {2, ..., r − 1} it holds that xi+1 = yi.

•
∑r

i=1 xi = 0.

• x1 = xr + y1.

Note that by the structure of our database it will always hold that ∀i, j ∈ [r] xi 6= xj ⇐⇒
i 6= j, even if this is not a constraint. We can immediately remove the (r − 1)-th constraint
(the second item in the list above) as it is not dependent on any of the yj .

• ∀i ∈ {2, ..., r − 1} it holds that xi+1 = yi.

• x1 = xr + y1.

For the �rst r−2 constraints, every xi+1 is independent of yi+1 and thus there exists no value
of yi+1 such that the constraint is not satis�ed. As a result, we remove these constraints and
replace xi+1 by yi in all other constraints:

• x1 = yr−1 + y1.
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For the �nal constraint, there exists a value of y1 for every value of yr−1 such that the con-
straint does not hold. �is means that there is no constraint le� that can be removed and we
conclude that the relation is maximally reduced. We also note that there is no longer any
constraint on the values of (x2, y2), ..., (xr−2, yr−2), so this new relation actually only size 2.

A reduction does require q to be larger than the number of removed constraints, but as
this number is bounded by r this merely makes our bound less tight in the case that q < r.
Since r is constant our �nal bound remains una�ected in the asymptotic case.

We conclude the main result for non-iterative relations:

�eorem 3.3.1. Let Pr,k denote the projector which projects onto the database containing at
least k distinct r-tuples satisfying the maximally reduced and non-iterative relation Rr. Denote
by |ψq〉 the joint state of the adversary and the database a�er q queries. �en for k ≥ 1 and
constant r ≥ 1 it holds that

‖Pr,k|ψq〉‖ ≤

(
eq
√
|GRr,1|

k
√
N

)k

. (3.18)

Proof. As Rr is maximally reduced, we can simply repeat the proofs of Lemma 3.2.4 and
�eorem 3.2.3, where we omit the calculation of |GRr,1|.

3.4. Parallel queries for non-iterative relations
When the adversary is allowed to make p-parallel queries to the oracle, our analysis from
the previous section is no longer correct. More speci�cally, we have stated that for there to
be k ≥ 1 distinct r-tuples satisfying RrSum a�er the query, there had to have been at least
k− 1 distinct r-tuples satisfying RrSum before the query. In the parallel case however, we can
create up to p distinct r-tuples satisfying any Rr within a single p-parallel query. ’

By applying the triangle inequality the parallel analog of Equation 3.3 becomes

‖Pr,k(CFO|ψi,kr〉)‖‖(I− Pr,k)|ψi〉‖ ≤
min{p,k}∑
j=1

‖Pr,k|ψ′i,kr,(k−j)r〉‖‖Pr,k−j(I− Pr,k)|ψi〉‖.

(3.19)

Lemma 3.2.4 also changes, as we are no longer restricted to completing any (r − 1)-tuple,
but we can go as low as any (max {0, r − p})-tuple. We extend our notation of GR,1 from
the sequential case as follows: denote by GRr,t the set of possible values for w1, ..., wt such
that adding (x1, w1), ..., (x1, wt) for some x1, ..., xt completes a (r − t)-tuple into an r-tuple
satisfying R (in the sequential case we only had t = 1). We give a generalisation of Lemma
3.2.4 which is also applicable to parallel queries:
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Lemma 3.4.1. Let Pr,k be the projector which projects onto the database containing at least k
distinct r-tuples satisfying the maximally reduced relation Rr. �en for k ≥ 1, j ≤ [min {p, r}],
constant r ≥ 1 and parallel query size p it holds that

‖Pr,k|ψ′i,kr,(k−j)r〉‖ ≤

(
min {p, r}

√
|GRr,tmax|(ep)tmax

(tmaxN)tmax

)j

, (3.20)

where tmax := arg max
t≤bmin{p,r}/jc

{
|GRr,t|(ep)t

(tN)t

}
.

Proof. We again start by taking a more detailed look at our state before the query, where we
have denoted (x1, η1), ..., (xp, ηp) by (x, η):

|ψi,kr,(k−j)r〉 =
∑

x,η,z,D,w1,...,wp

αx,η,z,D|x, η, z〉A ⊗ |D〉D, (3.21)

whereD contains all the necessary requirements speci�ed by the subscript of ψ. Recall from
the proof of Lemma 3.2.4 that for a single query the basis states in |Add〉 increase the norm
of the projection the most. Since it does not a�ect the database register whether the queries
(x, η) are queried sequentially or in parallel, we can bound the norm a�er the projection by
the case that each |x, η 6= 0, z〉A⊗|D〉D ∈ |Add〉. �e state a�er the query of these resulting
basis states is

CFO (|x, η, z〉A ⊗ |D〉D) = |x, η, z〉A ⊗
∑
w

(−1)w·η√
Np
|D ∪ (x,w)〉D, (3.22)

where we abbreviated w = w1, ..., wp.
We write w ∈ GRr,t if {w} contains a subset of size t taking on values in GRr,t. We distin-
guish the completion of (r− t)-tuples for di�erent t and note that tj ≤ p and t ≤ min {p, r}.
Combining this yields t ≤ bmin {p, r} /jc. With the help of the triangle inequality applying
Pr,k results in

‖Pr,k|ψ′i,kr,(k−j)r〉‖ ≤ ‖|x, η, z〉A ⊗
bmin{p,r}/jc∑
t1,...,tj=1

∑
w1∈GRr,t1...
wj∈GRr,tj

(−1)w·η√
Np
|D ∪ (x,w)〉D‖

≤
bmin{p,r}/jc∑
t1,...,tj=1

√ |GRr,t1|
(
p
t1

)
N t1

· · ·

√
|GRr,tj |

(
p
tj

)
N tj


≤
bmin{p,r}/jc∑
t1,...,tj=1

(√
|GRr,t1|(ep)tmax

(t1N)t1
· · ·

√
|GRr,tj |(ep)tj

(tjN)tj

)

≤

(
bmin {p, r} /jc

√
|GRr,tmax|(ep)tmax

(tmaxN)tmax

)j

. (3.23)
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Before we head to the general version of �eorem 3.2.3, we introduce a helpful lemma
which aids in proving both the next theorem, as well as the main result in the next chapter.
�e proof of this lemma can be found in Appendix C

Lemma 3.4.2. Let the series aq,n, bq,n be de�ned as follows:

• aq,0 := q,

• bq,0 := q,

• aq,n :=
∑n

i=1

∑q−1
j=0 c

iaj,n−i,

• bq,n :=
∑n

i=1

∑q−1
j=0 (cibj,n−i + d),

for constants c, d. �en ∀n ≥ 1 it holds that

aq,n =
qn

n!
2n−1cn,

bq,n = aq,n +
n−1∑
i=0

(n− i)aq,id. (3.24)

�eorem 3.4.3. Let Pr,k denote the projector which projects onto the database containing at
least k distinct r-tuples satisfying the maximally reduced and non-iterative relation Rr. Denote
by |ψq〉 the joint state of the adversary and the database a�er q queries. �en for k ≥ 1, constant
r ≥ 1 and parallel query size p it holds that

‖Pr,k|ψq〉‖ ≤

(
2erq

√
|GRr,tmax |(ep)tmax

k
√

(tmaxN)tmax

)k

. (3.25)

Proof. By combining Equation 3.19 with Lemma 3.4.1 we arrive at the following recursion:

‖Pr,k|ψq〉‖ ≤
q−1∑
i=0

min{p,k}∑
j=1

(
min {p, r}

√
|GRr,tmax |(ep)tmax

(tmaxN)tmax

)j

‖Pr,k−j(I− Pr,k)|ψi〉‖

≤
q−1∑
i=0

k∑
j=1

(
r

√
|GRr,tmax |(ep)tmax

(tmaxN)tmax

)j

‖Pr,k−j|ψi〉‖. (3.26)
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Substituting c = r
√
|GRr,tmax |(ep)tmax

(tmaxN)tmax and aq,k = ‖Pr,k|ψq〉‖ into Lemma 3.4.2 yields

‖Pr,k|ψq〉‖ ≤
q−1∑
i=0

k∑
j=1

(
r

√
|GRr,tmax|(ep)tmax

(tmaxN)tmax

)j

‖Pr,k−j|ψi〉‖

=
qk

k!
2k−1cj

=
qk

k!
2k−1

(
r

√
|GRr,tmax|(ep)tmax

(tmaxN)tmax

)k

≤
(eq
k

)k
2k−1

(
r

√
|GRr,tmax |(ep)tmax

(tmaxN)tmax

)k

≤

(
2erq

√
|GRr,tmax |(ep)tmax

k
√

(tmaxN)tmax

)k

. (3.27)

We can apply this �eorem to RrSum to bound the quantum query solvability of the Sum
problem for p-parallel queries. To do this, we have to derive the value of |GRrSum,t

|. �ere are
at most

(
(q−1)p
r−t

)
≤ (qp)t (r−t)-tuples in the database a�er q−1 queries. For each such (r−t)-

tuple, there exist at most N t−1 values we can assign to w1, ..., wt such that it gets completed
into an r-tuple satisfying RrSum. So |GRrSum,t

| ≤ (qp)r−tN t−1 and thus |GRr,t|(ep)t
(tN)t

≤ etqr−tpr

ttN
,

which is decreasing in t. We conclude tmax = 1 and thus

‖Pr,k|ψq〉‖ ≤

(
2erq

√
eqr−1pr

k
√
N

)k

. (3.28)

Combining this with Lemma 3.1.3 yields

Corollary 3.4.4. Any quantum algorithm A making q p-parallel queries to a random oracle

F : {0, 1}m → {0, 1}n �nds k distinct solutions to the r-Sum problem, for k ≤
√

N
r
and

constant r ≥ 1, with probability at most(2erq
√
eqr−1pr

k
√
N

)k

+ k

√
r

N

2

. (3.29)

As a result, any quantum algorithm A needs to make Ω
(
k2/(r+1)p−r/(r+1)N1/(r+1)

)
p-parallel

queries to �nd k distinct solutions to the r-Sum problem with constant probability.

If we substitute k = 1 our resulting query complexity is consistent with the tight result
of [JMW17], where they give an query complexity bound of Ω

(
(M/p)r/(r+1)

)
under the

assumption that M ≥ N r.
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3.5. Fully parallel queries for non-iterative relations
In all the previous sections we have taken the liberty to bound q − 1 by q. In general the
e�ect of this simpli�cation is negligible on our results and does not a�ect the asymptotic
cases. �ere is however one instance where this bound does a�ect the �nal bound, namely
whenever q = 1 i.e. the fully parallel query. To illustrate this, we return to the last step in
Equation 3.23.

‖Pr,k|ψ′i,kr,(k−j)r〉‖ ≤
min{p,r}∑
t1,...,tj=1

(√
|GRr,t1|(ep)tmax

(t1N)t1
· · ·

√
|GRr,tj |(ep)tj

(tjN)tj

)
. (3.30)

As in the fully parallel case q − 1 = 0, so the only tuples in the database a�er 0 queries are
those of length 0 = r − r. �us |GRr,t| is 0 for any t 6= r and as a result we have

‖Pr,k|ψ′i,kr,(k−j)r〉‖ ≤

(√
|GRr,r|(ep)r

(rN)r

)j

. (3.31)

In the case of q = 1, the only value for iwill be 0. As a result ‖Pr,k−j|ψi〉‖ = δj,k. Combining
these two results yields

‖Pr,k|ψq〉‖ ≤
k∑
j=1

(√
|GRr,r|(ep)r

(rN)r

)j

‖Pr,k−j|ψi〉‖

=

(√
|GRr,r|(ep)r

(rN)r

)k

. (3.32)

Corollary 3.5.1. Any quantum algorithmAmaking a single fully p-parallel query to a random

oracle F : {0, 1}m → {0, 1}n �nds k distinct solutions to the r-Sum problem, for k ≤
√

N
r
and

constant r ≥ 1, with probability at most(√(ep)r

rrN

)k

+ k

√
r

N

2

. (3.33)

As a result, any quantum algorithm A needs to make a parallel query of size at least Ω
(
N1/r

)
to �nd k distinct solutions to the r-Sum problem with constant probability.

�is is precisely the classical bound, where we need Ω (M) queries under the assumption
that M ≥ N r.
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Another problem in the fully parallel case is the reduction of relations. We can no longer
remove a constraint on xi, as there have not been any x1, y1, ..., xr, yr queried yet. We can
however rewrite this constraint to a constraint on the y values. An example of this will be
given in Section 5.1.
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4. �antum�ery Complexity for
Iterative Relations

4.1. Collision problem
Now that we have analysed the non-iterative relations, it is time for their iterative counter-
part. �e main idea is that, compared to non-iterative relations, |GRr,tmax| is dependent on
‖Pr−t,k|ψq〉‖. �e reason for this being that any (r − t)-tuple that can potentially be com-
pleted has to satisfy Rr−t by the de�nition of an iterative relation. As a result just applying
�eorem 3.4.3 will yield a non-optimal upper bound. As with the non-iterative relations, we
start with a speci�c example to sketch the technique. As such, we will work towards the
following theorem in this section:

�eorem 4.1.1. Let Pr,k denote the projector which projects onto the database containing at
least k distinct sets of r-tuples satisfying RrCol, as de�ned in De�nition 3.1.1. Denote by |ψq〉 the
joint state of the adversary and the database a�er q queries. Also de�ne
γ(r) = 2(2r−2−1)/2r−2

e(2r−1−1)/2r−2 . �en for k ≤ N and constant r ≥ 2 it holds that

‖Pr,k|ψq〉‖ ≤

(
γ(r)q(2r−1)/2r−1

kN (2r−1−1)/2r−1 +O

((
k

N

)1/(2r−1−1)2r+1
))k

+O
(

2−k
(2r−1)/2rN1/2r

)
. (4.1)

Note that compared to �eorem 3.2.3 we set r ≥ 2 instead of r ≥ 1. �is results from the
fact that R1

Col is trivial (whereas most other relations are only trivial for r = 0). We follow
a similar reasoning as [LZ18], but manage to generalise their result to hold for k ≤

√
N
r

instead of k ≤ N1/2r .

�e method of proving �eorem 4.1.1 starts similar to the non-iterative case, so we brie�y
recall Equations 3.2 and 3.3.

‖Pr,k|ψi+1〉‖ ≤ ‖Pr,k|ψi〉‖+ ‖Pr,kCFO|ψi,kr〉‖‖(I− Pr,k)|ψi〉‖. (4.2)

‖Pr,k(CFO|ψi,kr〉)‖‖(I− Pr,k)|ψi〉‖ = ‖Pr,k|ψ′i,kr,(k−1)r
〉‖‖Pr,k−1(I− Pr,k)|ψi〉‖. (4.3)

�e �rst real change occurs when we look at Lemma 3.2.4. Its iterative counterpart is stated
as follows:
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Lemma 4.1.2. Let Pr,k and P̂r,k be the projectors which project on the database containing
respectively at least and exactly k distinct r-tuples satisfying RrCol, as de�ned in De�nition 3.1.1.
�en for k ≥ 1 and constant r ≥ 2 it holds that

‖Pr,k|ψ′i,kr,(k−1)r
〉‖ ≤

√√√√ N∑
l=0

l

N
‖P̂r−1,l|ψi,kr,(k−1)r

〉‖2. (4.4)

Proof. We start with abbreviating |ψi,kr,(k−1)r l̂r−1
〉 =

P̂r−1,l|ψi,kr,(k−1)r
〉

‖P̂r−1,l|ψi,kr,(k−1)r
〉‖ to derive

‖Pr,k|ψ′i,kr,(k−1)r
〉‖2 = ‖Pr,k

N∑
l=0

P̂r−1,l|ψi,kr,(k−1)r
〉‖2

=
N∑
l=0

‖Pr,k|ψ′i,kr,(k−1)r,l̂r−1
〉‖2‖P̂r−1,l|ψi,kr,(k−1)r

〉‖2. (4.5)

Here we used the orthogonality and commutativity of the P̂r−1,l in the second equality. �ese
projectors namely also still commute, as P̂r,k = (I− Pr,k+1)Pr,k. Just as in the non-iterative
case (see the proof of Equation 3.2.4) we can bound

‖Pr,k|ψ′i,kr,(k−1)r,l̂r−1
〉‖ ≤

√
|GRrCol,1,l

|
N

. (4.6)

Note that we added a l to GRrCol,1,l
as RrCol is an iterative relation and thus every possible

(r− 1)-tuple that we can complete must satisfy Rr−1
Col . In the speci�c case of collisions, there

exists a unique w for every (r− 1)-collision such that (x,w) completes it into an r-collision
and thus we have GRrCol,1,l

= l.

‖Pr,k|ψ′i,kr,(k−1)r
〉‖ ≤

√√√√ N∑
l=0

l

N
‖P̂r−1,l|ψi,kr,(k−1)r

〉‖2. (4.7)

Before we can prove �eorem 4.1.1, we will use the above lemma to prove one �nal inter-
mediate step.

Lemma 4.1.3. Let Pr,k be the projector which projects onto the database containing at least k
distinct r-tuples satisfying RrCol, as de�ned in De�nition 3.1.1. �en for anyMr−1 ≤ N , k ≥ 1
and constant r ≥ 2 it holds that

‖Pr,k|ψq〉‖ ≤
(
eq
√
Mr−1

k
√
N

)k
+ eq

√
Mr−1
N q‖Pr−1,Mr−1+1|ψq〉‖. (4.8)
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Proof. By combining Lemma 4.1.2 with Equations 3.2 and 3.3, we arrive at the following
recursion:

‖Pr,k|ψq〉‖ ≤
q−1∑
i=0

√√√√ N∑
l=0

l

N
‖P̂r−1,l|ψi,kr,(k−1)r

〉‖2 · ‖Pr,k−1(I− Pr,k)|ψi〉‖

=

q−1∑
i=0

√√√√ N∑
l=0

l

N
‖P̂r−1,lPr,k−1(I− Pr,k)|ψi〉‖2. (4.9)

We introduce a cut-o� point Mr−1 ≤ N for the sum over l (the value of Mr−1 will be deter-
mined later):

q−1∑
i=0

√√√√ N∑
l=0

l

N
‖P̂r−1,lPr,k−1(I− Pr,k)|ψi〉‖2

=

q−1∑
i=0

√√√√Mr−1∑
l=0

l

N
‖P̂r−1,lPr,k−1(I− Pr,k)|ψi〉‖2 +

N∑
l=Mr−1+1

l

N
‖P̂r−1,lPr,k−1(I− Pr,k)|ψi〉‖2

≤
q−1∑
i=0

√√√√Mr−1

N

Mr−1∑
l=0

‖P̂r−1,lPr,k−1(I− Pr,k)|ψi〉‖2 +
N∑

l=Mr−1+1

‖P̂r−1,lPr,k−1(I− Pr,k)|ψi〉‖2

≤
q−1∑
i=0

√
Mr−1

N
‖Pr,k−1(I− Pr,k)|ψi〉‖2 + ‖Pr−1,Mr−1+1Pr,k−1(I− Pr,k)|ψi〉‖2

≤
q−1∑
i=0

√
Mr−1

N
‖Pr,k−1|ψi〉‖2 + ‖Pr−1,Mr−1+1|ψi〉‖2, (4.10)

where in the �rst inequality we have bounded l by the largest value that it takes on in each
respective sum. In the second inequality we have used the (in)equalities

∑Mr−1

l=0 P̂r−1,l ≤∑N
l=0 P̂r−1,l = I and

∑
l>Mr−1

P̂r−1,l = Pr−1,Mr−1+1.
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Writing out the recursion (using that ‖Pr,k−1|ψi〉‖ ≤ ‖Pr,k−1|ψi+1〉‖ as seen in Equation
3.2) results in

q−1∑
i=0

√
Mr−1

N
‖Pr,k−1|ψi〉‖2 + ‖Pr−1,Mr−1+1|ψi〉‖2

≤
q−1∑
i=0

(√
Mr−1

N
‖Pr,k−1|ψi〉‖+ ‖Pr−1,Mr−1+1|ψq〉‖

)

=

q−1∑
i1=0

(
i1∑
i2=0

(
Mr−1

N
‖Pr,k−2|ψi2〉‖+

√
Mr−1

N
‖Pr−1,Mr−1+1|ψq〉‖

)
+ ‖Pr−1,Mr−1+1|ψq〉‖

)

=
∑

0≤ik<···<i2<i1≤q−1

(√
Mr−1

N

)k

+
k∑
j=1

∑
0≤ij<···<i2<i1≤q−1

(√
Mr−1

N

)j−1

‖Pr−1,Mr−1+1|ψq〉‖.

(4.11)

Just as in the non-iterative case we bound
∑

0≤ik<···<i2<i1≤q−1 ≤
qk

k!
≤
(
eq
k

)k to obtain

∑
0≤ik<···<i2<i1≤q−1

(√
Mr−1

N

)k

+
k∑
j=1

∑
0≤ij<···<i2<i1≤q−1

(√
Mr−1

N

)j−1

‖Pr−1,Mr−1+1|ψq〉‖

≤
(eq
k

)k(√Mr−1

N

)k

+
k∑
j=1

qj

j!

(√
Mr−1

N

)j−1

‖Pr−1,Mr−1+1|ψq〉‖

=

(
eq
√
Mr−1

k
√
N

)k
+

k∑
j=1

q

j

(
q
√

Mr−1

N

)j−1

(j − 1)!
‖Pr−1,Mr−1+1|ψq〉‖

≤
(
eq
√
Mr−1

k
√
N

)k
+ eq

√
Mr−1
N q‖Pr−1,Mr−1+1|ψq〉‖, (4.12)

where in the �nal inequality the Taylor series of eq
√
Mr−1
N is used.

4.1.1. Proof of �eorem 4.1.1
With the help of these Lemma’s we can prove �eorem 4.1.1. �e connection between Lemma
4.1.3 and �eorem 4.1.1 is to �nd the rightMr−1 that minimizes Equation 4.8 to get the tight-
est upper bound on the quantum query solvability. To do this however, we need to know
‖Pr−1,k|ψi〉‖, which creates a recursion that ends at P2,k andM1. When we have found these
values, we can inductively �nd Pr,k and Mr−1 for all other r > 2.

For clarity we will not only prove the base case r = 2, but also derive the solution for r = 3
to get an be�er understanding of the inductive process.
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• Our choice for M1 is clear, as we try to minimize the following function of M1.

‖P2,k|ψq〉‖ ≤
(
eq
√
M1

k
√
N

)k
+ eq

√
M1
N q‖P1,M1+1|ψq〉‖

≤
(
eq
√
M1

k
√
N

)k
+ eq

√
M1
N q1[M1+1≤q], (4.13)

where we used that there are at most q tuples in the database a�er q queries and thus
‖P1,M1+1|ψq〉‖ = 0 if M1 + 1 > q. Whenever M1 < q it holds that 1[M1+1≤q] = 1,

but both
(
eq
√
M1

k
√
N

)k
and eq

√
M1
N are increasing in M1. So we minimize our bound on

‖P2,k|ψq〉‖ by se�ing M1 = q, in which case ‖P2,k|ψq〉‖ ≤
(
eq
√
q

k
√
N

)k
=
(
eq3/2

k
√
N

)k
.

• For r = 3, we have

‖P3,k|ψq〉‖ ≤
(
eq
√
M2

k
√
N

)k
+ eq

√
M2
N q

(
eq3/2

M2

√
N

)M2

, (4.14)

where we substituted the bound we just computed for ‖P2,k|ψq〉‖ into Equation 4.12.
Since we want to minimize this expression for M2, we need eq3/2

√
N
< M2, as otherwise(

eq3/2

M2

√
N

)M2

will be at least 1. As a result we choose M2 = 2eq3/2
√
N

. Even though this is
not the actual analytical optimum for M2, this approximation will simplify the anal-
ysis. �is simpli�cation does not impact the resulting query complexity, as we will
show in a moment.

Let us consider the case that q >
√
kN . To make sure that in this case it still holds

that eq
√
M2

k
√
N
≤ 1 such that our bound on ‖P3,k|ψq〉‖ does not simply result in 1, we �nd

that M2 <
k
e2
< k. Combining this with our previously found fact that eq3/2

√
N

< M2

this results in k >
√

2e3/2q7/4

N3/4 > k7/8N1/8 and thus k > N . Since this would imply that
q > N we instead conclude that in the case of q >

√
kN our bound on ‖P3,k|ψq〉‖

becomes trivial, i.e. 1.

In the case that q ≤
√
kN this implies that q

√
M2

N
≤ 2ek7/8N1/8 and so we can bound

eq
√
M2
N q

(
eq3/2

M2

√
N

)M2

≤ e2ek7/8N1/8

q

(
1

2

)M2

≤ e2ek7/8N1/8

N

(
1

2

)M2

≤
(

1

2

)−8k7/8N1/8

N

(
1

2

)M2

. (4.15)
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To further simplify this, we express N as a power of 2. As r is just a constant, we
can state N = O

(
2N

1/2r
)

. Since
(

1
2

)M2 is decreasing in M2, we need to �nd a lower

bound on M2 to upper bound
(

1
2

)M2 . We force this by updating our choice of M2 to
M2 = max

{
2eq3/2
√
N
, 10k7/8N1/8

}
, in which case it holds that

eq
√
M2
N q

(
eq3/2

M2

√
N

)M2

≤
(

1

2

)−8k7/8N1/8

N

(
1

2

)M2

≤
(

1

2

)−8k7/8N1/8

O
(

2N
1/8
)(1

2

)10k7/8N1/8

≤ O
(

2−k
7/8N1/8

)
. (4.16)

Since we changed M2, it no longer holds that M2 = 2eq3/2
√
N

, but instead it we bound it
by

√
M2 =

√
max

{
2eq3/2

√
N

, 10k7/8N1/8

}
≤

√
2eq3/2

√
N

+
√

10k7/8N1/8. (4.17)

By noting that 2eq3/2
√
N

< 10k7/8N1/8 whenever q < 102/3k7/12N5/12

(2e)2/3 the �nal bound be-
comes

‖P3,k|ψq〉‖ ≤

eq
√

2eq3/2
√
N

k
√
N

+
e102/3k7/12N5/12

(2e)2/3

√
10k7/8N1/8

k
√
N

k

+O
(

2−k
7/8N1/8

)

≤

(√
2e3/2q7/4

kN3/4
+O

((
k

N

)1/48
))k

+O
(

2−k
7/8N1/8

)
. (4.18)

Even though we severely reduce the tightness of our upper bound on the quantum
query solvability in the case that q < 102/3k7/12N5/12

(2e)2/3 by adding this O
((

k
N

)1/48
)

term,
we note that this term is independent of q and as a result will not a�ect the resulting
quantum query complexity.

For completeness, we do need to show that for the new value of M2 it still holds that
q
√

M2

N
≤ 2ek7/8N1/8:

q

√
M2

N
≤ 107/6k49/48

(2e)2/3N1/48

≤ 107/6k7/8N1/8

(2e)2/3

≤ 2ek7/8N1/8, (4.19)
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where in the second inequality we used that k ≤ N . We can assume this inequality, as
otherwise

(
k
N

)1/48 will be larger than 1.

• �e procedure for r = 4 can be found in Appendix D if there is need for an extra
example.

Now assume that the induction hypothesis holds, then by Lemma 4.1.3 it holds that

‖Pr+1,k|ψq〉‖ ≤
(
eq
√
Mr

k
√
N

)k
+ eq
√

Mr
N q

((
γ(r)q(2r−1)/2r−1

MrN (2r−1−1)/2r−1

+ O

((
Mr

N

)1/(2r−1−1)2r+1
))Mr

+O
(

2−k
(2r−1)/2rN1/2r

) . (4.20)

Once again we need γ(r) q(2r−1)/2r−1

N(2r−1−1)/2r−1 < Mr <
k

(qe)2 , which in the case of q >
√
kN results

in k > k(2r−1)/2rN1/2r−1 , which implies k > N . As this results in q > N with arrive at a
contradiction and conclude that in this case our bound is trivial, i.e. 1.

We choose Mr = 2γ(r) q(2r−1)/2r−1

N(2r−1−1)/2r−1 , which in the case that q ≤
√
kN yields

eq
√

Mr
N q

( γ(r)q(2r−1)/2r−1

MrN (2r−1−1)/2r−1 +O

((
Mr

N

)1/(2r−1−1)2r+1
))Mr

+O
(

2−k
(2r−1)/2rN1/2r

)
≤ e2ek(2r+1−1)/2r+1

N1/2r+1

N

(1

2
+O

((
Mr

N

)1/(2r−1−1)2r+1
))Mr

+O
(

2−k
(2r−1)/2rN1/2r

))

≤
(

1

2

)−8k(2r+1−1)/2r+1
N1/2r+1

O
(

2N
1/2r+1

)(
O
(

1

2

)Mr

+O
(

2−k
(2r−1)/2rN1/2r

))
, (4.21)

where in the last inequality we used that Mr ≤ N . By updating
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Mr = max
{

2γ(r) q(2r−1)/2r−1

N(2r−1−1)/2r−1 , 10k(2r+1−1)/2r+1
N1/2r+1

}
, we �nd

(
1

2

)−8k(2r+1−1)/2r+1
N1/2r+1

O
(

2N
1/2r+1

)(
O
(

1

2

)Mr

+O
(

2−k
(2r−1)/2rN1/2r

))

≤
(

1

2

)−8k(2r+1−1)/2r+1
N1/2r+1

O
(

2N
1/2r+1

)O(1

2

)10k(2r+1−1)/2r+1
N1/2r+1

+ O
(

2−k
(2r−1)/2rN1/2r

)
≤ O

(
2−k

(2r+1−1)/2r+1
N1/2r+1

)
. (4.22)

Lastly 2γ(r) q(2r−1)/2r−1

N(2r−1−1)/2r−1 ≤ 10k(2r+1−1)/2r+1
N1/2r+1 implies

q ≤ 102r−1/(2r−1)k(2(2r−1)+1)/4(2r−1)N(2(2r−1)−1)/4(2r−1)

(2e)(2r−2)/(2r−1) , which results in the �nal bound being

‖Pr+1,k|ψq〉‖ ≤

eq
√

2γ(r) q(2r−1)/2r−1

N(2r−1−1)/2r−1

k
√
N

+

102r−1/(2r−1)k(2(2r−1)+1)/4(2r−1)N(2(2r−1)−1)/4(2r−1)

(2e)(2r−2)/(2r−1)

√
10k(2r+1−1)/2r+1N1/2r+1

k
√
N

k

+O
(

2−k
(2r+1−1)/2r+1

N1/2r+1
)

≤

(
γ(r + 1)q(2r+1−1)/2r

kN (2r−1)/2r
+O

((
k

N

)1/(2r−1)2r+2
))k

+

+O
(

2−k
(2r+1−1)/2r+1

N1/2r+1
)

(4.23)

and the induction is completed.

For the new value of Mr our bound on q
√

Mr

N
is still correct, since

q

√
Mr

N
≤ 10(2(2r−1)+1)/2(2r−1)k((2r−1−1)2r+1+1)/(2r−1−1)2r+1

(2e)(2r−2)/(2r−1)N1/(2r−1−1)2r+1

≤ 10(2(2r−1)+1)/2(2r−1)k(2r+1−1)/2r+1
N1/2r+1

(2e)6/7

≤ 2ek(2r+1−1)/2r+1

N1/2r+1

. (4.24)

By applying Lemma 3.1.3 to the above theorem we derive a bound on the quantum query
solvability of the Collision problem.
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Corollary 4.1.4. Any quantumalgorithmAmaking q queries to a random oracleF : {0, 1}m →
{0, 1}n �nds k distinct r-collisions, for k ≤

√
N
r
and constant r ≥ 2, with probability at most(O( q(2r−1)/2r−1

kN (2r−1−1)/2r−1

)
+O

((
k

N

)1/(2r−2−1)2r
))k

+ O
(

2−k
(2r−1−1)/2r−1

N1/2r−1
)

+ k

√
r

N

)2

. (4.25)

As a result, any quantum algorithm A needs to make Ω
(
k2r−1/(2r−1)N (2r−1−1)/(2r−1)

)
queries

to �nd k distinct r-collisions with constant probability.

For k = 1 matching upper bounds on the query complexity are given by [Hos+18; LZ18],
showing the tightness of the bound.

4.2. General iterative relations
Now that we have seen the technique for RrCol, we can generalize it to any Rr in general.
Without loss of generality we can assume Rr to be maximally reduced. Whereas in the case
ofRrCol we found that |GRrCol,1,l

| = l, in the general case we just keep it uncomputed as |GRr,1,l|.
�e general case of Lemma 4.1.3 then states
�eorem 4.2.1. Let Pr,k be the projector which projects onto the database containing at least k
distinct r-tuples satisfying the maximally reduced relation Rr. �en for anyMr−1 ≤ N , k ≥ 1
and constant r ≥ r0 it holds that

‖Pr,k|ψq〉‖ ≤

(
eq
√
|GRr,1,Mr−1|
k
√
N

)k

+ e
q

√
|GRr,1,Mr−1

|

N q‖Pr−1,Mr−1+1|ψq〉‖, (4.26)

where r0 = min {r : Rr is not the trivial relation}.
Proof. Just like l, |GRr,1,l| takes on values in {0, ..., l} and as a result the same trick of intro-
ducing Mr−1 as in Lemma 4.1.3 can be applied to bound

‖Pr,k|ψ′i,kr,(k−1)r
〉‖ ≤

q−1∑
i=0

√√√√ N∑
l=0

|GRr,1,l|
N

‖P̂r−1,lPr,k−1(I− Pr,k)|ψi〉‖2

=

q−1∑
i=0

(
Mr−1∑
l=0

|GRr,1,l|
N

‖P̂r−1,lPr,k−1(I− Pr,k)|ψi〉‖2

+

 N∑
l=Mr−1+1

|GRr,1,l|
N

‖P̂r−1,lPr,k−1(I− Pr,k)|ψi〉‖2

1/2

≤
q−1∑
i=0

√
|GRr,1,Mr−1|

N
‖Pr,k−1|ψi〉‖2 + ‖Pr−1,Mr−1+1|ψi〉‖2, (4.27)
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where in the �nal inequality we used that |GRr,1,l| is increasing in l. By the same calculation
as in the proof of Lemma 4.1.3 it holds that

q−1∑
i=0

√
|GRr,1,Mr−1|

N
‖Pr,k−1|ψi〉‖2 + ‖Pr−1,Mr−1+1|ψi〉‖2

≤

(
eq
√
|GRr,1,Mr−1|
k
√
N

)k

+ e
q

√
|GRr,1,Mr−1

|

N q‖Pr−1,Mr−1+1|ψq〉‖. (4.28)

One interesting observation is that �eorem 3.2.3 actually follows from the above theorem.
Since for non-iterative relations |GRr,1,Mr−1| = |GRr,1| is independent of Mr−1, we can just
choose Mr−1 = M such that ‖Pr−1,Mr−1+1|ψq〉‖ = 0. �is then precisely results in

‖Pr,k|ψq〉‖ ≤

(
eq
√
|GRr,1|

k
√
N

)k

. (4.29)

4.3. Collision problem for parallel queries
Unlike in the non-iterative case, we have not succeeded in formalising a bound on ‖Pr,k|ψq〉‖
in the event of p-parallel queries for any Rr. We will however show the technique for the case
of RrCol and provide a few applications of the technique to other relations. Recall Equation
3.19 which also holds for iterative relations:

‖Pr,k(CFO|ψi,kr〉)‖‖(I− Pr,k)|ψi〉‖ ≤
min{p,k}∑
j=1

‖Pr,kCFO|ψi,kr,(k−j)r〉‖‖Pr,k−j(I− Pr,k)|ψi〉‖.

(4.30)

To make the analysis clearer, we bound min {p, r} ≤ r and min {p, k} ≤ k right away,
reducing the tightness of our bound in the cases that p ≤ r and p ≤ k.

�eorem 4.3.1. Let Pr,k be the projector which projects onto the database containing at least
k distinct r-tuples satisfying RrCol, as de�ned in De�nition 3.1.1. Also de�ne
γ′(r) = 2(2r−2−1)/2r−2

e3(2r−1−1)/2r−1
r!. �en for anyMr−1 ≤ N , k ≤ N , constant r ≥ 2 and

parallel query size p it holds that

‖Pr,k|ψq〉‖ ≤

(
γ′(r)q(2r−1)/2r−1

p

kN (2r−1−1)/2r−1 +O

((
k

N

)1/(2r−1−1)2r+1
))k

+O
(

2−k
(2r−1)/2rN1/2r

)
. (4.31)
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Proof. Instead of just distinguishing the di�erent number (r − 1)-tuples satisfying Rr−1
Col , we

distinguish these numbers for all (r− t)-tuples satisfying Rr−tCol , resulting in the parallel ver-
sion of Equation 4.5.

‖Pr,k|ψ′i,kr,(k−j)r〉‖
2 =

N∑
l0,...,lr−1=0

‖Pr,k|ψ′i,kr,(k−j)r,l̂0,...,l̂r−1
〉‖2‖P̂0,l0 · · · P̂r−1,lr−1|ψi,kr,(k−j)r〉‖

2,

(4.32)

where we have extended the abbreviation |ψi,kr,(k−j)r l̂r−t〉 =
P̂r−t,lr−t |ψi,kr,(k−j)r

〉

‖P̂r−t,lr−t |ψi,kr,(k−j)r
〉‖ . Analo-

gous to the proofs of Lemma 3.4.1 and Lemma 4.1.2 we bound

‖Pr,k|ψ′i,kr,(k−j)r,l̂0,...,l̂r−1
〉‖ ≤

r∑
t1,...,tj=1

(√
lr−t1(ep)t1

(t1N)t1
· · ·

√
lr−tj(ep)

tj

(tjN)tj

)
. (4.33)

Combining these �ndings with Equation 3.19 yields

‖Pr,k|ψq〉‖ ≤
q−1∑
i=0

k∑
j=1

r∑
t1,...,tj=1

 N∑
l1,...,lr−1=0

lr−t1(ep)t1

(t1N)t1
· · ·

lr−tj(ep)
tj

(tjN)tj

· ‖P̂1,l1 · · · P̂r−1,lr−1Pr,k−j(I− Pr,k)|ψi〉‖2

1/2

. (4.34)

Here the sum over l0 has been omi�ed, since the number of distinct 0-tuples in the database
satisfying any Rr is always maximal, and thus l0 = |GRrCol,r−1,l0| = N .

We change the perspective of how we decide to view the sum over t1, ..., tj . Instead of
le�ing t1, ..., tj sum over values in [r], we count for each value in [r] how many tj’s take on
this value. �is does require an extra binomial coe�cient to correct for the permutations.

As before we �rst present examples for the cases of r = 2, 3.

‖P2,k|ψq〉‖ ≤
q−1∑
i=0

k∑
j=1

2∑
t1,...,tj=1

√√√√ N∑
l1=0

lr−t1(ep)t1

(t1N)t1
· · ·

lr−tj(ep)
tj

(tjN)tj
‖P̂1,l1P2,k−j(I− P2,k)|ψi〉‖2

=

q−1∑
i=0

k∑
j=1

j∑
#(t=1)=0

(
j

#(t = 1)

)( N∑
l1=0

(
l1ep

N

)#(t=1)(
N(ep)2

(2N)2

)j−#(t=1)

. · ‖P̂1,l1P2,k−j(I− P2,k)|ψi〉‖2

)1/2

, (4.35)
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where we have used that l0 = N . Just as in the sequential case we now introduce M1,
resulting in

q−1∑
i=0

k∑
j=1

j∑
#(t=1)=0

(
j

#(t = 1)

)( N∑
l1=0

(
l1ep

N

)#(t=1)(
N(ep)2

(2N)2

)j−#(t=1)

. · ‖P̂1,l1P2,k−j(I− P2,k)|ψi〉‖2

)1/2

=

q−1∑
i=0

k∑
j=1

j∑
#(t=1)=0

(
j

#(t = 1)

)( M1∑
l1=0

(
l1ep

N

)#(t=1)(
N(ep)2

(2N)2

)j−#(t=1)

. · ‖P̂1,l1P2,k−j(I− P2,k)|ψi〉‖2 +
N∑

l1=M1+1

(
l1ep

N

)#(t=1)(
N(ep)2

(2N)2

)j−#(t=1)

. · ‖P̂1,l1P2,k−j(I− P2,k)|ψi〉‖2

)1/2

. (4.36)

We make the following important observation. �e term

j∑
#(t=1)=0

(
j

#(t = 1)

) N∑
l1=M1+1

(
l1ep

N

)#(t=1)(
N(ep)2

(2N)2

)j−#(t=1)

‖P̂1,l1P2,k−j(I− P2,k)|ψi〉‖2

(4.37)

serves as our upper bound for the expression (see Equation 4.32)

N∑
l1=M1+1,l2,...,lr−1=0

‖Pr,k|ψ′i,kr,(k−j)r,l̂1,...,l̂r−1
〉‖2‖P̂1,l1 · · · P̂r−1,lr−1|ψi,kr,(k−j)r〉‖

2

= ‖P1,M1+1Pr,k|ψ′i,kr,(k−j)r〉‖
2

≤ ‖P1,M1+1‖. (4.38)
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By instead using this tighter bound, we arrive at

‖P2,k|ψq〉‖ ≤
q−1∑
i=0

k∑
j=1

 j∑
#(t=1)=0

(
j

#(t = 1)

)( M1∑
l1=0

(
l1ep

N

)#(t=1)

. ·
(
N(ep)2

(2N)2

)j−#(t=1)

‖P̂1,l1P2,k−j(I− P2,k)|ψi〉‖2

)1/2

+ ‖P1,M1+1|ψq〉‖


≤

q−1∑
i=0

k∑
j=1

 j∑
#(t=1)=0

(
j

#(t = 1)

)((
M1ep

N

)#(t=1)

. ·
(
N(ep)2

(2N)2

)j−#(t=1)

‖P2,k−j(I− P2,k)|ψi〉‖2

)1/2

+ ‖P1,M1+1|ψq〉‖

 .

(4.39)

Since ‖P1,M1+1|ψq〉‖ ≤ 1[M1+1≤qp], we set M1 = qp to minimize the above expression. Since
this results in M1ep

N
> N(ep)2

(2N)2 and ‖P1,M1+1|ψq〉‖ = 0 we can bound

‖P2,k|ψq〉‖ ≤
q−1∑
i=0

k∑
j=1

 j∑
#(t=1)=0

(
j

#(t = 1)

)((
M1ep

N

)#(t=1)

. ·
(
N(ep)2

(2N)2

)j−#(t=1)

‖P2,k−j(I− P2,k)|ψi〉‖2

)1/2

+ ‖P1,M1+1|ψq〉‖


=

q−1∑
i=0

k∑
j=1

j∑
#(t=1)=0

(
j

#(t = 1)

)√(
eqp2

N

)j
‖P2,k−j|ψi〉‖

=

q−1∑
i=0

k∑
j=1

2j

√(
eqp2

N

)j
‖P2,k−j|ψi〉‖

≤

(
2eq
√
eqp2

k
√
N

)k

=

(
2e3/2q3/2p

k
√
N

)k
, (4.40)

where for the �nal inequality we have used Lemma 3.4.2.

�e r = 2 case was relatively simple, as ‖P1,M1+1|ψq〉‖ results in 0 for our choice of M1.
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�at is why we also show the r = 3 case.

‖P3,k|ψq〉‖ ≤
q−1∑
i=0

k∑
j=1

3∑
t1,...,tj=1

(
N∑

l1,l2=0

lr−t1(ep)t1

(t1N)t1
· · ·

lr−tj(ep)
tj

(tjN)tj

·‖P̂1,l1P̂2,l2P3,k−j(I− P3,k)|ψi〉‖2

)1/2

≤
q−1∑
i=0

k∑
j=1

j∑
#(t=1)=0

j−#(t=1)∑
#(t=2)=0

(
j

#(t = 1)

)(
j −#(t = 1)

#(t = 2)

)

·

(
N∑

l1,l2=0

(
l2ep

N

)#(t=1)(
l1(ep)2

(2N)2

)#(t=2)(
N(ep)3

(3N)3

)j−#(t=1)−#(t=2)

·‖P̂1,l1P̂2,l2P3,k−j(I− P3,k)|ψi〉‖2

)1/2

. (4.41)

By applying the same trick as in Equation 4.38 a�er introducing M1,M2 we �nd

‖P3,k|ψq〉‖ ≤
q−1∑
i=0

k∑
j=1

j∑
#(t=1)=0

j−#(t=1)∑
#(t=2)=0

(
j

#(t = 1)

)(
j −#(t = 1)

#(t = 2)

)

·

(
N∑

l1,l2=0

(
l2ep

N

)#(t=1)(
l1(ep)2

(2N)2

)#(t=2)(
N(ep)3

(3N)3

)j−#(t=1)−#(t=2)

·‖P̂1,l1P̂2,l2P3,k−j(I− P3,k)|ψi〉‖2

)1/2

≤
q−1∑
i=0

k∑
j=1

 j∑
#(t=1)=0

j−#(t=1)∑
#(t=2)=0

(
j

#(t = 1)

)(
j −#(t = 1)

#(t = 2)

)

·

((
M2ep

N

)#(t=1)(
M1(ep)2

(2N)2

)#(t=2)(
N(ep)3

(3N)3

)j−#(t=1)−#(t=2)

· ‖P3,k−j(I− P3,k)|ψi〉‖2

)1/2

+ ‖P2,M2+1|ψi〉‖+ ‖P1,M1+1|ψi〉‖

 . (4.42)

We again have to setM1 = qp. Like in the sequential case, instead of �nding the optimal value
for M2, we se�le for M2 such that ‖P2,M2+1|ψi〉‖ ≤

(
1
2

)M2 . From our bound on ‖P2,k|ψq〉‖
we derive that this is satis�ed whenever M2 = 4e3/2q3/2p√

N
. �ese values of M1,M2 result in
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M2ep
N

> M1(ep)2

(2N)2 > N(ep)3

(3N)3 and as a consequence we can bound

‖P3,k|ψq〉‖ ≤
q−1∑
i=0

k∑
j=1

 j∑
#(t=1)=0

j−#(t=1)∑
#(t=2)=0

(
j

#(t = 1)

)(
j −#(t = 1)

#(t = 2)

)

·

((
M2ep

N

)#(t=1)(
M1(ep)2

(2N)2

)#(t=2)(
N(ep)3

(3N)3

)j−#(t=1)−#(t=2)

· ‖P3,k−j(I− P3,k)|ψi〉‖2

)1/2

+ ‖P2,M2+1|ψi〉‖+ ‖P1,M1+1|ψi〉‖


≤

q−1∑
i=0

k∑
j=1

 j∑
#(t=1)=0

j−#(t=1)∑
#(t=2)=0

(
j

#(t = 1)

)(
j −#(t = 1)

#(t = 2)

)

·

√(
M2ep

N

)j
‖P3,k−j|ψi〉‖+ ‖P2,M2+1|ψi〉‖


=

q−1∑
i=0

k∑
j=1

3j

√(
M2ep

N

)j
‖P3,k−j|ψi〉‖+ ‖P2,M2+1|ψi〉‖


≤

q−1∑
i=0

k∑
j=1

3j

√(
M2ep

N

)j
‖P3,k−j|ψi〉‖+ ‖P2,M2+1|ψq〉‖

 , (4.43)

where we have kept the variable M2 instead of 4e3/2q3/2p√
N

for clarity. By consulting Lemma
3.4.2 we can bound this expression even further:

‖P3,k|ψq〉‖ ≤
q−1∑
i=0

k∑
j=1

3j

√(
M2ep

N

)j
‖P3,k−j|ψi〉‖+ ‖P2,M2+1|ψq〉‖


=
qk

k!

(
3
√
M2ep√
N

)k
+

k∑
j=1

qj

j!

(
3
√
M2ep√
N

)j−1

‖P2,M2+1|ψq〉‖

=

(
3eq
√
M2ep

k
√
N

)k
+ e3q

√
M2ep
N q‖P2,M2+1|ψq〉‖. (4.44)

Just like in the sequential case, we do a case analysis for q >
√

kN
p

and q ≤
√

kN
p

. If

q >
√

kN
p

, thenM2 <
k
e3
< k to ensure that 3eq

√
M2ep

k
√
N

is smaller than 1. �is implies however

that k > 2e3/2q3/2p√
N

> k3/4(Np)1/4, which results in k > Np and thus q > N
p

. Since this is
impossible, as qp ≤ N we conclude that for 3eq

√
M2ep

k
√
N

our bound is trivial, i.e. 1.
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In the case that q ≤
√

kN
p

we can bound e3q
√
M2ep
N q‖P2,M2+1|ψq〉‖ as

e3q
√
M2ep
N q

(
2e3/2q3/2p

M2

√
N

)M2

≤ e6ek7/8N1/8

N

(
1

2

)M2

≤
(

1

2

)−24k7/8N1/8

O
(

2N
1/8
)(1

2

)M2

≤ O
(

2−k
7/8N1/8

)
, (4.45)

where in the last inequality we have updated M2 = max
{

4e3/2q3/2p√
N

, 26k7/8N1/8
}

. Since we

changed M2, it no longer holds that M2 = 4e3/2q3/2p√
N

, but instead it can be bounded as

√
M2 =

√
max

{
4e3/2q3/2p√

N
, 26k7/8N1/8

}
≤

√
4e3/2q3/2p√

N
+
√

26k7/8N1/8. (4.46)

Also as we’re increasing M2, it still holds that M2ep
N

> M1(ep)2

(2N)2 . By noting that 4e3/2q3/2p√
N

≤
26k7/8N1/8 whenever q ≤ 262/3k7/12N5/12

42/3ep2/3 the �nal bound becomes

‖P3,k|ψq〉‖ ≤

3eq
√

4e3/2q3/2p√
N

ep

k
√
N

+
3e262/3k7/12N5/12
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6e9/4q7/4p

kN3/4
+O

((
k

N

)1/48
))k

+O
(

2−k
7/8N1/8
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. (4.47)

Continuing this inductively one can show that

‖Pr,k|ψq〉‖ ≤

(
γ(r)q(2r−1)/2r−1

p

kN (2r−1−1)/2r−1 +O

((
k

N

)1/(2r−1−1)2r+1
))k

+O
(

2−k
(2r−1)/2rN1/2r

)
, (4.48)

where γ′(r) = 2(2r−2−1)/2r−2
e3(2r−1−1)/2r−1

r!. �is induction step is formally shown in Ap-
pendix E.
Corollary 4.3.2. Any quantum algorithm A making q p-parallel queries to a random oracle

F : {0, 1}m → {0, 1}n �nds k distinct r-collisions, for k ≤
√

N
r
and constant r ≥ 2, with

probability at most(O( q(2r−1)/2r−1
p

kN (2r−1−1)/2r−1

)
+O

((
k

N

)1/(2r−2−1)2r
))k

+ O
(

2−k
(2r−1−1)/2r−1

N1/2r−1
)

+ k

√
r

N

2

. (4.49)
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As a result, any quantum algorithm A needs to make Ω
(

(k/p)2r−1/(2r−1)N (2r−1−1)/(2r−1)
)

queries to �nd k distinct r-collisions with constant probability.

If we substitute k = 1, r = 2 our resulting query complexity is consistent with the tight
result of [JMW17], where they give an query complexity bound of Ω

(
(M/p)2/3

)
under the

assumption that M ≥
√
N .

When comparing the number of total queries needed for constant probabilities in our
sequential result (where the total number of queries is q) to our parallel result (where the
total number of queries is qp), we see that the parallel case needs a factor of p(2r−1−1)/(2r−1)

more queries to obtain constant probability of success.

4.4. Fully parallel queries for iterative relations
Just as discussed in the previous chapter, our bounds are no longer tight when we look at the
fully parallel case. To bound these cases we return to Equation 4.34:

‖Pr,k|ψq〉‖ ≤
q−1∑
i=0

k∑
j=1

r∑
t1,...,tj=1

·

√√√√ N∑
l1,...,lr−1=0

lt1(ep)t1

(t1N)t1
· · ·

ltj(ep)
tj

(tjN)tj
‖P̂1,lr−1 · · · P̂r−1,l1Pr,k−j(I− Pr,k)|ψi〉‖2.

(4.50)

In the case of q = 1, the only value for i will be 0. As a result ‖Pr,k−j|ψi〉‖ = δj,k.
In other words

‖Pr,k|ψq〉‖ ≤
r∑

t1,...,tk=1

√√√√ N∑
l1,...,lr−1=0

lt1(ep)t1

(t1N)t1
· · · ltk(ep)

tk

(tkN)tk
‖P̂1,lr−1 · · · P̂r−1,l1 |ψ0〉‖2. (4.51)

As in the fully parallel case q − 1 = 0, so the only tuples in the database a�er 0 queries are
those of length 0 = r − r. �us lt is 0 for any t 6= r. We conclude

‖Pr,k|ψq〉‖ ≤

(√
N(ep)r

(rN)r

)k

(4.52)

and the more general case

‖Pr,k|ψq〉‖ ≤

(√
|GRr,r|(ep)r

(rN)r

)k

. (4.53)
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Corollary 4.4.1. Any quantum algorithmAmaking a single fully p-parallel query to a random

oracle F : {0, 1}m → {0, 1}n �nds k distinct r-collisions, for k ≤
√

N
r
and constant r ≥ 2,

with probability at most (√N(ep)r

(rN)r

)k

+ k

√
r

N

2

. (4.54)

As a result, any quantum algorithmA needs to make a parallel query of size at leastΩ
(
N r−1/r

)
to �nd k distinct r-collisions with constant probability.

�is is equal to the classical bound [Suz+06].
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5. Applications

5.1. Chain of Values problem
One of the applications of this result is to lower bound the quantum query complexity of the
Chain of Values problem.

De�nition 5.1.1. An r-tuple (x1, y1), ..., (xr, yr) ∈ ({0, 1}m × {0, 1}n)
r satis�es the Chain

of Values relation RrCoV when:

• ∀i ∈ [r − 1] it holds that xi+1 = yi.

We see that reducing this (iterative) relation results in the trivial relation, which indeed
con�rms the known result that the Chain of Values problem is trivial for sequential queries.
Recall from our discussion in Section 3.5 that in the fully parallel case we can no longer apply
all our steps in the reduction process. As a result, RCoV is already maximally reduced in the
fully parallel case a�er rewriting every constraint to the form yi = xi+1.

We are le� with deriving the value |GRrCoV,r
|. For every (r − t)-tuple satisfying Rr−tCoV there

is one unique assignment of values to w1, ..., wt such that it is completed into an r-tuple
satisfying RrCoV. So we conclude that |GRrCoV,r

| = N , resulting in the following corollary:

Corollary 5.1.2. Any quantum algorithmAmaking a single fully p-parallel query to a random

oracleF : {0, 1}n → {0, 1}n �nds k distinct r-tuples satisfyingRrCoV, for k ≤
√

N
r
and constant

r ≥ 2, with probability at most(√N(ep)r

(rN)r

)k

+ k

√
r

N

2

. (5.1)

As a result, any quantum algorithmA needs to make a parallel query of size at leastΩ
(
N r−1/r

)
to �nd k distinct r-tuples satisfying RrCoV with constant probability.

�is result shows that the Chain of Values problem is still hard, even if the adversary has
quantum access to the underlying function.
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5.2. Multiclaw problem
De�nition 5.2.1. An r-tuple (x1, y1), ..., (xr, yr) ∈ ((

⋃r
i=1 {0, 1}

mi)× {0, 1}n)
r satis�es the

Multiclaw relation RrMc when:

• ∀i, j ∈ [r] it holds that xi 6= xj ⇐⇒ i 6= j.

• ∀i ∈ [r] it holds that xi ∈ {0, 1}mi .

• ∃y ∈ {0, 1}n such that ∀i ∈ [r] we have yi = y.

Even though Multiclaw problem is more complex than the Collision problem, by running
our reduction process we see that both relations reduce to the same relation (even in the fully
parallel case), namely

• ∃y ∈ {0, 1}n such that ∀i ∈ [r] we have yi = y.

Corollary 5.2.2. Any quantum algorithm A making q p-parallel queries to random oracles

Fi : {0, 1}mi → {0, 1}n for i ∈ [r] �nds k distinct r-claws, for k ≤
√

N
r
and constant r ≥ 2,

with probability at most(O( q(2r−1)/2r−1
p

kN (2r−1−1)/2r−1

)
+O

((
k

N

)1/(2r−2−1)2r
))k

+O
(

2−k
(2r−1−1)/2r−1

N1/2r−1
)

+ k

√
r

N

2

(5.2)
As a result, any quantum algorithm A needs to make Ω

(
(k/p)2r−1/(2r−1)N (2r−1−1)/(2r−1)

)
queries to �nd k distinct r-claws with constant probability.

If we substitute k = p = 1 our resulting query complexity is matched by the upper bound of
[Hos+18] and thus tight.

Corollary 5.2.3. Any quantum algorithm Amaking a single fully p-parallel query to random

oracles Hi : {0, 1}mi → {0, 1}n for i ∈ [r] �nds k distinct r-claws, for k ≤
√

N
r
and constant

r ≥ 2, with probability at most (√N(ep)r

(rN)r

)k

+ k

√
r

N

2

(5.3)

As a result, any quantum algorithmA needs to make a parallel query of size at leastΩ
(
N r−1/r

)
to �nd k distinct r-claws with constant probability.

We see from these results that in the asymptotic case �nding multiclaws is just as di�cult
as �nding collisions for any quantum adversary.
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6. Conclusion
We have presented a framework which by incorporating the recently developed compressed-
oracle technique and its applications [LZ18; Zha18] allows for an easier analysis of �nding
lower bounds on quantum query complexities. Using this method we have managed to im-
prove upon existing quantum query lower bounds by either extending the range of param-
eters and/or allow parallel queries. Apart from this we have also proven the new result of
hardness of the Chain of values problem in the quantum se�ing.

6.1. Future work
One can only say that a quantum query complexity problem is truly resolved when an al-
gorithm has been found that matches the known lower bound. For many of our parameters
and especially for the parallel case these algorithms have not yet been found. A promis-
ing candidate for an algorithm for iterative relations would be Belovs’ learning-graph tech-
nique[Bel12], as this has been parallelised by [JMW17] giving optimal parallel bounds for
some of our parameters. For non-iterative relations, one could research whether the algo-
rithm by [Hos+18] allows for parallel queries and for generalisation to other problems. Since
in its core this algorithm is a relative simple recursive application of Grover’s algorithm
[Gro96] this might be possible, albeit that this core does wear quite a complex jacket.

Perhaps a li�le more interesting from a theoretical point of view would be to make more
use of the power of the compressed-oracle technique. As shown in [Cza+19] we do not have
to restrict ourselves to uniformly random functions, but we can use the compressed oracle
for any distribution. �is could potentially pave the way to �nding a tight quantum query
complexity bound for the k-distinctness problem (or in our notation r-distinctness), which
is currently one of the main open problems this �eld.

6.2. Summary of lower bound results
Here we summarize our lower bounds on the quantum query lower complexity for an ad-
versary to �nd k distinct r−tuples satisfying some relation Rr with constant probability for
k ≤

√
N
r

, constant r ≥ 1 and parallel query size p.
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Table 6.1.: Lower bounds on the quantum query complexity for the Sum problem and the
Collision problem

Relation Sum Collision

Parallel q ≥ kr Ω
(
k2/(r+1)p−r/(r+1)N1/(r+1)

)
Ω
(

(k/p)2r−1/(2r−1)N (2r−1−1)/(2r−1)
)

Fully parallel Ω
(
N1/r

)
Ω
(
N r−1/r

)

Table 6.2.: Lower bounds on the quantum query complexity for the Chain of Values problem
and the Multiclaw problem

Relation Chain-of-Values Multiclaw

Parallel q ≥ kr 1 Ω
(

(k/p)2r−1/(2r−1)N (2r−1−1)/(2r−1)
)

Fully parallel Ω
(
N r−1/r

)
Ω
(
N r−1/r

)
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Popular summary
Our electronics use various cryptographic systems to keep all of our data safe. Anyone who
tries to get information from our data has to solve some extremely challenging problem to
do so. In our internet security this problem is most o�en �nding prime factors of some large
number. In 1994 however Peter Shor discovered that this prime factor problem is not that
challenging if you have access to a quantum computer. Whereas our regular computers work
with bits, the tiniest possible variables which are either 0 or 1, a quantum computer works
with qubits. Each such qubits can be in a superposition of 0 and 1, which means that it can
be either 0, 1 or even a li�le of both. Using the principles of quantum mechanics, one can de-
sign algorithms that make heavy use of this property of qubits. �ese algorithms sometimes
solve problems that we thought to be almost impossible. To make sure that all of our data
stays secure even a�er the arrival of these quantum computers, cryptoanalysts are trying to
�nd out which problems can be easily solved by a quantum computer and which problems
remain challenging.

In this thesis we study a new technique that helps us to show if a problem is challenging to a
quantum computer or not. In the problems that we sketch, an adversary has to discover some
property of a function. �e new technique works by creating and maintaining a quantum
database that records what the adversary knows about our function. By then analyzing this
database, we can derive what the adversary knows and as a result compute the hardness of
our problem. To get a be�er understanding of this technique, we have also programmed an
algorithm that simulates this quantum database on a classical computer. Since this is very
di�cult to do for a classical computer, we can only simulate a very small database.
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Appendices
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A. Detailed CFO Algorithm
In Algorithm 3 we present the fully-detailed version of Algorithm 1. �is algorithm runs the
following subroutines:

• Locate, Function 4: �is subroutine locates the positions in ∆ where the x-entry
coincides with the x-entry of the query. �e result is represented as q bits, where
qi = 1 ⇐⇒ ∆X

i = x. �is result is then bitwise XOR’d into an auxiliary register L.

• Add, Function 5: �is subroutine adds queried x to the database and takes care of
appropriate padding.

• Upd, Function 6: �is subroutine updates the database by subtracting η a�er a suitable
basis transformation.

• Rem, Function 7: �is subroutine removes (0, 0) entries from the database and puts
them to the back in the form of padding.

• Clean, Function 8: �is subroutine cleans the auxiliary registers se�ing them back to
initial values.

• Larger, Function 9: �is subroutine determines whether one bitstring is larger than a
second bitstrings, as described in [OR07].

In the Add and Rem subroutine the unitary P can be found. P permutes the database such
that a recently removed entry in the database is moved to the end of the database. Conversely
P−1 permutes the database such that an empty entry is created in the database as to ensure
the correct ordering of the x-entries a�er adding the query into this newly created empty
entry:

P|x1, ..., xq〉 ⊗ |y1, ..., yn〉 := |σn ◦ ... ◦ σ1(x1, ..., xq)〉 ⊗ |y1, ..., yn〉 , (A.1)

where σi is applied conditioned on yi = 1 and is de�ned by
σi(x1, ..., xn) := (x1, ..., xi−2, xi−1, xi+1, xi+2, ..., xq, xi).
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Algorithm 3: Detailed CFO

Input : |x, η〉XY |∆〉D
Output: |x, η〉XY |∆′〉D

1 |a〉A = |0 ∈ {0, 1}〉A // initialize auxiliary register A

2 |l〉L = |0q ∈ {0, 1}q〉L // initialize auxiliary register L

3 |l〉L 7→ Locate(|x〉X |∆〉D|l〉L) // locate x in the database

4 if l = 0q then // if not located

5 |a〉A 7→ |a⊕ 1〉A // save result to register A

6 if a = 1 then // if not located

7 |∆〉D|l〉L 7→ Add(|x〉X |∆〉D) // add x-entry to the database

8 |∆Y 〉DY 7→ Upd(|η〉Y |∆Y 〉DY |l〉L) // update register DY

9 |∆〉D|l〉L 7→ Rem(|x〉X |∆〉D|l〉L) // remove a database entry if η = 0

10 |a〉A 7→ Clean(|y〉Y |∆Y 〉DY |l〉L) // uncompute register A

11 |l〉L 7→ Locate(|x〉X |∆〉D|l〉L) // uncompute register L

12 return |x, η〉XY |∆′〉D // ∆′ is the modified database

Function 4: Locate
Input : |x〉X |∆〉D|l〉L
Output: |x〉X |∆〉D|l′〉L

1 Set |a〉A = |0 ∈ {0, 1}m〉A // initialize auxiliary register A

2 for i = 1, ..., q do
3 if ηi 6= 0 then // locate entries in the database

4 |a〉A 7→ |a⊕ (∆X
i ⊕ x)〉A // database entry − query

5 if ai = 0 then // locate matches in the database

6 |li〉Li 7→ |li ⊕ 1〉Li // save the corresponding positions

7 |a〉A 7→ |a⊕ (∆X
i ⊕ x)〉A // uncompute register A

8 return |x〉X |∆〉D|l′〉R // l′ contains the position of x in ∆
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Function 5: Add
Input : |x〉X |∆〉D|l〉L
Output: |x〉X |∆′〉D|l′〉L

1 Set |a〉A = |0q ∈ {0, 1}q〉A // initialize auxiliary register A

2 for i = 1, ..., q do
3 |ai〉Ai 7→ Larger(|∆X

i 〉DXi |x〉X |ai〉Ai) // check if database

// entry > query

4 if ∆Y
i = 0 then // correct for empty entries

5 |ai〉Ai 7→ |ai ⊕ 1〉Ai
6 for j = i+ 1, ..., q do // flip all higher entries

7 |aj〉Aj 7→ |aj ⊕ ai〉Aj // so we’re left with one position

8 |∆〉D 7→ P−1(|∆〉D ⊗ |a〉A) // permute D to create empty entry

// P is defined in (A.1)

9 for i = 1, ..., q do
10 if ai = 1 then // look for this empty entry

11 |∆X
i 〉DXi 7→ |∆

X
i ⊕ x〉DXi // add x-entry to the database

12 |li〉Li 7→ |li ⊕ 1〉Li // update location register

13 if x 6= 0 then // non zero x implies non zero a

14 for i = 1, ..., q do
15 if li = 1 then // if located

16 |ai〉Ai 7→ |ai ⊕ 1〉Ai // uncompute register A

17 return |x〉X |∆′〉D|l′〉L // ∆′ is the modified database

// l′ is modified l

Function 6: Upd
Input : |η〉Y |∆Y 〉DY |l〉L
Output: |η〉Y |∆′Y 〉DY |l〉L

1 for i = 1, ..., q do
2 if li = 1 then // if located

3 |∆Y
i 〉DYi 7→ |∆

Y
i ⊕ η〉DYi // update the Y register of entry

4 return |η〉Y |∆′Y 〉DY |l〉L // ∆′Y is modified Y register of

// the database
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Function 7: Rem
Input : |x〉X |∆〉D|l〉L
Output: |x〉X |∆′〉D|l′〉L

1 Set |a〉A = |0q ∈ {0, 1}q〉A // initialize auxiliary register A

2 Set |b〉B = |0 ∈ {0, 1}〉B // initialize auxiliary register B

3 for i = 1, ..., q do
4 if li = 1 then
5 if ηi = 0 then // if entry is incorrect

6 |∆X
i 〉DXi 7→ |∆

X
i ⊕ x〉DXi // remove the entry

7 |b〉B 7→ |b⊕ 1〉B // save that we have removed an entry

8 if b = 1 then // if we removed an entry

9 for i = 1, ..., q do
10 |ai〉Ai 7→ Larger(|x〉X , |∆X

i 〉DXi , |ai〉Ai) // check if query > database entry

11 if ∆Y
i = 0 then // correct for empty entries

12 |ai〉Ai 7→ |ai ⊕ 1〉Ai
13 for j = i− 1, ..., 1 do // flip all lower entries

14 |aj〉Aj 7→ |aj ⊕ ai〉Aj // so we’re left with only the removed position

15 |li〉Li 7→ |li ⊕ ai〉Li // correct for the removed entry

16 |∆〉D 7→ P (|∆〉D ⊗ |a〉A) // permute D to move the empty entry

17 for i = q, ..., 1 do // uncompute register A

18 for j = q, ..., i+ 1 do // by calculating the first position

19 |aj〉Aj 7→ |aj ⊕ ai〉Aj // such that database entry > query

20 if ∆Y
i 6= 0 then // as in the Add subroutine

21 |ai〉Ai 7→ |ai ⊕ 1〉Ai
22 |ai〉Ai 7→ Larger(|∆X

i 〉DXi , |x〉X , |ai〉Ai)

23 |a〉A 7→ Locate(|x〉X |∆〉D|l〉A)
24 if a 6= 0q then // check if we have removed

25 |b〉B 7→ |b⊕ 1〉B // uncompute register B

26 |a〉A 7→ Locate(|x〉X |∆〉D|l〉A) // uncompute register A

27 return |x〉X |∆′〉D|l′〉L // ∆′ is modified database

// l′ is modified l

71



Function 8: Clean
Input : |η〉Y |∆Y 〉D|l〉L|a〉A
Output: |η〉Y |∆Y 〉D|l〉L|a′〉A

1 Set |b〉B = |0 ∈ {0, 1}n〉B // initialize auxiliary register B

2 for i = 1, ..., q do
3 if li = 1 then
4 |b〉B 7→ |b+ (∆Y

i − η)〉B // database entry − query

5 if b = 0 then // locate matches in the database

6 if η 6= 0 then // if we added

7 |a〉A → |a⊕ 1〉A
8 |b〉B 7→ |b− (∆Y

i − η)〉B // uncompute register B

9 return |η〉Y |∆Y 〉D|l〉L|a′〉A // a′ is modified register A

Function 9: Larger
Input : |u〉U , |v〉V , |r〉R
Output: |u〉U , |v〉V , |r′〉R

1 Set |a〉A = |03t−1 ∈ {0, 1}3t−1〉A // initialize auxiliary register A

2 for i = 1, .., t− 1 do // t denotes length of bit strings u, v

3 |a3i−2〉A3i−2
7→ |a3i−2 ⊕ ui(1− vi)〉A3i−2

// save if ui > vi

4 |a3i−1〉A3i−1
7→ |a3i−1 ⊕ vi(1− ui)〉A3i−1

// save if vi > ui

5 |a3i〉A3i
7→ |a3i ⊕ (1− a3i)(1− a3i)〉A3i

// save if they’re equal

6 |a3t−2〉A3t−2
7→ |a3t−2 ⊕ ut(1− vt)〉A3t−2

// save if ut > vt

7 |a3t−1〉A3t−1
7→ |a3t−1 ⊕ vt(1− ut)〉A3t−1

// save if vt > ut

8 for i = t− 1, .., 1 do // the first bit difference is dominant

9 |a3i−2〉A3i−2
7→ |a3i−2 ⊕ (1− a3i)(1− a3i+1)〉A3i−2

10 |a3i−1〉A3i−1
7→ |a3i−1 ⊕ (1− a3i)(1− a3i+2)〉A3i−1

// however if equal, then next bit becomes dominant

11 |r〉R 7→ |z ⊕ a1〉 // a1 = 1 if u > v

12 for i = 1, .., t− 1 do // uncompute register A by repeating above

13 |a3i−1〉A3i−1
7→ |a3i−1 ⊕ (1− a3i)(1− a3i+2)〉A3i−1

// calculation in

14 |a3i−2〉A3i−2
7→ |a3i−2 ⊕ (1− a3i)(1− a3i+1)〉A3i−2

// reverse order

15 |a3t−1〉A3t−1
7→ |a3t−1 ⊕ vt(1− ut)〉A3t−1

16 |a3t−2〉A3t−2
7→ |a3t−2 ⊕ ut(1− vt)〉A3t−2

17 for i = t− 1, .., 1 do
18 |a3i〉A3i

7→ |a3i ⊕ (1− a3i)(1− a3i)〉A3i

19 |a3i−1〉A3i−1
7→ |a3i−1 ⊕ vi(1− ui)〉A3i−1

20 |a3i−2〉A3i−2
7→ |a3i−2 ⊕ ui(1− vi)〉A3i−2

21 return |r′〉R // r′ is modified r
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B. Explicit construction of Pr,k
In this appendix we give an explicit construction of the projector Pr,k for RrCol, but the same
approach works for any relation. For i1,1, ..., ik,r ∈ [q] and y1, ..., yk ∈ {0, 1}n de�ne

Pi1,1,...,ik,r,y1,...,yk = |y1〉〈y1|DYi1,1 ⊗ · · · ⊗ |yk〉〈yk|DYk,r , (B.1)

which projects onto the database satisfying DY
i1,1

= · · · = DY
i1,r

= y1, … ,
DY
ik,1

= · · · = DY
ik,r

= yk. �is gives a speci�c instance of the database containing k distinct
r−tuples satisfying RrCol, but by varying over i1,1, ..., ik,r, y1, ..., yk we include every possible
case. Let

{
Pi1,1,...,ik,r,y1,...,yk

}
be the set of all these projectors and denote its cardinality by

|P |. We can refer to the elements in
{
Pi1,1,...,ik,r,y1,...,yk

}
by P1, ..., P|P | (the ordering does not

ma�er) to create Pr,k by the following Gram-Schmidt-like process:

Pr,k = P1 + P2(I− P1) + · · ·+ P|P |(I− P|P |−1) · · · (I− P1). (B.2)

As every term in the sum P1 + P2(I− P1) + · · ·+ P|P |(I− P|P |−1) · · · (I− P1) is orthogonal
to each previous term, we see that

P 2
r,k =

(
P1 + P2(I− P1) + · · ·+ P|P |(I− P|P |−1) · · · (I− P1)

)2

= P 2
1 + (P2(I− P1))2 + · · ·+ (P|P |(I− P|P |−1) · · · (I− P1))2

= P1 + P2(I− P1) + · · ·+ P|P |(I− P|P |−1) · · · (I− P1)

= Pr,k. (B.3)

To proof correctness of this construction there remains to show that
span

{
P1, ..., P|P |(I− P|P |−1) · · · (I− P1)

}
= span

{
P1, ..., P|P |

}
. We do this by induction on

|P |. Since the claim is trivial for |P | = 1, let us assume that
span

{
P1, ..., P|P |−1(I− P|P |−2) · · · (I− P1)

}
= span

{
P1, ..., P|P |−1

}
and choose

x ∈ span
{
P1, ..., P|P |(I− P|P |−1) · · · (I− P1)

}
.

x ∈ span
{
P1, ..., , P|P |(I− P|P |−1) · · · (I− P1)

}
⇐⇒ x ∈ span

{
P1, ..., P|P |−1(I− P|P |−2) · · · (I− P1)

}
∨ x ∈ span

{
P|P |(I− P|P |−1) · · · (I− P1)

}
⇐⇒ x ∈ span

{
P1, ..., P|P |−1

}
∨ x ∈ span

{
P|P |(I− P|P |−1) · · · (I− P1)

}
⇐⇒ x ∈ span

{
P1, ..., P|P |−1

}
∨ x ∈ span

{
P|P |

}
⇐⇒ x ∈ span

{
P1, ..., P|P |

}
. (B.4)
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C. Proof of Lemma 3.4.2
Lemma 3.4.2. Let the series aq,n, bq,n be de�ned as follows:

• aq,0 := q,

• bq,0 := q,

• aq,n :=
∑n

i=1

∑q−1
j=0 c

iaj,n−i,

• bq,n :=
∑n

i=1

∑q−1
j=0 (cibj,n−i + d),

for constants c, d. �en ∀n ≥ 1 it holds that

aq,n =
qn

n!
2n−1cn,

bq,n = aq,n +
n−1∑
i=0

(n− i)aq,id. (C.1)

Proof. �e lemma clearly holds for n = 1. Assume both statements hold up to n− 1. For the
�rst series we simply have

aq,n =
n∑
i=1

q−1∑
j=0

ciaj,n−i

=
qn

n!
cn +

n−1∑
i=1

q−1∑
j=0

jn

n!
ci2n−i−1cn−i

=
qn

n!
cn

(
1 +

n−2∑
i=0

2i

)
=
qn

n!
2n−1cn. (C.2)

For the second series, we start with

bq,n =
n∑
i=1

q−1∑
j=0

(
cibj,n−i + d

)
=
qn

n!
cn +

qn

n!
nd+

n−1∑
i=1

q−1∑
j=0

cibj,n−i

=
qn

n!
cn +

qn

n!
nd+

n−1∑
i=1

q−1∑
j=0

(
aj,n−i +

n−i−1∑
k=0

(n− i− k)aj,kd

)
. (C.3)
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By noting that qn

n!
cn +

∑n−1
i=1

∑q−1
j=0 c

iaj,n−i =
∑n

i=1

∑q−1
j=0 c

iaj,n−i = aq,n we �nd

qn

n!
cn +

qn

n!
nd+

n−1∑
i=1

q−1∑
j=0

ci

(
aj,n−i +

n−i−1∑
k=0

(n− i− k)aj,kd

)

= aq,n +
qn

n!
nd+

n−1∑
i=1

q−1∑
j=0

n−i−1∑
k=0

(n− i− k)ciaj,kd

= aq,n +
qn

n!
nd+

n−1∑
i=1

qn

n!
(n− i)cid+

n−1∑
i=1

n−i−1∑
k=1

qn

n!
(n− i− k)2n−1cnd

= aq,n +
qn

n!
nd+

n−1∑
l=1

qn

n!
(n− l)cld+

n−1∑
i=1

n−1∑
l=i+1

qn

n!
(n− l)2l−i−1cld, (C.4)

where in the second equality we have used that for n ≥ 1 we just proved that aq,n =
qn

n!
2n−1cn.

aq,n +
qn

n!

(
nd+

n−1∑
l=1

(n− l)cld+
n−1∑
i=1

n−1∑
l=i+1

(n− l)2l−i−1cld

)

= aq,n +
qn

n!

(
nd+

n−1∑
l=1

(n− l)cld

(
1 +

n−1∑
i=1

2l−i−1

))

= aq,n +
qn

n!

(
nd+

n−1∑
l=1

(n− l)cld

(
1 +

l−2∑
i=0

2i

))

= aq,n +
qn

n!

(
nd+

n−1∑
l=1

(n− l)2l−1cld

)

= aq,n +
n−1∑
l=0

(n− l)aq,ld. (C.5)
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D. �e r = 4 case for �eorem 4.1.1
Inserting our bound for ‖P3,k|ψq〉‖ into Equation 4.12 yields

‖P4,k|ψq〉‖ ≤
(
eq
√
M3

k
√
N

)k
+ eq

√
M3
N q

((√
2e3/2q7/4

M3N3/4

+ O

((
M3

N

)1/48
))M3

+O
(

2−k
7/8N1/8

) . (D.1)

Once again we need
√

2e3/2q7/4

N3/4 < M2 <
kN

(eq)2 for both
(
eq
√
M3

k
√
N

)k
and

√
2e3/2q7/4

M3N3/4 +O
((

M3

N

)1/48
)

to be smaller than 1. In the case of q >
√
kN this results in k >

√
2e3/2q7/4

N3/4 > k7/8N1/8 and
thus k > N . As this implies q > N , we conclude that in this case the bound becomes trivial,
i.e. 1.

We choose M3 = (2e)3/2q7/4

N3/4 , where we can bound q
√

M3

N
≤ 2ek15/16N1/16 in the case of

q ≤
√
kN .

eq
√
M3
N q

(√2e3/2q7/4

M3N3/4
+O

((
M3

N

)1/48
))M3

+O
(

2−k
7/8N1/8

)
≤ e2ek15/16N1/16

N

(1

2
+O

((
M3

N

)1/48
))M3

+O
(

2−k
7/8N1/8

)
≤
(

1

2

)−8k15/16N1/16

O
(

2N
1/16
)(
O
(

1

2

)M3

+O
(

2−k
7/8N1/8

))
, (D.2)

where in the last inequality we used that M3 < k ≤ N . Again we update
M3 = max

{
(2e)3/2q7/4

N3/4 , 10k15/16N1/16
}

such that we obtain(
1

2

)−8k15/16N1/16

O
(

2N
1/16
)(
O
(

1

2

)M3

+O
(

2−k
7/8N1/8

))

≤
(

1

2

)−8k15/16N1/16

O
(

2N
1/16
)(
O
(

1

2

)10k15/16N1/16

+O
(

2−k
7/8N1/8

))
≤ O

(
2−k

15/16N1/16
)
. (D.3)
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Like before, by noting that (2e)3/2q7/4

N3/4 ≤ 10N15/16N1/16 implies q ≤ 104/7k15/28N13/28

(2e)6/7 , the �nal
bound becomes

‖P4,k|ψq〉‖ ≤

eq
√

(2e)3/2q7/4

N3/4

k
√
N

+
e104/7k15/28N13/28

(2e)6/7

√
10k15/16N1/16

k
√
N

k

+O
(

2−k
15/16N1/16

)

≤

(
23/4e7/4q15/8

kN7/8
+O

((
k

N

)1/224
))k

+O
(

2−k
15/16N1/16

)
(D.4)

and it still holds that

q

√
M3

N
≤ 1015/14k225/224

(2e)6/7N1/224

≤ 1015/14k15/16N1/16

(2e)6/7

≤ 2ek15/16N1/16. (D.5)
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E. �e inductive step for �eorem 4.3.1
�eorem 4.3.1. Let Pr,k be the projector which projects onto the database containing at least
k distinct r-tuples satisfying RrCol, as de�ned in De�nition 3.1.1. Also de�ne
γ′(r) = 2(2r−2−1)/2r−2

e3(2r−1−1)/2r−1
r!. �en for anyMr−1 ≤ N , k ≤ N , constant r ≥ 2 and

parallel query size p it holds that

‖Pr,k|ψq〉‖ ≤

(
γ′(r)q(2r−1)/2r−1

p

kN (2r−1−1)/2r−1 +O

((
k

N

)1/(2r−1−1)2r+1
))k

+O
(

2−k
(2r−1)/2rN1/2r

)
. (E.1)

Assume the theorem holds for up to r. �en by Equation 4.34 we know that

‖Pr+1,k|ψq〉‖

≤
q−1∑
i=0

k∑
j=1

r+1∑
t1,...,tj=1

(
N∑

l1,...,lr=0

lr−t1(ep)t1

(t1N)t1
· · ·

r − ltj(ep)tj
(tjN)tj

· ‖P̂1,l1 · · · P̂r,lrPr+1,k−j(I− Pr+1,k)|ψi〉‖2

1/2

≤
q−1∑
i=0

k∑
j=1

j∑
#(t=1)=0

· · ·
j−···−#(t=r−1)∑

#(t=r)=0

(
j

#(t = 1)

)
· · ·
(
j − · · · −#(t = r − 1)

#(t = r)

)

·

(
N∑

l1,...,lr=0

(
lrep

N

)#(t=1)

· · ·
(

N(ep)r+1

((r + 1)N)r+1

)j−···−#(t=r−1)

· ‖P̂1,l1 · · · P̂r,lrPr+1,k−j(I− Pr+1,k)|ψi〉‖2

1/2

. (E.2)
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By applying the same trick as in Equation 4.38 a�er introducing M1, ...,Mr we �nd

‖Pr+1,k|ψq〉‖

≤
q−1∑
i=0

k∑
j=1

j∑
#(t=1)=0

· · ·
j−···−#(t=r−1)∑

#(t=r)=0

(
j

#(t = 1)

)
· · ·
(
j − · · · −#(t = r − 1)

#(t = r)

)

·

(
N∑

l1,...,lr=0

(
lrep

N

)#(t=1)

· · ·
(

N(ep)r+1

((r + 1)N)r+1

)j−···−#(t=r−1)

· ‖P̂1,l1 · · · P̂r,lrPr+1,k−j(I− Pr+1,k)|ψi〉‖2

1/2

≤
q−1∑
i=0

k∑
j=1

 j∑
#(t=1)=0

· · ·
j−···−#(t=r−1)∑

#(t=r)=0

(
j

#(t = 1)

)
· · ·
(
j − · · · −#(t = r − 1)

#(t = r)

)

·

((
Mrep

N

)#(t=1)

· · ·
(

Mr(ep)
r−1

((r − 1)N)r−1

)#(t=r−1)(
N(ep)r

(rN)r

)j−···−#(t=r−1)

· ‖Pr,k−j(I− Pr,k)|ψi〉‖2

)1/2

+ ‖Pr−1,Mr−1+1|ψi〉‖+ · · ·+ ‖P1,M1+1|ψi〉‖

 . (E.3)

As before we have to set M1 = qp and based on our bounds of ‖Pr,k|ψq〉‖ for r = 2, ..., r

we choose Mr = max
{

2γ′(r) q(2r−1)/2r−1

N(2r−1−1)/2r−1 , (4r! + 2)k(2r+1−1)/2r+1
N1/2r+1

}
. For all the re-

spective le� and right values in this maximum it holds that Mrep
N

> · · · > N(ep)r+1

((r+1)N)r+1

and thus the inequalities also hold for the maximum of both values. By bounding (4r! +

2) ≤ 5r! we see that 2γ′(r) q(2r−1)/2r−1

N(2r−1−1)/2r−1 ≤ (4r! + 2)k(2r+1−1)/2r+1
N1/2r+1 implies q ≤

52r−1/(2r−1)ek(2(2r−1)+1)/4(2r−1)N(2(2r−1)−1)/4(2r−1)

(2)(2r−2)/(2r−1)p2r−1/(2r−1)
.

79



As such we can simplify

q−1∑
i=0

k∑
j=1

 j∑
#(t=1)=0

· · ·
j−···−#(t=r−1)∑

#(t=r)=0

(
j

#(t = 1)

)
· · ·
(
j − · · · −#(t = r − 1)

#(t = r)

)

·

((
Mrep

N

)#(t=1)

· · ·
(

Mr(ep)
r−1

((r − 1)N)r−1

)#(t=r−1)(
N(ep)r

(rN)r

)j−···−#(t=r−1)

· ‖Pr,k−j(I− Pr,k)|ψi〉‖2

)1/2

+ ‖Pr−1,Mr−1+1|ψi〉‖+ · · ·+ ‖P1,M1+1|ψi〉‖


≤

q−1∑
i=0

k∑
j=1

 j∑
#(t=1)=0

· · ·
j−···−#(t=r−1)∑

#(t=r)=0

(
j

#(t = 1)

)
· · ·
(
j − · · · −#(t = r − 1)

#(t = r)

)

·

√(
Mrep

N

)j
‖Pr,k−j(I− Pr,k)|ψi〉‖+ ‖Pr−1,Mr−1+1|ψi〉‖+ · · ·+ ‖P2,M2+1|ψi〉‖


=

q−1∑
i=0

k∑
j=1

(r + 1)j

√(
Mrep

N

)j
‖Pr,k−j(I− Pr,k)|ψi〉‖

+ ‖Pr−1,Mr−1+1|ψi〉‖+ · · ·+ ‖P2,M2+1|ψi〉‖


≤

q−1∑
i=0

k∑
j=1

(r + 1)j

√(
Mrep

N

)j
‖Pr,k−j(I− Pr,k)|ψi〉‖

+ ‖Pr−1,Mr−1+1|ψq〉‖+ · · ·+ ‖P2,M2+1|ψq〉‖

 . (E.4)
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By using Lemma 3.4.2 we arrive at

q−1∑
i=0

k∑
j=1

(r + 1)j

√(
Mrep

N

)j
‖Pr,k−j(I− Pr,k)|ψi〉‖

+ ‖Pr−1,Mr−1+1|ψq〉‖+ · · ·+ ‖P2,M2+1|ψq〉‖


=
qk

k!

(
(r + 1)

√
Mrep√

N

)k
+

k∑
j=1

qj

j!

(
(r + 1)

√
Mrep√

N

)j−1

(‖Pr,Mr+1|ψq〉‖+ · · ·+ ‖P2,M2+1|ψq〉‖)

≤
(

(r + 1)eq
√
Mrep

k
√
N

)k
+

k∑
j=1

qj

j!

(
(r + 1)

√
Mrep√

N

)j−1

(‖Pr,Mr+1|ψq〉‖+ · · ·+ ‖P2,M2+1|ψq〉‖)

≤
(

(r + 1)eq
√
Mrep

k
√
N

)k
+ e(r+1)q

√
Mrep
N q (‖Pr,Mr+1|ψq〉‖+ · · ·+ ‖P2,M2+1|ψq〉‖) . (E.5)

For this bound to be non-trivial in the case of q >
√

kN
p

, we need γ′(r) q(2r−1)/2r−1

N(2r−1−1)/2r−1 < Mr <

k
e2
< k, which results in k > k(2r−1)/2r(Np)1/2r−1 which implies k > Np and thus results

q > N
p

. As this contradicts the fact that qp ≤ N we arrive at a trivial bound, i.e. 1.
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In the case that q ≤
√

kN
p

we can bound the second term as

e(r+1)q
√

Mrep
N q

(γ′(r)q(2r−1)/2r−1
p

MrN (2r−1−1)/2r−1 +O

((
Mr

N

)1/(2r−1−1)2r+1
))Mr

+ · · ·+O
(

2−k
(2r−1)/2rN1/2r

)
≤ e(r+1)!ek(2r+1−1)/2r+1

N1/2r+1

N


1

2

+ O

((
k

N

)(2r+1−1)/22(r+1)(2r−1−1)
))(4(r+1)!+2)k(2r+1−1)/2r+1

N1/2r+1

+ · · ·+
(

1

2

)26k7/8N1/8
)

≤ O
(

1

2

)−4(r+1)!ek(2r+1−1)/2r+1

O
(

2N
1/2r+1

)
O
(

1

2

)(4(r+1)!+2)k(2r+1−1)/2r+1
N1/2r+1

≤ O
(

2−k
(2r+1−1)/2r+1

N1/2r+1
)
. (E.6)

Combining our results yields

‖Pr+1,k|ψq〉‖

≤

eq
√

2γ′(r) q(2r−1)/2r−1

N(2r−1−1)/2r−1 ep

k
√
N

+
e52r−1/(2r−1)ek(2(2r−1)+1)/4(2r−1)N(2(2r−1)−1)/4(2r−1)

(2)(2r−2)/(2r−1)p2r−1/(2r−1)

√
(4r! + 2)k(2r+1−1)/2r+1N1/2r+1ep

k
√
N

k

+O
(

2−k
(2r+1−1)/2r+1

N1/2r+1
)

≤

(
γ′(r + 1)q(2r+1−1)/2rp

kN (2r−1)/2r
+O

((
k

N

)1/(2r−1)2r+2
))k

+O
(

2−k
(2r+1−1)/2r+1

N1/2r+1
)
,

(E.7)

which concludes the induction.
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