
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Analysis of a multi-server queueing model of ABR

R. Nunez Queija and O.J. Boxma

Department of Operations Reasearch, Statistics, and System Theory

BS-R9613 1996



Report BS-R9613
ISSN 0924-0659

CWI
P.O. Box 94079
1090 GB  Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB  Amsterdam (NL)

Kruislaan 413, 1098 SJ  Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199



Analysis of a Multi-Server Queueing Model of

ABR

Rudesindo N�u~nez Queija1 and Onno J. Boxma

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands;

Abstract

In this paper we present a queueing model for the performance analysis of ABR

tra�c in ATM networks. We consider a multi-channel service station with two

types of customers, the �rst having preemptive priority over the second. The ar-
rivals occur according to two independent Poisson processes and the service times

are assumed to be exponentially distributed. Each type-1 customer requires a single

server, whereas type-2 customers are served in processor sharing fashion. We give

a complete characterization of the joint distribution of the numbers of customers

(of both types) in the system in steady state. Numerical results illustrate the ef-

fect of the high priority tra�c on the service performance of the low priority tra�c.

AMS Subject Classi�cation (1991): 60K25, 68M20, 90B12, 90B22.

Keywords & Phrases: Asynchronous Transfer Mode, Available Bit Rate, multi-

server queue, priorities, processor sharing.

1 Introduction

The diverse characteristics and service requirements of the di�erent tra�c types that are
to be carried by ATM (Asynchronous Transfer Mode) networks have led to the de�nition
of di�erent categories of service that should be o�ered to the users of such a network. We
brie
y discuss these di�erences, distinguishing three large categories: Constant Bit Rate
(CBR) tra�c, Variable Bit Rate (VBR) tra�c and Available Bit Rate (ABR) tra�c.
CBR tra�c requires very small (or no) delays and very small (or no) loss. Therefore
CBR tra�c is o�ered a �xed pre-determined transmission capacity. In all further con-
siderations we will leave out the CBR tra�c and use the term 'capacity' to indicate the
total capacity minus the capacity reserved for CBR tra�c.
For VBR tra�c we make a subdivision into real-time and non real-time connections. For

1corresponding author: tel. +31 20 5924168, fax +31 20 5924199, email sindo@cwi.nl
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both these subclasses the users must specify many characterizing parameters such as
minimum cell rate, mean cell rate, peak cell rate and maximum burst size. The di�er-
ence lies in the requirements. The main issue for real-time connections such as voice and
possibly video, is the delay of the transmission; the loss of small amounts of information
during the transmission is less important for these connections. This tra�c lends itself
very well for multiplexing. On the other hand non real-time VBR tra�c requires small
losses and the delays are less important. To ensure that losses are small, large bu�ers
are used to store non real-time VBR tra�c when the communication network is heavily
loaded.
The last category, ABR tra�c, was introduced to cope with the speci�c problems that
arise when transmitting data. For this tra�c, losses lead to retransmission of the data
(because of the extreme sensitivity to losses), which introduces a lot of overhead in imple-
mentations. Since transmission delays are of less importance for data tra�c, the setting
of non real-time VBR seems to be the appropriate one to carry data tra�c. However,
data tra�c is very bursty and the required parameters for VBR connections are di�cult
to specify by the users. For ABR connections no parameters need to be speci�ed. ABR
tra�c is stored in very large bu�ers and only the transmission capacity that is not cur-
rently being required by VBR (and CBR) tra�c is used for ABR tra�c. This has the
advantage that ABR tra�c gets all the capacity that is left over. For the server this
is also convenient: with ABR tra�c the resources can be optimally used. As pointed
out above the main service guarantee for ABR tra�c is a very small loss fraction or, in
principle, no loss at all. No guarantee can be given on the transmission delays.
A feature of ABR is that the available capacity should be shared fairly among all ABR
users. In queueing models it seems reasonable to incorporate this feature with the queue
discipline of processor sharing. In this discipline all 'customers' receive an equal share of
the service capacity.
In addition to the large storage bu�ers, some feedback control mechanism can be used to
keep the loss of information small. The bu�ers can store incoming data that can not be
transmitted immediately, due to a temporarily overloaded system. The feedback control
can be used to slow down the data sources when the bu�ers are heavily loaded and an
over
ow may occur. We refer to [1] and [2] for more detailed speci�cations of ABR.
Since the conceptual introduction of ABR, many papers on the subject have been pub-
lished. Most studies so far emphasize the modelling and (feedback) control aspects, see
for instance [9] and [14]. In [15] Ritter investigates the problem of dimensioning the
bu�er for ABR tra�c in order to avoid large losses. In [16] Ritter considers the case
with delayed feedback control, under the assumption that the source of ABR tra�c is
saturated, i.e. it sends continuously at the allowed rate.
A drawback in most studies is the assumption of a �xed available capacity for the trans-
mission of ABR tra�c. As it was pointed out above, one of the essential features of ABR
is that it makes use of the capacity that is left over by VBR tra�c. Therefore there is a
need for a detailed performance analysis of ABR in the presence of other tra�c. In the
present paper our goal is to devise and analyse a model that captures the in
uence of
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real-time VBR tra�c on ABR tra�c. We compare the performance of the ABR tra�c in
our model under variable available capacity with the performance in an equivalent model
with �xed available capacity.
Our model basically is a multi-server queue with two types of customers: The high pri-
ority customers (real-time VBR tra�c) and low priority customers (ABR tra�c). In a
slight exaggeration of the features of real-time VBR tra�c and ABR tra�c, we assume
that the high priority customers have no waiting room and each accepted customer is
served by a single server; the low priority customers have an in�nite waiting room (bu�er)
and equally share the remaining capacity according to the processor sharing principle.
A newly arriving high priority customer is only rejected if the entire capacity is used
by other high priority customers, otherwise he is accepted and one server (that is not
currently serving another high priority customer) immediately starts serving this cus-
tomer. Thus the high priority customers have preemptive priority over the low priority
customers.
We point out that this is a burst-level model. In our analysis we will assume that the ar-
rivals occur according to two independent Poisson processes. This assumption is justi�ed
in the case that many sources are connected to the communication network. Although
we present the model in the context of (future) ABR tra�c, it can just as easily be seen
in the context of existing situations, where real-time VBR has priority over non real-time
VBR. Also the processor sharing among the ABR sources is interesting in the light of
per VC (Virtual Connection) queueing, where sources do not queue behind one another,
but each gets a separate access to the server (parallel to one another). The feature of
processor sharing can further be generalized to weighted fair queueing (generalized pro-
cessor sharing), where the total capacity is divided between the active sources according
to some weight factors.
Variants of our model with a �nite waiting room for the high priority customers and/or
FCFS (First Come First Served) service discipline for the low priority customers can be
analyzed in a similar manner. Also the feedback feature of ABR can be captured in a
slight modi�cation. See Section 7.
In [5], Gail et al. study a similar model. They allow an in�nite waiting space for the high
priority customers, and each of the two queues is served according to the FCFS queue
discipline. The non-preemptive variant of that model was studied by the same authors in
[4]. A discrete-time variant modelled as an M=G=1-type Markov Chain is considered in
[3]. A more extensive treatment of the spectral analysis of M=G=1-type Markov Chains
is given in [6].
In our analysis we are inspired by [5], but we make use of methods from other approaches.
Instead of transforming the distributions involved into generating functions, the present
work focuses directly on the distribution itself. It does so relying mainly on the matrix
geometric approach of M.F. Neuts (see [12]) and the spectral expansion approach (see
for instance [10] and [11]).

The paper is organized as follows. In Section 2 we give a full description of the model to be

3



analyzed. In Section 3 we mention some relevant results of the theory of matrix-geometric
solutions for the steady-state analysis of GI=M=1-type Markov Chains developed by M.F.
Neuts in [12]. In Section 4 we use this as a starting point of our analysis. In Section 5
we give a complete characterization of the joint distribution of the numbers of customers
of both types in the system in steady state. In Section 6 numerical results are presented
that illustrate the e�ect of the high priority tra�c on the service performance of the low
priority tra�c. Section 7 mentions some model variants and extensions.

2 The model

Consider a service station consisting of N identical servers. High priority customers
arrive to the station according to a Poisson process with rate �H . If all the servers are
occupied by other high priority customers, then the newly arrived high priority customer
is rejected and leaves the system without receiving service. If there are less then N
other high priority customers currently being served, then a new high priority customer
is immediately taken into service. The service times of the high priority customers are
assumed to be exponentially distributed with mean 1=�H and independent of everything
else.
Low priority customers arrive according to a Poisson process with rate �L, independently
of the high priority customers. Their service requirement is assumed to be exponentially
distributed with mean 1=�L, independent of everything else. Furthermore they are served
according to the processor sharing discipline by the servers that are not occupied by a
high priority customer. Thus if there are i high priority and j � 1 low priority customers
present, then each of the low priority customers receives service at rate N�i

j
�L (the servers

work at unit rate).
We will further use the notation �H := �H=�H and �L := �L=�L. We are interested in
the steady-state behaviour of the numbers of customers in the system of both types.
Let XH(t) (XL(t)) be the number of high priority (low priority) customers present in
the system at time t. Then the process (XH(t), XL(t)) is an irreducible and aperiodic
Markovian process. Moreover we note that the high priority customers are not in
uenced
by the low priority customers and therefore follow an M=M=N=N -queue, i.e. for i =
0; 1; : : : ; N :

PfXH = ig := lim
t!1

PfXH(t) = ig = (�H)
i=i!PN

m=0(�H)
m=m!

: (1)

The process (XH(t), XL(t)) is ergodic if and only if the following intuitive condition
holds:

E[XH ] + �L < N: (2)

We come back to this at the end of this section.
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We de�ne the equilibrium probabilities

�ij := PfXH = i; XL = jg := lim
t!1

PfXH(t) = i; XL(t) = jg; (3)

and partition them into vectors �j := (�0j; �1j; : : : ; �Nj) of length N +1. Note that �j is
associated with the states in which j low priority customers are present. This partition
enables us to write the equilibrium vector as � = (�0; �1; �2; : : :). The corresponding
in�nitesimal generator is given by:

Q =

2
66664

Q00 T (+) 0 : : :
T (�) T (0) T (+) 0 : : :
0 T (�) T (0) T (+) 0 : : :
...

. . . . . . . . . . . . . . .

3
77775 : (4)

The matrices T (+), T (�) and the o�-diagonal elements of T (0) are respectively asso-
ciated with an arriving low priority customer, a departing low priority customer and a
change in the number of high priority customers. The diagonal entries of T (0) and Q00

are such that each row of Q sums up to zero. The o�-diagonal elements of the matrix Q00

relate to a change in the number of high priority customers when there are no low priority
customers. Note that Q00 and T (0) are equal in their o�-diagonal entries, since the high
priority customers `do not see' the low priority customers. It is not di�cult to see that
T (+) = �LI, where I is the (N + 1)-dimensional identity matrix; T (�) is the diagonal
matrix T (�) =diag[N�L; (N � 1)�L; : : : ; �L; 0] and T (0) is a tri-diagonal matrix with the

elements T
(0)
(i;i+1) = �H , T

(0)
(i;i) = ��H � i�H � �L � (N � i)�L, T

(0)
(i+1;i) = (i + 1)�H, for all

i = 0; : : : ; N � 1, and T
(0)
(N;N) = �N�H � �L (since all arriving high priority customers

are rejected when there are already N high priority customers in the system). Finally,
note that Q00 = T (0) + T (�).

In [12] M.F. Neuts has given an extensive treatment of the so-called GI=M=1 type of
Markov Chains, of which our present model is a special case. The general ergodicity
condition given in Theorem 1.7.1. on p. 32 of [12] states that (i) if the matrix R is the
minimal nonnegative solution to the equation

T (+) +RT (0) +R2T (�) = 0; (5)

then all eigenvalues of R should lie inside the complex unit disc, and (ii) Q00 + RT (�)

should have a positive vector in its left null space. The same theorem also gives us that the
�rst statement is equivalent with (2). As for the second statement, it is not di�cult to see
that if the �rst statement holds then Q00+RT (�) is a generator, and considering Q00 we
see that it is an irreducible generator. Therefore the second requirement is immediately
satis�ed. We will not go further into the details of this, but refer the interested reader
to [12].
In the sequel we assume that (2) holds.
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3 Preliminaries

From the �nal results in Section 2 it is clear that the unique probability vector � =
(�0; �1; �2; : : :) satisfying �Q = 0 has the matrix-geometric form

�j+1 = �jR; (6)

where the matrix R is the minimal nonnegative solution to (5). The relation (6) can also
be argued using basic results on irreducible Markov Chains.
In our analysis we shall use a di�erent but highly related representation based on the
spectral expansion approach, see e.g. [10] and [11]. The essence of this approach is that
we can rewrite (6) to the `spectral expansion' form

�j =
NX
k=0

�k (rk)
j vk; (7)

whenever the matrix R has N +1 di�erent eigenvalues r0; : : : ; rN with corresponding left
eigenvectors v0; : : : ; vN ; i.e. vkR = rkvk, k = 0; 1; : : : ; N . The coe�cients �k are to be
chosen such that the `ground level' equations

�0Q00 + �1T
(�) = 0; (8)

are satis�ed. We come back to this in Section 5.
Even if the matrix R has multiple eigenvalues, (7) still holds, as long as the set of all
eigenvectors spans the (N + 1)-dimensional Euclidean space. When this is not the case
(the matrix R is defective), the coe�cients �k become functions �k(j) which are polyno-
mials in j and follow from the Jordan canonical form of R (see for instance [7]).

In order for � = (�0; �1; : : :) to be the equilibrium distribution, xj = �j must be a
solution of

xjT
(+) + xj+1T

(0) + xj+2T
(�) = 0; (9)

for all j = 0; 1; : : :.
It follows from (5) that for any vector x0 the sequence xj = x0R

j satis�es (9).

We now de�ne the quadratic matrix polynomial T (z) by

T (z) := T (+) + zT (0) + z2T (�): (10)

Note that if v is an eigenvector of the matrix R corresponding to the eigenvalue r, then
v is in the left null-space of the matrix T (r), and so det[T (r)]=0. It follows immediately
that R is nonsingular, since T (0) = T (+) = �LI is nonsingular. Therefore we may write

T (z) = (R� zI)
�
R�1T (+) � zT (�)

�
; (11)
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again using (5). This is a very useful factorization, since det[R � zI] is precisely the
characteristic polynomial of R (which has degree N + 1), and det[R�1T (+) � zT (�)] is
also a polynomial in z (of degree N). In Section 4 we show that the zeros of det[T (z)] -a
polynomial of degree 2N +1- inside the unit circle coincide with the zeros of det[R� zI]
(i.e. the eigenvalues of R), and that all the zeros of det[R�1T (+) � zT (�)] lie outside the
unit circle, except for the zero z = 1 on the unit circle.

4 Spectral analysis

In this section we investigate the eigenvalues ofR. In the ergodic case all these eigenvalues
lie inside the complex unit disc (see [12]). We shall show that there are N + 1 of them,
and that they are all real. Starting-point of the analysis is (11). We investigate the zeros
of det[T (z)], showing that there are 2N + 1 zeros: N + 1 zeros in (0; 1), one at 1 and
N � 1 in (1;1).
Note that T (z) is a tri-diagonal matrix with o�-diagonal elements: for i = 1; 2; : : : ; N ,

T (z)i�1;i = �Hz;

T (z)i;i�1 = i�Hz: (12)

We denote the ith diagonal element T (z)i;i by ti(z). For i = 0; 1; : : : ; N � 1,

ti(z) = �L � f�H + i�H + �L + (N � i)�Lg z + (N � i)�Lz
2;

tN (z) = �L � (N�H + �L) z: (13)

As mentioned before, det[T (z)] is a polynomial in z of degree 2N + 1. We show that all
2N + 1 roots of det[T (z)] are real and positive. To see this we �rst note that for real z
the matrix T (z) is similar to a real symmetric matrix S(z), i.e. there exists a nonsingular
matrix D such that S(z) := DT (z)D�1 is a real symmetric matrix. In our case we can
take D to be the diagonal matrix diag[d0; d1; : : : ; dN ] with

di =

s
(�H)

i

i!
: (14)

The entries of S(z) are then given by S(z)i;i = ti(z), S(z)i�1;i = S(z)i;i�1 = z
p
i�H�H

and are zero in all other positions. For real z 6= 0, S(z) has N+1 di�erent real eigenvalues
(this follows from the fact that S(z) is tri-diagonal with non-zero elements directly above
and directly below the diagonal, see [13]), and since the eigenvalues of S(z) and T (z)
coincide, the same holds for T (z). The fact that the eigenvalues of T (z) are real for real
z, simpli�es the analysis considerably. In the sequel we only consider the eigenvalues as
real functions of the real variable z. Therefore, for real z, denote the eigenvalues of T (z)
(and S(z)) by

�0(z) � �1(z) � : : : � �N(z); (15)
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the inequalities being strict if z 6= 0, and

�0(0) = �1(0) = : : : = �N(0) = �L: (16)

It is clear that det[T (1)] = 0, since the rows of T (1) sum to 1. Furthermore note that
T (1) is diagonally dominant with negative diagonal elements, therefore all the eigenvalues
of T (1) are nonpositive. This gives

�0(1) < �1(1) < : : : < �N(1) = 0: (17)

It can be shown that the �k(z) are continuous functions of z. This is not necessarily true
for complex z, but in that case even the de�nition in (15) makes no sense.
Combining �k(0) = �L > 0, �k(1) < 0 for k = 0; 1; : : : ; N � 1, and the continuity of these
functions, we �nd that (for k < N) the �k(z) must cross the horizontal axis (at least)
once, as z increases from 0 to 1. We now show that under the ergodicity condition (2),
�N(z) also has a root in (0,1). To do so it is su�cient to show that �N(1�) < 0. First
we write

det[T (z)] = (1� z)g(z); (18)

where g(z) is the determinant of the matrix obtained by replacing the last column of
T (z) by the sum of all columns and then dividing that column by 1� z:

g(z) =

���������������

t0(z) �Hz �L �N�Lz
�Hz t1(z) �Hz �L � (N � 1)�Lz

. . .
. . .

. . .
...

(N � 2)�Hz tN�2(z) �Hz �L � 2�Lz
(N � 1)�Hz tN�1(z) �L � �Lz

N�Hz �L

���������������
:

We want to evaluate g(1). Therefore we manipulate the above matrix evaluated in z = 1.
First divide the last column by �L, and all the other columns by �H . Then add to each
column (except for the �rst and the last one) all columns to the left of it. We now have

g(1) = �L (�H)
N

���������������

��H 0 �L �N
1 ��H 0 �L � (N � 1)

. . . . . . . . .
...

N � 2 ��H 0 �L � 2
N � 1 ��H �L � 1

N �L

���������������
= �L (�H)

N
NX
k=0

(�1)k+N (�L � (N � k)) (��H)k N !

k!
:
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The last equality follows by expanding the determinant in its last column. Rearranging
some terms we rewrite this to

g(1) = �L (��H)N N !

(
(�L �N)

NX
k=0

(�H)
k

k!
+

NX
k=0

k
(�H)

k

k!

)

= �L (��H)N N !
NX
k=0

(�H)
k

k!
f�L �N + E[XH ]g : (19)

Under the Ergodicity condition (2), sign[g(1)] = (�1)N+1. Di�erentiating (18) gives us
d
dz
det[T (z)]jz=1 = �g(1). Together this gives us

sign [T (1�)] = �sign
"
d

dz
det [T (z)] jz=1

#
= sign [g(1)] = (�1)N+1: (20)

On the other hand det[T (1�)] = QN
k=0 �k(1�), and we know that �k(1�) < 0 for k =

0; 1; : : : ; N � 1. Thus we have proved that �N(1�) < 0, and hence that �N(z) has a zero
in (0,1).
Putting all together we have that det[T (z)] has (at least) N + 1 di�erent zeros in the
interval (0; 1). Also det[T (1)] = 0. Subsequently we show that det[T (z)] has N � 1
di�erent roots in the interval (1;1). We do this by considering another quadratic matrix
polynomial T̂ (w) de�ned by

T̂ (w) := w2T (+) + wT (0) + T (�): (21)

Note that for w 6= 0: T̂ (w) = w2T ( 1
w
). By using the same type of argument as before we

can show that for any real w (including w = 0), T̂ (w) has N +1 di�erent real eigenvalues

�̂0(w) < �̂1(w) < : : : < �̂N(w); (22)

which are continuous functions in w. In fact, for all k = 0; 1; : : : ; N and w 6= 0, �̂k(w) =
w2�k(

1
w
). In particular �̂k(1) < 0 for k = 0; 1; : : : ; N � 1, and �̂N(1) = 0. For w = 0

and k = 0; 1; : : : ; N we have �̂k(0) = k�L. Using the continuity, we �nd that each of the
functions �̂k(w) for k = 1; 2; : : : ; N � 1 vanishes at some point in the interval (0; 1). This
means that there are (at least) N � 1 di�erent roots of det[T̂ (w)] lying in the interval
(0,1). Or equivalently, det[T (z)] has (at least) N � 1 roots for z 2 (1;1).
Since det[T (z)] has exactly 2N + 1 roots we have localized them all: N + 1 of them lie
in (0,1), N � 1 of them lie in (1;1) and the point 1 is a root. Moreover, all these roots
are di�erent.
It follows from (11) that the roots of det[T (z)] in (0,1) are exactly the eigenvalues of R.

5 The stable distribution

In Section 4 we have shown that R has N + 1 di�erent eigenvalues in the interval
(0,1); therefore the equilibrium distribution can be written as in (7). We order the
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eigenvalues of R as 0 < r0 < r1 < : : : < rN < 1, and construct the diagonal ma-
trix � = diag[r0; r1; : : : ; rN ]. The corresponding (normalised) eigenvectors v0; v1; : : : ; vN
compose the matrix V , vk being the k + 1st row of V . We have the (obvious) Jordan
decomposition R = V �1�V .
The equilibrium distribution is fully determined as soon as we have �0, which must satisfy

�0
h
Q00 +RT (�)

i
= 0: (23)

We already mentioned at the end of Section 2 that Q00+RT
(�) is an irreducible generator,

and therefore (23) has a positive solution, which is unique up to multiplication by a scalar.
Obviously, if we let e be the (N + 1)-dimensional vector with all elements equal to 1, it
must be that

�0 (I �R)�1 e = �0
1X
j=0

Rj
e =

1X
j=0

�je = 1: (24)

Together (23) and (24) completely determine �0 and therefore �. Since we want to have
the �k as in (7), or equivalently in matrix form:

�j = ��jV; (25)

we rewrite (23) and (24) to

�
h
V Q00 + �V T (�)

i
= 0; (26)

� (I � �)�1 V e = 1;

this determines � = (�0; �1; : : : ; �N).
An alternative way of �nding the coe�cients �k in the present model is by using (1).
Denoting by p the vector (p0; p1; : : : ; pN), with pi = PfXH = ig (which are known
quantities), it must hold that

� (I � �)�1 V =
1X
j=0

�j = p: (27)

In particular the low priority queue length distribution is given by

PfXL = jg = ��jV e =
NX
k=0

�k (rk)
j vke: (28)

If we had used the normalisation vke = 1 for the eigenvectors, this would have become

PfXL = jg =
NX
k=0

�k (rk)
j : (29)

However, note that it remains to be veri�ed whether the elements of some vk sum up to
0. If that would be the case, the corresponding term in (29) would vanish.
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Remark 5.1 From (29) the mean length E [XL] and variance var [XL] of the low priority
queue are easily determined. Using Little's formula we immediately obtain the mean
processing time (or sojourn time) of the low priority customers.

Remark 5.2 The case N = 1 results in an M=M=1 queue with server breakdown and
repair (or vacation), which is a known model. Generalizations were analyzed by Neuts
in [12] and Takagi in [17]. In the present setting the stable distribution of this model
can be analytically determined: det[T (z)] is then a polynomial of degree 3, and we know
that z = 1 is a root, which leaves us with a quadratic function. We omit the details.

6 Numerical results

In this section we present some numerical results to illustrate the in
uence of the vary-
ing server availability on the performance of the low priority tra�c. For normalization
purposes we choose �L = 1 and in all cases we take N = 17 (in accordance with data
supplied by KPN Research for The Netherlands).
If for �xed �L, �L and �H we let �H (or equivalently �H) go to in�nity, then all low
priority customers are (with respect to the high priority customers) so long in the sys-
tem, that they experience the server availability `in its steady-state behaviour'. In other
words, during the sojourn time of any low priority customer, the mean number of servers
available will be N �E[XH ]. Therefore it is to be expected that the low priority tra�c in
the limit (as �H !1) experiences the system as if it were an M=M=c (c = N �E[XH ])
queue with processor sharing (note that its queue length distribution coincides with that
of an M=M=1 queue with tra�c load �L

c
).

On the other hand if we let �H ! 0 (again for �xed �L, �L and �H) the opposite happens:
the server availability for the low priority tra�c will have a large variance. Whenever
there are many servers occupied by high priority customers, it will take a long time (with
respect to the low priority tra�c) before they become available to the low priority cus-
tomers.

In the remainder we denote the system load by � := �L + E[XH ]. In each of the experi-
ments we keep � �xed and for �H = 1

5
; 1; 5 and 1, we vary �L from 0 to � (at the same

time �H decreases such that E[XH ] goes from � to 0).
In Figure 1 the average number of low priority customers in the system, E[XL], is

shown for �xed � = 7
10
N and �L

�
increasing from 0 to 1. The top curve belongs to the

case �H = 1
5
, the second to �H = 1, the third to �H = 5 and the bottom curve to

�H = 1,which is the case where there is a �xed server availability c = N � E[XH ] for
the low priority tra�c. Note that the bottom curve is a straight line:

E [XL] =
�L=c

1� �L=c
=

�L
N � E[XH ]� �L

=
�L

N � �
; (30)
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Figure 1: � = 7
10
N , �H = 1

5
; 1; 5;1.

when �H goes to in�nity (and �H = �H�H).
In Figure 2 the same is done for var[XL] with again the property that the larger �H , the

ρL /ρ

var[XL]

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

Figure 2: � = 7
10
N , �H = 1

5
; 1; 5;1.

lower the corresponding curve and the bottom curve again being the limiting situation.
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Figure 3: � = 9
10
N , �H = 1

5
; 1; 5;1.

In Figures 3 and 4 the same procedure is repeated for a system load of � = 9
10
N . We

see that in this case the experienced e�ects are stronger.

ρL /ρ

var[XL]

0.0 0.2 0.4 0.6 0.8 1.0

0

100

200
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400

500

Figure 4: � = 9
10
N , �H = 1

5
; 1; 5;1.

Our main conclusions, based on the experiments, are that (i) it is easy to numerically
evaluate the system under consideration, and that (ii) a relatively small value of �H leads
to a large variation of the server availability for low priority tra�c and hence large values
of E[XL] and var[XL], particularly if �L and E[XH ] are of the same order.
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7 Variants and extensions

The presented model can be modi�ed or extended to capture more realistic features,
which we are currently investigating. We brie
y discuss some of them in this section.

Variant 7.1 The analysis does not change essentially if we introduce a �nite waiting
room of size K for the high priority customers. This results in an M=M=N=N +K queue
for the high priority customers. The submatrices T (+), T (0) and T (�) become of dimension
N +1+K, and their elements are such that whenever i 2 fN;N +1; : : : ; N +Kg, where
i is again the number of high priority customers present, then the low priority customers
receive no service and the high priority customers are served at rate N�H . Further, a
newly arriving high priority customer is admitted i� i < N +K.

Variant 7.2 If the low priority customers are served according to the FCFS queue
discipline instead of processor sharing, the analysis remains almost unchanged. Us-
ing the terminology of level j whenever there are j low priority customers present, we
have that beyond the N � 1st level the equilibrium equations do not change, and for
the levels j 2 f0; 1; : : : ; N � 1g the departure rate of low priority customers becomes
�L � minfN � i; jg, where i is, as usual, the number of high priority customers. The
distribution remains of the form (25) for j � N , with exactly the same values for the rk
as in the processor sharing case. The coe�cients �k and the �j for j = 0; 1; : : : ; N � 1
are to be found by solving the remaining �nite Markov process.

Variant 7.3 The presented model can also easily be adapted to incorporate a feedback
control mechanism, which is important in the context of ABR. Suppose the low priority
tra�c is permitted to maintain a given arrival rate ��L as long as the number of low
priority customers in the system is below a given threshold J 2 f0; 1; 2; : : :g. But as soon
as the level J is reached, the permitted arrival rate drops to �L until there are again less
than J low priority customers in the system. The relation �L < ��L is of no importance
to the analysis, but given the above interpretation, �L � ��L makes no sense.
For the homogeneous part of the state space, that is for all j � J , relation (6) still
holds for exactly the same matrix R as before. So the problem is reduced to �nding the
�0; �1; : : : ; �J , which satisfy

0 = �0Q
�

00 + �1T
(�);

0 = �j�1T
(+)� + �jT

(0)� + �j+1T
(�); j = 1; 2; : : : ; J � 1; (31)

0 = �J�1T
(+)� + �J

h
T (0) +RT (�)

i
:

Like in Variant 7.2, these equations de�ne a �nite Markov process (with (J + 1)(N + 1)
states).
In fact our analysis can handle a further gradation of arrival rate levels: Instead of taking
arrival rate ��L for all j 2 f0; 1; : : : ; J � 1g, the more general case of arrival rate �

(j)
L at

level j 2 f0; 1; : : : ; J � 1g may be considered.
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