
XForms
Improving the Web Forms Experience

Steven Pemberton

CWI and W3C
Kruislaan 413

1098 SJ Amsterdam
The Netherlands

Steven.Pemberton@cwi.nl
www.cwi.nl/~steven



1  About the Instructor

Steven Pemberton is a researcher at the CWI, The Centre for Mathematics
and Computer Science, a nationally-funded research centre in Amsterdam,
The Netherlands, the first non-military Internet site in Europe.

Steven's research is in interaction, and how the underlying software
architecture can support the user. At the end of the 80's he built a style-
sheet based hypertext system called Views.

Steven has been involved with the World Wide Web since the beginning. He
organised two workshops at the first World Wide Web Conference in 1994,
chaired the first W3C Style Sheets workshop, and the first W3C
Internationalisation workshop. He was a member of the CSS Working Group
from its start, and is a long-time member (now chair) of the HTML Working
Group, and co-chair of the XForms Working Group. He is co-author of
(amongst other things) HTML 4, CSS, XHTML and XForms.

Steven is also Editor-in-Chief of ACM/interactions.



2  Objectives

HTML Forms, introduced in 1993, were the basis of the e-commerce
revolution. After 10 years experience, it has become clear how to improve
on them, for the end user, the author, and the owners of the services that
the forms are addressing. XForms is a new technology, announced in
October 2003, intended to replace HTML Forms.

The advantages of XForms include:

It improves the user experience: XForms has been designed to allow
much to be checked by the browser, such as types of fields being filled
in, or that one date is later than another. This reduces the need for round
trips to the server or for extensive script-based solutions, and improves
the user experience by giving immediate feedback to what is being filled
in.
It is XML, and it can submit XML.
It combines existing XML technologies: Rather than reinventing the
wheel, XForms uses a number of existing XML technologies, such as
XPath for addressing and calculating values, and XML Schemas for
defining data types. This has a dual benefit: ease of learning for people
who already know these technologies, and implementors can use off-the-
shelf components to build their systems.
It is internationalized.
It is accessible: XForms has been designed so that it will work equally
well with accessible technologies (for instance for blind users) and with
traditional visual browsers.
It is device independent: The same form can be delivered without change
to a traditional browser, a PDA, a mobile phone, a voice browser, and
even some more exotic emerging clients such as an Instant Messenger.
This greatly eases providing forms to a wide audience, since forms only
need to be authored once.
It is easier to author complicated forms.

The presenter is one of the authors of the XForms specifications, and is
chair of the Forms Working Group that produced the technology.

This tutorial works from a basis of HTML Forms, and introduces XForms
step-by-step. It covers essentially all of XForms except some technical
details about events, and no more than a passing reference to the use of
Schemas.

Emphasis is on how to improve the user experience, and how XForms
improves accessibility and device independence, and makes the author’s life
easy in producing a better experience.



3  Plan

Four sections, each with a practical

1. Introduction, equivalents to HTML
2. Editing XML
3. Controlling controls
4. Wizards and shopping baskets

4  HTML Forms: a great success!

Forms have been the basis of the e-commerce revolution
You find them everywhere on the web



5  Searching

6  Buying



7  Logging in

8  Configuring hardware



9  Reading mail

10  Composing email



11  Etc etc

Tracking packages
calculating currencies
submitting taxes
banking
expenses
calendars
blogging
wiki
...

12  Problems with HTML Forms

Presentation oriented, mixing data and presentation
No types, Ping-ponging to the server
Reliance on scripting
Problems with non-Western characters
Accessibility problems
Hard to make cross-device for single authoring
Impoverished data-model, no integration with existing streams
Hard to manage, hard to see what is returned
No support for wizards and shopping carts etc.

Soundbite: "Javascript accounts for 90% of our headaches in complex
forms, and is extremely brittle and unmaintainable."



13  XForms

e-forms are a current hot topic.
The W3C XForms working group started out as a sub-group of the HTML
working group, but soon spun off as an independent group when it
emerged how much work there was to be done.
XForms has been designed based on an analysis of HTML Forms, what
they can do, and what they can't.

14  The Approach

The essence is to separate what is being returned from how the values are
filled in.

The model specifies the values being
collected (the instance), and their related logic:



15  Controls

An essential difference with HTML is that XForms controls are intent-based
rather than presentation oriented.

Rather than specifying that a control consists of radio buttons, or a menu,
XForms specifies for instance that a control selects one item from a list of
items. CSS or similar can be used to provide the necessary presentation.

This way the same XForm can be used across different devices without
change.

16  XForms improves the user experience

XForms has been designed to allow much to be checked by the browser,
such as

types of fields being filled in
that a particular field is required
or that one date is later than another.

This reduces the need for round trips to the server or for extensive script-
based solutions, and improves the user experience by giving immediate
feedback on what is being filled in.



17  It is easier to author and maintain
complicated forms

Because XForms uses declarative markup to declare properties of values,
and to build relationships between values, it is much easier for the author to
create complicated, adaptive forms, and doesn't rely on scripting.

An HTML Form converted to XForms looks pretty much the same, but when
you start to build forms that HTML wasn't designed for, XForms becomes
much simpler.

18  It is XML, and it can submit XML

XForms is properly integrated into XML: it is in XML, the data it collects in
the form is XML, it can load external XML documents as initial data, and can
submit the results as XML.

By including the user in the XML pipeline, it at last means you can have end-
to-end XML, right up to the user's desktop.

However, it still supports 'legacy' servers.

XForms is also a part of XHTML2.



19  It combines existing XML technologies

Rather than reinventing the wheel, XForms uses a number of existing XML
technologies, such as

XPath for addressing and calculating values
XML Schema for defining data types.

This has a dual benefit:

ease of learning for people who already know these technologies
the ability for implementors to use off-the-shelf components to build their
systems.

20  It integrates into existing data streams

Data can be pre-loaded into a form from external sources.

Existing Schemas can be used.

It integrates with SOAP and XML RPC.

Doesn't require new server infrastructure.



21  It is device independent

Thanks to the intent-based controls, the same form can be delivered without
change to a traditional browser, a PDA, a mobile phone, a voice browser,
and even some more exotic emerging clients such as an Instant Messenger.

This greatly eases providing forms to a wide audience, since forms only
need to be authored once.

22  It is internationalized

Thanks to using XML, there are no problems with loading and submitting
non-Western data.



23  It is accessible

XForms has been designed so that it will work equally well with accessible
technologies (for instance for blind users) and with traditional visual
browsers.

24  It is royalty-free and unencumbered

Open standard

Wide industry support

Widely implemented

No vendor lock-in!

(If you think this is a good idea, join W3C!)



25  It supports new use cases

Regular forms uses

Editing XML

Spreadsheets

Applications

As output transformation

26  Basic structure of XForms

Take this simple HTML form:

<html>
<head><title>Search</title></head>
<body>
    <form action="http://example.com/search"
          method="get">
         Find <input type="text" name="q">
         <input type="submit" value="Go">
    </form>
</body>
</html>

The main difference in XForms is that details of the values collected and how
to submit them are gathered in the head, in an element called model; only
the form controls are put in the body.



27  ... basic structure

So in this case the minimum you need in the head is (XForms elements and
attributes are in lower case):

<model>
   <submission
       action="http://example.com/search"
       method="get"
       id="s"/>
</model>

The <form> element is now no longer needed; the controls in the body look
like this:

<input ref="q"><label>Find</label></input>
<submit submission="s">
    <label>Go</label>
</submit>

28  ... basic structure

What you can hopefully work out from this is that form controls have a
<label> element as child, the <input> uses "ref" instead of "name", and
there is a separate submit control that links to the details of the submission
in the head. So the complete example is:



29  Complete XForms search example
<h:html xmlns:h="http://www.w3.org/1999/xhtml"
        xmlns="http://www.w3.org/2002/xforms">
<h:head>
    <h:title>Search</h:title>
    <model>
        <submission
            action="http://example.com/search"
            method="get" id="s"/>
    </model>
</h:head>
<h:body>
  <h:p>
    <input ref="q"><label>Find</label></input>
    <submit submission="s"><label>Go</label>
    </submit>
  </h:p>
</h:body></h:html>

30  Namespaces

Another obvious difference is the use of h: prefixes
Nothing to do with XForms, but with XML
Namespace says which language elements belong to
One language may be the 'default' language
In the above XForms is the default
XHTML could have been made the default:



31  HTML as default namespace

<html xmlns="http://www.w3.org/1999/xhtml"
      xmlns:f="http://www.w3.org/2002/xforms">
<head><title>Search</title>
  <f:model>
    <f:submission method="get" id="s"
        action="http://example.com/search"/>
  </f:model>
</head>
<body>
  <p><f:input ref="q">
       <f:label>Find</f:label>
     </f:input>     <f:submit submission="s">
        <f:label>Go</f:label>
     </f:submit>
  </p>
</body></html>

32  Choice of prefixes

You can make nothing the default, and prefix all elements
You can choose any prefix; h: or x: or html: or form:, or ...



33  Making XForms documents interoperable

Unfortunately, Microsoft Internet Explorer does not allow you to choose
default language
HTML must be default
Some magic words are needed, but your documents will also run on true
XML systems (This is for FormsPlayer; other IE plugins may not require
this)

<html xmlns="http://www.w3.org/1999/xhtml"
      xmlns:f="http://www.w3.org/2002/xforms">
<head>
   <object width="0" height="0" id="FormsPlayer"
     classid="CLSID:4D0ABA11-C5F0-4478-991A-375C4B648F58">
     <strong>FormsPlayer failed to load</strong>
   </object>
   <?import namespace="f"
            implementation="#FormsPlayer"?>

34  XForms equivalents for simple HTML
Forms features

Now to compare one for one HTML forms controls with XForms equivalents



35  Simple Text Input

To input a single text element

First name: <input type="text" name="fname">

is written

<input ref="fname"><label>First name:</label>
</input>

There is no need to indicate that it is text: in the absence of any other
information, by default it is text (called string in XForms).

We will see later how to give any control an initial value.

36  Textarea

To input multiline text

Message:
   <textarea name="message" rows="20" cols="80">
   </textarea>

is written

<textarea ref="message"><label>Message:</label>
</textarea>



37  Styling controls

Styling is done using a style sheet. For instance:

textarea[ref="message"]
    { font-family: sans-serif;
      height: 20em; width: 80em }

or

textarea[ref="message"]
    { font-family: serif;
      height: 2cm; width: 20% }

If you want all your textareas to have the same dimensions, you can use

textarea { font-family: sans-serif;
           height: 20em; width: 80em }

38  Adding a stylesheet

The easiest way to include a style sheet in your document is to add this at
the beginning of the document:

<?xml version="1.0"?>
<?xml-stylesheet href="style.css"
                 type="text/css"?>

where 'style.css' is the name of your stylesheet, although in XHTML you can
also say in the <head>:

<link rel="stylesheet" type="text/css"
    href="style.css"/>

(In IE you must do this)



39  Radio Buttons

Radio buttons select one value from a set:

Gender:
<input type="radio" name="sex" value="M"> Male
<input type="radio" name="sex" value="F"> Female

becomes

<select1 ref="sex">
   <label>Gender:</label>
   <item>
      <label>Male</label><value>M</value>
   </item>
   <item>
      <label>Female</label><value>F</value>
   </item>
</select1>

40  Presentation of controls

Controls principally represent their purpose
select and select1 may be presented as radio buttons, a (scrollable)
select area, or a menu.
Use the hint appearance="full" to suggest presentation as radio
buttons.
Use appearance="compact" to suggest a select area
Use appearance="minimal" to suggest a menu

We will see later how to preselect a value.



41  Checkboxes

HTML Checkboxes select zero or more from a list.

Flavors:
<input type="checkbox" name="flavors" value="v"> Vanilla
<input type="checkbox" name="flavors" value="s"> Strawberry
<input type="checkbox" name="flavors" value="c"> Chocolate

is written

42  ... checkboxes

<select ref="flavors" appearance="full">
   <label>Flavors:</label>
   <item>
      <label>Vanilla</label><value>v</value>
   </item>
   <item>
      <label>Strawberry</label><value>s</value>
   </item>
   <item>
      <label>Chocolate</label><value>c</value>
   </item>
</select>



43  Menus

Depending on the presence of the multiple attribute in HTML, menus select
one, or zero or more from a list of options. You either use <select1> to
select a single choice, or <select> to select zero or more.

Month:
<select multiple name="spring">
      <option value="Mar">March</option>
      <option value="Apr">April</option>
      <option>May</option>
</select>

would be written:

44  ... menus

<select ref="spring" appearance="compact">
<label>Month:</label>
<item>
   <label>March</label><value>Mar</value>
</item>
<item>
    <label>April</label><value>Apr</value>
</item>
<item>
   <label>May</label><value>May</value>
</item>
</select>

If multiple isn't on the HTML select, use select1 instead.



45  Open and closed selections

You can add selection="open" on select and select1 to allow for open
ended selections:

<select1 ref="color" selection="open">
<item><label>Red</label><value>red</value>
...

46  File Select

To select a file to be uploaded

<form method="post"
      enctype="multipart/form-data" ...>
 ...
File: <input type="file" name="attachment">

is written

<submission method="form-data-post" .../>
...
<upload ref="attachment">
   <label>File:</label>
</upload> 



47  Passwords
Password: <input type="password" name="pw">

is written

<secret ref="pw">
   <label>Password:</label>
</secret>

48  Reset

Hardly anyone actually uses reset buttons, yet very many Web forms
include them.
Often the reset button with the text "Reset" is larger than the submission
button that is often marked "OK" (and there's no undo)
While it is possible to create a reset button in XForms, it is deliberately
harder to do:

<input type="reset">

is therefore written

<trigger>
   <label>Clear all fields</label>
   <reset ev:event="DOMActivate"/>
</trigger>



49  Buttons

Buttons have no predefined behavior, but have a behavior attached to them
which is triggered when a relevant event occurs.

The button element

<input type="button" value="Show"
       onclick="show()">

can be written

<trigger><label>Show</label>
   <h:script ev:event="DOMActivate"
             type="text/javascript">show()
   </h:script>
</trigger>

or

50  ... buttons

<trigger ev:event="DOMActivate"
         ev:handler="#show">
    <label>Show</label>
</trigger>

where "#show" locates the element (for instance a script element) that
implements the behavior:

<script id="show" ...>...

XForms has a number of built in actions that can be executed by a button;
see the reset button above for an example.



51  ... buttons

The fact that the event attribute has a prefix, means that you have to add
the following XML Namespace to the head:

xmlns:ev="http://www.w3.org/2001/xml-events"

We will be dealing more with events later.

52  Image Buttons
<input type="image" src="..." ...>

is written by putting an image into the <label> element:

<trigger...><label><h:img src="star.gif" .../>
</label></trigger>

or by specifying it in a stylesheet

<trigger id="activate" ...>

with a stylesheet rule

trigger#activate {
    background-image: url(button.png);
    background-repeat: none}

(Likewise for <submit>.)



53  Optgroup
Drink:
<select name="drink">
   <option selected value="none">None</option>
   <optgroup label="Soft drinks">
      <option value="h2o">Water</option>
      <option value="m">Milk</option>
      <option value="oj">Juice</option>
   </optgroup>
   <optgroup label="Wine and beer">
      <option value="rw">Red Wine</option>
      <option value="ww">White Wine</option>
      <option value="b">Beer</option>
   </optgroup>
</select>

is written

54  ... optgroup

<select1 ref="drink">
   <label>Drink:</label>
   <item><label>None</label><value>none</value></item>
   <choices>
      <label>Soft drinks</label>
      <item><label>Water</label><value>h2o</value></item>
      <item><label>Milk</label><value>m</value></item>
      <item><label>Juice</label><value>oj</value></item>
   </choices>
   <choices>
      <label>Wine and beer</label>
      <item><label>Red wine</label><value>rw</value></item>
      <item><label>White wine</label><value>ww</value></item>
      <item><label>Beer</label><value>b</value></item>
   </choices>
</select1>



55  Grouping Controls
<fieldset>
   <legend>Personal Information</legend>
   Last Name: <input name="lastname" type="text">
   First Name: <input name="firstname" type="text">
   Address: <input name="address" type="text">
</fieldset>

is written

<group>
   <label>Personal Information</label>
   <input ref="lastname"><label>Last name:</label></input>
   <input ref="firstname"><label>First name:</label></input>
   <input ref="address"><label>Address:</label></input>
</group>

Note the consistent use of <label>.

56  Hidden Controls

As you will see shortly, there is no need for hidden controls in XForms.



57  Output Controls

XForms has two controls that are not in HTML, output and range.

The output control allows you to include values as text in the document.

Your current total is: <output ref="sum"/>

or

<output ref="sum"><label>Total</label></output>

This can be used to allow the user to preview values being submitted.

58  ... output

You can also calculate values:

Total volume:
  <output value="height * width * depth"/>

(where height, width and depth are values collected by other controls.)



59  Range Controls

This control allows you to specify a constraint on a value.

<range ref="volume"
       start="1" end="10" step="0.5"/>

A user agent may represent this as a slider or similar.

60  Submitted Values

The attribute named ref on each control actually refers to a child of an
instance element in the model, where the values are gathered before
submission.
If there is no instance element there (as in the search example above),
then one is silently created.



61  Making the Submitted Values Explicit

It is good practice to include an explicit instance, like this for the search
example:

<model>
    <instance>
        <data xmlns=""><q/></data>
    </instance>
    <submission
        action="http://example.com/search"
        method="get" id="s"/>
</model>
...
<input ref="q">
   <label>Search</label>
</input>

62  ... explicit values

You immediately see that the only data value submitted is called "q".
The system will now also check that when you say ref="q" that there
really is a q in the instance.
It is essential that you put the xmlns="" on your instance data, to tell the
processor that the elements here are neither XHTML nor XForms
elements.
We've used the tag <data> here, but you can choose any tag you like.



63  Initial Values

For initialising controls including initialising checked boxes, and selected
menu items etc., you just supply an instance with pre-filled values. For the
search example:

<instance>
    <data xmlns=""><q>Keywords</q></data>
</instance>

would pre-fill the text control with the word Keywords.

64  ... initial values for checkboxes

<select ref="flavors">
   <label>Flavors:</label>
   <item>
      <label>Vanilla</label><value>v</value>
   </item>
   <item>
      <label>Strawberry</label><value>s</value>
   </item>
   <item>
      <label>Chocolate</label><value>c</value>
   </item>
</select>

You can preselect vanilla and strawberry like this:

<instance>
  <data xmlns=""><flavors>v s</flavors></data>
</instance>



65  ... initial values for menus

Similarly for the menus example, which looked like this:

<select ref="spring">
<label>Month:</label>
<item><label>March</label><value>Mar</value></item>
<item><label>April</label><value>Apr</value></item>
<item><label>May</label><value>May</value></item>
</select>

You can preselect March and April like this:

<instance>
  <data xmlns=""><spring>Mar Apr</spring></data>
</instance>

66  ... initial values for choices

And for the optgroup example:

<select1 ref="drink">
   <label>Drink:</label>
   <item><label>None</label><value>none</value></item>
   <choices>
      <label>Soft drinks</label>
      <item><label>Water</label><value>h2o</value></item>
      <item><label>Milk</label><value>m</value></item>
      <item><label>Juice</label><value>oj</value></item>
   </choices>
   <choices>
      <label>Wine and beer</label>
      <item><label>Red wine</label><value>rw</value></item>
      <item><label>White wine</label><value>ww</value></item>
      <item><label>Beer</label><value>b</value></item>
   </choices>
</select1>



67  ... choices

Preselect the value none like this:

<instance>
    <data xmlns=""><drink>none</drink></data>
</instance>

68  Hidden Values

Any values in the instance that haven't been bound to by a control are by
definition not visible to the user.
Therefore there is no need for hidden controls
To add a hidden value results to the search form, we change the
instance to:

<instance>
    <data xmlns="">
        <q/>
        <results>10</results>
    </data>
</instance>



69  Getting Initial Values From Elsewhere

You don't have to specify the initial instance in the document itself,
because you can load it from an external resource, like this:

<instance
  src="http://example.org/templates/t21.xml"/>

The resource then contains your data, like

<data><w>640</w><h>480</h><d>8</d></data>

You don't need the xmlns="" in external instances, though it doesn't do
any harm either.
You can use a local file, like src="file:data.xml"

70  'Editing' any XML document

External instances give you immense power
The ref attribute can be any XPath expression
XPath lets you select any element or attribute in an XML document
You can bring in any XML document as instance, even an XHTML
document



71  ... example

For instance to bind to the <title> element in an XHTML document

<input ref="h:html/h:head/h:title">...

(i.e. the title element within the head element within the html element,
all in the XHTML namespace)
or the class attribute on the body element:

<input ref="h:html/h:body/@class">...

Note the need to put prefixes on elements that are in a namespace. This
is why the xmlns="" attribute is needed on instance data.

72  Editing example

Suppose a shop has very unpredictable opening hours (perhaps it depends
on the weather), and they want to have a Web page that people can go to
to see if it is open. Suppose the page in question has a single paragraph in
the body:

<p>The shop is <strong>closed</strong> today.</p>

Well, rather than teaching the shop staff how to write HTML to update this,
we can make a simple form to edit the page instead:



73  Editing XHTML page

<model>
   <instance
      src="http://www.example.com/shop.xhtml"/>
   <submission
      action="http://www.example.com/shop.xhtml"
      method="put" id="change"/>
</model
...
<select1 ref="/h:html/h:body/h:p/h:strong">
<label>The shop is now:</label>
<item><label>Open</label><value>open</value></item>
<item><label>Closed</label><value>closed</value></item>
</select1>
<submit submission="change"><label>OK</label></submit>

The page must be correct XHTML (not HTML)
The server must accept the "put" method

74  XPath

XPath selectors look like filename selectors

Relative: "q", "person/name/first"
Absolute: "/data/q"
Attributes of elements with "@": "h:img/@alt"
Selection is relative to the context
At the top level the context is the instance itself, but some bindings set a
new context
Current: .
Parent: ..
Any descendent: "h:body//h:p"
There are other selectors, but you seldom need them



75  ... XPath

A selector selects all elements matching the selector.
In places in XForms where only one is needed, the first is used, eg in
ref="h:body/h:p"
There are also methods of specifying which you want:

employees/person[1]
employees/person[position()=last()]
tutorial[name="xforms"]/tutor

76  Submitting

We shall now look at details of submission, like multiple submissions,
submission methods, and what happens after submission.



77  Multiple Submissions

HTML only allows you to submit the data to one server, in a single way.
XForms allows you to submit the data to different servers, or in different
ways.
For instance, the search example could allow the user to submit the
search string to different search engines:

<model>
   <instance><data xmlns=""><q/></data></instance>
   <submission id="com"
       action="http://example.com/search"
       method="get"/>
   <submission id="org"
       action="http://example.org/search"
       method="get"/>
</model>

78  ... multiple submissions

and then in the body:

<input ref="q"><label>Find:</label></input>
<submit submission="org">
    <label>Search example.org</label>
</submit>
<submit submission="com">
    <label>Search example.com</label>
</submit>

Find:

Search example.org Search example.com

79  Submission Methods

Just as with HTML there are a number of ways to submit the data.
In HTML how to submit is expressed in two attributes, method and
enctype
In XForms it is expressed in method only

HTML and XForms Equivalent Submission Methods
HTML XForms

method="get" method="get"
method="post"
enctype="application/x-www-form-urlencoded" method="urlencoded-post"



method="post"
enctype="multipart/form-data" method="form-data-post"

80  ... submission methods

There are some new ways of submission; the most interesting are:
method="post": posts the results as XML
method="put": puts the results as XML.
An interesting use of this is something like:

<submission 
    action="file:results.xml"
    method="put"/>

which saves your results to the local filestore by using the file: scheme.
For a large form, you could have separate 'save to disk' and 'submit'
buttons.

81  Life after Submit

The default when values have been submitted is for the result returned
by the server to replace the whole document, just as with HTML.
There are other options, specified with the attribute replace on the
submission element.
replace="instance" replaces only the instance
replace="none" leaves the form document as-is without replacing it.



82  ... example of different submissions

For instance, for an address-change form for a bank, you can provide two
buttons, one to prefill the form with name and address based on the
account number, and one to submit the changed results
The 'find' button replaces the instance with a new instance containing the
details of the person with the account number, which you can then
change;
the 'submit' button will then send the changed instance back, leaving the
form as-is in the browser to allow further changes or to input a new
account number to prefill.

83  ... example

<model>
    <instance><data xmlns="">
        <accountnumber/><name/><address/>
    </data></instance>
    <submission method="get"
        action="http://example.com/prefill"
        id="prefill" replace="instance"/>
    <submission method="put"
        action="http://example.com/change"
        id="change" replace="none"/>
</model>
...
<input ref="accountnumber"><label>Account Number</label></input>
<submit submission="prefill"><label>Find</label></submit>
<input ref="name"><label>Name</label></input>
<textarea ref="address"><label>Address</label></textarea>
<submit submission="change"><label>Submit</label></submit>



84  Controlling Controls

In HTML you can specify that controls are disabled, or read-only but the
only way you can change the property is with scripting.
XForms offers easy ways to control these properties, but has other
properties you can specify as well

85  Properties

The 'model binding' properties that you can control are:

that a value is only relevant in certain circumstances (for instance name
of spouse only if married)
that a value is readonly in certain circumstances
that a value is required (that a value must be supplied before the form
can be submitted)
that a value has a constraint (for instance that the year of birth is
earlier than the year of death)
that the value must conform to a type (for instance that it must be an
integer), or
that it is calculated from other values (for instance that the total is the
sum of some other values).



86  ... properties

Note that in XForms it is the collected value that has the property, not the
control, but the property shows up on all controls bound to the value.

These properties use a <bind> element that goes in the <model>. To use
bind, you must have an explicit <instance> element.

87  Disabled Controls = relevant

To disable controls you use the relevant property. For instance, to say that
the credit card number only needs to be filled in if the person is paying by
credit, you can write:

<model>
   <instance><data xmlns="">
      <amount/><method/><cc/><expires/>
   </data></instance>
   <bind nodeset="cc"
         relevant="../method='credit'"/>
   <bind nodeset="expires"
         relevant="../method='credit'"/>
</model>



88  ... relevant

This states that the fields cc and expires are only relevant when method
has the value credit, and will therefore be disabled for other values of
method.
You have to say "../method" rather than just method, because in a bind
you are talking about the thing referred to in the nodeset (which might
be a structured element itself).
This is an XPath change of context we talked about earlier. It is as if you
have done a 'change directory' to that element.
If you said just "method", it would refer to a child element of cc or
expires.
You can also use absolute addressing, like /data/method, which would
have the same effect as ../method in this case.

89  ... relevant

A browser is free to decide how disabled controls are presented (and it
may also allow you to specify in a stylesheet how they should look), but
typically they will be grayed out in the normal way.



90  ... writing the controls

The controls could be written like this (but note that there is no indication
that they may get disabled: that is inherited from the value they refer to):

<select1 ref="method">
   <label>Method of payment:</label>
   <item>
      <label>Cash</label>
      <value>cash</value>
   </item>
   <item>
      <label>Credit card</label>
      <value>credit</value>
   </item>
</select1>
<input ref="cc"><label>Card number:</label></input>
<input ref="expires"><label>Expiry date:</label></input>

91  ... using structured instance values

If we used a structured instance, we could simplify this:

<model>
   <instance><data xmlns="">
      <amount/><method/>
      <cc>
        <number/><expires/>
      </cc>
   </data></instance>
   <bind nodeset="cc"
      relevant="../method='credit'"/>
</model>

and the controls then reference the children of 'cc':

<input ref="cc/number"><label>Card number:</label></input>
<input ref="cc/expires"><label>Expiry date:</label></input>



92  ... using grouping on the controls

Instead of:

<input ref="cc/number"><label>Card number:</label></input>
<input ref="cc/expires"><label>Expiry date:</label></input>

grouping can be used to reset the context of the refs:

<group ref="cc">
   <input ref="number"><label>Card number:</label></input>
   <input ref="expires"><label>Expiry date:</label></input>
</group>

93  ... works on buttons too

Although putting a ref on a trigger has no effect on the instance value being
referred to, the relevance of the value can be used to affect the trigger:

<trigger ref="nextok">
   <label>Next</label>
   ...
</trigger>



94  Readonly Controls

Similarly to relevant, you can specify a condition under which a value is
read-only. For instance:

<model>
   <instance><data xmlns="">
      <variant>basic</variant>
      <color>black</color>
   </data></instance>
   <bind nodeset="color"
         readonly="../variant='basic'"/>
</model>

This example says that the default value of color is black, and can't be
changed if variant has the value basic.

95  Required Controls

A useful new feature in XForms is the ability to state that a value must be
supplied before the form is submitted.

The simplest case is just to say that a value is always required. For
instance, with the search example:

<model>
   <instance><data xmlns=""><q/></data></instance>
   <bind nodeset="q" required="true()"/>
   <submission .../>
</model>



96  ... required

but like the readonly and relevant attributes, you can use any XPath
expression to make a value conditionally required:

<bind nodeset="state"
      required="../country='USA'"/>

which says that the value for state is required when the value for country
is "USA".

It is up to the browser to decide how to tell you that a value is required, but
it may also allow you to define it in a stylesheet.

97  Constraint Property

This property allows you to add extra constraints to a value. For instance:

<bind nodeset="year" constraint=". &gt; 1970"/>

constrains the year to be after 1970.

Note the XPath use of "." to mean "this value".

">" has to be written as &gt; because of XML rules, but you should be used
to that already.



98  Calculate Property

It is possible to indicate that a value in the instance is calculated from other
values. For instance:

<bind ref="volume"
   calculate="../height * ../width * ../depth"/>

When a value is calculated like this, it automatically becomes readonly.

99  ... calculate functions

There are a number of functions available, including:

arithmetic: + - * div mod
string manipulation: concat, substring, ...
date handling: days-from-date, seconds-from-dateTime, months,
seconds, now
booleans: <= < >= > = != and or
conditionals using 'if':

<bind nodeset="taxrate"
  calculate="if(../salary &gt; 50000, 50, 33)"/>



100  Types

Another useful new feature is the ability to give a value a type. The
browser can then check that the values match the required type.
For instance, if the search example is actually only for searching for
numbers (for instance for searching in a bug database), then we only
have to add:

<bind nodeset="q" type="xsd:integer"/>

This will prevent the value being submitted unless it is an integer.
You need to add xmlns:xsd="http://www.w3.org/2001/XMLSchema" to
the root element.

101  ... types

If you want to collect the URL of someone's homepage, then you can
specify

<bind nodeset="homepage" type="xsd:anyURI"/>

Some user agents do special things when they know the data type of a
value. For instance, when they know that the value is a date, they pop
up a date picker rather than require you to type in the characters of the
date.



102  ... types

There are a number of useful built-in types you can use, including:

xsd:string, xsd:normalizedString (a string with whitespace characters
replaced by the space character).
xsd:integer, xsd:nonPositiveInteger, xsd:negativeInteger,
xsd:nonNegativeInteger, xsd:positiveInteger
xsd:boolean
xsd:decimal, xsd:double
xsd:date, xsd:time, xsd:dateTime
xsd:anyURI (A URI)
xforms:listItems (A space-separated list of strings for use with select)
xforms:listItem (A string without any spaces)

103  ... types

You can apply Schemas to instances:

<model schema="types.xsd">
...
</model>

or include them inline:

<model>
   ...
   <xsd:schema>
      ...
   </xsd:schema>
   ...
</model>

(We won't discuss schemas further here today)



104  Combining Properties

If you have several binds referring to the same value, you can combine
them:

<bind nodeset="q" type="xsd:integer"
                 required="true()"/>

105  More than one form in a document

For more than one form in a document, you can use one model per form,
but then you need to identify which form each control refers to
You do this with an id attribute on each model, and a model attribute on
each control:



106  ... more than one form

<model id="search">
   <instance><data xmlns=""><q/></data></instance>
   <submission id="s" .../>
</model>
<model id="login">
   <instance><data xmlns=""><user/><passwd/></data></instance>
   <submission id="l" .../>
</model>
...
<input model="search" ref="q"><label>Find</label></input>
<submit submission="s"><label>Go</label></submit>
...
<input model="login" ref="user"><label>User name</label></input>
<secret model="login" ref="passwd"><label>Password</label></input>
<submit submission="l"><label>Log in</label></submit>

107  More than one instance in a model

You can have more than one instance in a model.
You identify which one you want with an id attribute and the use of the
instance() function.
If you don't identify which, then the first instance in the model is used



108  ... more than one instance

<model>
   <instance id="currencies">
      <currencies>
         <currency name="USD">125</currency>
         ...
   </instance>
   <instance id="costs">
      <item>
         <date/><amount/><currency/>
         ...
      </item>
   </instance>
</model>
...
<input ref="instance('costs')/date">
   <label>Date</date>
</input>

109  ... more than one instance

<model>
   <instance id="tax" src="/finance/taxes"/>
   <instance>
      <employee xmlns="">
         <name/><number/>
         <salary/><taxrate/>
         ...
      </employee>
   </instance>

  <bind nodeset="taxrate"
    calculate="if(../salary &gt;
                  instance('tax')/limit,
                  50, 33)"/>



110  Using more than one instance

Useful for filling itemsets in select and select1:

<select ref="value">
   <label>...</label>
   <itemset nodeset="instance(x)">
    <label ref="names"/>
    <copy ref="values"/>
  </itemset>

or creating dynamic labels (think multilingual):

<label ref="instance(labels)/label[msg='age']"/>

<label> can also take src="..."

111  Getting UI values from an instance

Suppose you want to offer a choice of languages in a select1:

<select1 ref="lang">
    <label>Language:</label>
    <item><label>English</label><value>en</value></item>
    <item><label>Français</label><value>fr</value></item>
    <item><label>Deutsch</label><value>de</value></item>
</select1>

But later discover you want to add another language to this form and
several others that offer the same choice. Better then to put the choices in a
single file, and then load that into an instance, and refer to that instead:



112  ... UI values from an instance

<instance id="lang" src="languages.xml"/>

where languages.xml contains something like this:

<languages>
    <language><name>English</name><code>en</code></language>
    <language><name>Français</name><code>fr</code></language>
    <language><name>Deutsch</name><code>de</code></language>
</languages>

Then you can rewrite the select1 to use this instance:

<select1 ref="lang">
    <label>Language:</label>
    <itemset nodeset="instance('lang')/language">
        <label ref="name"/>
        <value ref="code"/>
    </itemset>
</select1>

Then anytime you want to add an new language, you only have to edit the
languages.xml file (with an XForm of course!) and all forms using it will be
updated with the new value.

113  Bind instead of Ref

If there is a bind in the model, you can refer to that from the control
instead of directly to the instance value.
This allows you to change the details of how the instance is structured
without having to change the controls.
It also means you don't have to specify which model is involved:

<model>
   <instance><data xmlns=""><q/></data></instance>
   <submission id="s" .../>
   <bind id="query" nodeset="q" required="true()"/>
</model>
...
<input bind="query"><label>Find</label></input>

Note that the bind attribute is a reference to an id on a bind element; it
is not an XPath expression.



114  Events

XForms uses a specification called XML Events to deal with eventing
The important thing to know about XML Events is that it uses the same
event mechanism as HTML, only written differently.
In HTML:

<input type="submit"
   onclick="verify(); return true;">

says that if the <input> element (or any of its children) gets the click
event, then the piece of code in the onclick attribute is performed.

115  ... HTML Events

We say "or any of its children" because in a case like:

<a href="..." onclick="...">A <em>very</em> 
   nice place to go</a>

you want the onclick to be performed even if the click actually
happens on the <em> element.

The element that was clicked on is called the target
The element that responds to the event is called an observer
Often target and observer are the same element.
Three things involved: an event, an observer, and a piece of script
(called a handler).



116  Problems with HTML Events

The event name is hard-wired into the language, rather than being a
parameter (so that to be able to deal with a new sort of event you have
to add a new attribute)
You can only use one scripting language (since you can't have two
attributes called onclick, one for JavaScript and one for VB)
The Event names are hardware dependent (e.g. click)
You are forced to intertwine document and scripting

117  XML Events

XML Events specifies the relationship between the event, observer and
handler in a different way: (HTML example)

<input type="button">
   <script ev:event="DOMActivate"
           type="text/javascript">
      DoSomething();
   </script>
</input>

The <script> element is a handler for the event DOMActivate and in
the absence of any other information, the parent element is the
observer (<input> in this case).
Note that <script> elements have to be performed differently from vanilla
HTML.



118  ... an advantage

This approach allows you to specify handlers for different scripting
languages: (HTML example)

<input type="button">
   <script ev:event="DOMActivate"
           type="text/javascript">
      ...
   </script>
   <script ev:event="DOMActivate"
           type="text/vbs">
      ...
   </script>
</input>

119  ... another advantage

This approach allows you to specify handlers for different events: (HTML
example)

<input type="button">
   <script ev:event="event1"
           type="text/javascript">
      ...
   </script>
   <script ev:event="event2"
           type="text/javascript">
      ...
   </script>
</input>



120  Actions

XForms does not use script, but in-built actions.
You've already seen one example with reset:

<trigger>
   <label>Clear all fields</label>
   <reset ev:event="DOMActivate"/>
</trigger>

<reset> is an action that resets all values in the instance to their original
values (a copy is made on startup).

121  Other actions

setvalue: for setting values in an instance

<setvalue ref="total" value="0"/>

send: submit an instance

<send submission="s1"/>

message: display a message

<message>Done!</message>

level="ephemeral": hover style
level="modeless": window style
level="modal": "OK" style



122  ... other actions

setfocus: set focus on a control

<setfocus control="inputdate"/>

action: for grouping

<action>
   <setvalue .../>
   <setvalue .../>
</action>

load: load a resource

<load resource="doc.html" show="new"/>

or

<load ref="homeurl" show="..."/>

123  ... other actions

dispatch: dispatch an event

<dispatch name="DOMActivate" target="btn1"/>

rebuild, recalculate, revalidate, refresh: almost never needed
toggle: see later under wizards
insert, delete, setindex: see later under repeat



124  Help, hint and alert

All forms controls have, as well as a <label> element, also <help>, <hint>
and <alert>.

help: is displayed if the user asks for help
hint: is for hover-type hints
alert: is for information if the value does not validate

<input ref="return">
   <label>Return</label>
   <alert>Must be a date later than today</alert>
</input>

125  Events

There are very many events you can catch in XForms, including initialisation
events, error notifications, values changing, validity changing, and
submission done.

<submission id="save"
    action="file:results.xml"
    method="put"
    replace="none">
      <message ev:event="xforms-submit-done">
         Saved!
      </message>
</submission> 
...
<submit submission="save">
   <label>Save</label>
</submit>



126  Other ways to specify the event-
observer-handler relationship

One way is to move the handler to some other part of the document, and
specify the relationship there (like some variants of HTML use the for
attribute on the <script> element):

 <action ev:observer="#button"
          ev:event="DOMActivate">
     ...
 </action>
...
<trigger id="button"/>

127  ... another way

Another way is to move the handler somewhere, and specify the relationship
in another place with the <listener> element:

<ev:listener observer="button"
             handler="dosomething"
             event="DOMActivate"/>
...
<action id="dosomething">...</action>
...
<trigger id="button"/>

This allows you to use the same handler for more than one observer
Note that the ev: prefix goes on the element in this case, not the
attributes.



128  ... another way

And finally, you can specify the relationship on the observer itself:

<action id="dosomething">
      ...
</action>
...
<trigger ev:handler="dosomething"
         ev:event="DOMActivate"/>

129  Wizards: toggle and switch

These are used to reveal and hide parts of the interface.

<switch>
   <case id="start">
      <group>
         <label>About you</label>
         <input ref="name"><label>Name:</label></input>
         <input ref="city"><label>City:</label></input>
         <input ref="email"><label>Email:</label></input>
      </group>
      <trigger>
         <label>Next</label>
         <toggle ev:event="DOMActivate" case="preferences"/>
      </trigger>
   </case>
   <case id="preferences">
   ...



130  ... toggle and switch

   ...
   <case id="preferences">
      <group>
         <label>Your preferences</label>
         <input ref="food"><label>Favorite food:</label></input>
         ...
      </group>      
      <trigger>
         <label>Next</label>
         <toggle ev:event="DOMActivate" case="history"/>
      </trigger>
   </case>
   <case id="history">
      ...
   </case>
   ...
</switch>

131  ... Adding a back button
   <case id="start">
      ...
   </case>
   <case id="preferences">
      <group>
         <label>Your preferences</label>
         <input ref="food"><label>Favorite food:</label></input>
         <input ref="drink"><label>Favorite drink:</label></input>
         <input ref="music"><label>Preferred music style:</label></input>
      </group>      
      <trigger>
         <label>Back</label>
         <toggle ev:event="DOMActivate" case="start"/>
      </trigger>
      <trigger>
         <label>Next</label>
         <toggle ev:event="DOMActivate" case="history"/>
      </trigger>
   </case>
   <case id="history">
      ...



132  Switch for simple/advanced views
<switch>
   <case id="simple">
      <input ref="to"><label>To: </label></input>
      <input ref="subject"><label>Subject: </label></input>
      <trigger>
         <label>More</label>
         <toggle ev:event="DOMActivate" case="advanced"/>
      </trigger>
   </case>
   <case id="advanced">
      <input ref="to"><label>To: </label></input>
      <input ref="subject"><label>Subject: </label></input>
      <input ref="cc"><label>Cc: </label></input>
      <input ref="bcc"><label>Bcc: </label></input>
      <trigger>
         <label>Less</label>
         <toggle ev:event="DOMActivate" case="simple"/>
      </trigger>
   </case>

133  Switch for editing
<switch>
   <case id="show">
      <output ref="name"><label>Name:</label></output>
      <output ref="city"><label>City:</label></output>
      <output ref="email"><label>Email:</label></output>
      <trigger>
         <label>Edit</label>
         <toggle ev:event="DOMActivate" case="edit"/>
      </trigger>
   </case>
   <case id="edit">
      <input ref="name"><label>Name:</label></input>
      <input ref="city"><label>City:</label></input>
      <input ref="email"><label>Email:</label></input>
      <trigger>
         <label>Done</label>
         <toggle ev:event="DOMActivate" case="show"/>
      </trigger>
   </case>
</switch>



134  Repeat

Repeat allows you to bind to repeating items in an instance

<shoppinglist>
   <buy><item>eggs</item><amount>6</amount></buy>
   <buy><item>milk</item><amount>2 litres</amount</buy>
   ...
</shoppinglist>

<repeat ref="buy" id="shoprepeat">
   <input ref="item"><label>Buy</label></input>
   <input ref="amount"><label>Amount</label></input>
</repeat>

Note that a repeat sets the XPath context.

135  Adding items

There is an action called insert that adds items to a collection:

 <trigger>
   <label>New</label>
   <insert ev:event="DOMActivate" nodeset="buy"
           position="before" at="1" />
</trigger>

This adds a new item at the start; you can add a new element at the end
with

<insert ... nodeset="buy" position="after" at="count(item)"/>

or add a new item after the current position with

<insert ... position="after" at="index(shoprepeat)"/>



136  Deleting items

To delete an item, you use the delete action:

<trigger>
   <label>Delete</label>
   <delete ev:event="DOMActivate" nodeset="item"
           at="index(todo-repeat)" />
</trigger>

The best place to include this is in the repeat, so you get one delete button
per item, but you could put it next to the 'new' button, when it would delete
the 'current' item.

137  Implementations

At release XForms had more implementations announced than any other
W3C spec had ever had at that stage
Different types of implementation:

plugin
native
'zero install'
proxy

Many big players doing implementations, e.g.
Novell
Oracle
IBM
Sun

"The age of the fat client is past" -- an implementor



138  The Future

Experience with XForms 1.0 has revealed a number of things:

Some ambiguities
Some missing functionality
Some 'low hanging fruit': additional features implemented on several
implementations, but in different ways

A future iteration of XForms will address these issues.

139  More Information

The origin: www.w3.org/Markup/Forms, and if your company is a member:
www.w3.org/Markup/Forms/Group

XForms: http://www.w3.org/TR/xforms/

XPath: http://www.w3.org/TR/xpath

XPath quick reference: http://www.mulberrytech.com/quickref/
XSLTquickref.pdf

XML Events: http://www.w3.org/TR/xml-events/

validator: www.xformsinstitute.com


