
XForms
Improving the Web Forms Experience

A CHI 2004 Tutorial

Steven Pemberton

CWI and W3C
Kruislaan 413

1098 SJ Amsterdam
The Netherlands

Steven.Pemberton@cwi.nl
www.cwi.nl/~steven

Table of Contents

ii. Agenda
iii. About the Instructor
iv. Objectives
1. Block 1

20. Block 2
33. Block 3
47. Block 4

CHI 2004 i Steven Pemberton

Agenda

The day is split into four blocks, each of 90 minutes.

Each block consists of about 45 minutes lecture, followed by 45 minutes practical.

The breaks between blocks are 30 minutes, with 90 minutes for lunch.

Block 1

Introduction, equivalents for HTML features.

Break

Block 2

Types, bindings and constraints.

Lunch

Block 3

Instance data, XPath and submission.

Break

Block 4

Events, wizards and shopping baskets.

CHI 2004 ii Steven Pemberton

About the Instructor

Steven Pemberton is a researcher at the CWI, The Centre for Mathematics and Computer Science, a
nationally-funded research centre in Amsterdam, The Netherlands, the first non-military Internet site in
Europe.

Steven's research is in interaction, and how the underlying software architecture can support the user. At
the end of the 80's he built a style-sheet based hypertext system called Views.

Steven has been involved with the World Wide Web since the beginning. He organised two workshops at
the first World Wide Web Conference in 1994, chaired the first W3C Style Sheets workshop, and the first
W3C Internationalisation workshop. He was a member of the CSS Working Group from its start, and is a
long-time member (now chair) of the HTML Working Group, and co-chair of the XForms Working Group. He
is co-author of (amongst other things) HTML 4, CSS, XHTML and XForms.

Steven is also Editor-in-Chief of ACM/interactions.

CHI 2004 iii Steven Pemberton

Objectives

HTML Forms, introduced in 1993, were the basis of the e-commerce revolution. After 10 years experience,
it has become clear how to improve on them, for the end user, the author, and the owners of the services
that the forms are addressing. XForms is a new technology, announced in October 2003, intended to
replace HTML Forms.

The advantages of XForms include:

It improves the user experience: XForms has been designed to allow much to be checked by the browser,
such as types of fields being filled in, or that one date is later than another. This reduces the need for
round trips to the server or for extensive script-based solutions, and improves the user experience by
giving immediate feedback to what is being filled in.
It is XML, and it can submit XML.
It combines existing XML technologies: Rather than reinventing the wheel, XForms uses a number of
existing XML technologies, such as XPath for addressing and calculating values, and XML Schemas for
defining data types. This has a dual benefit: ease of learning for people who already know these
technologies, and implementors can use off-the-shelf components to build their systems.
It is internationalized .
It is accessible: XForms has been designed so that it will work equally well with accessible technologies
(for instance for blind users) and with traditional visual browsers.
It is device independent: The same form can be delivered without change to a traditional browser, a
PDA, a mobile phone, a voice browser, and even some more exotic emerging clients such as an Instant
Messenger. This greatly eases providing forms to a wide audience, since forms only need to be authored
once.
It is easier to author complicated forms.

The presenter is one of the authors of the XForms specifications, and is chair of the Forms Working Group
that produced the technology.

This tutorial works from a basis of HTML Forms, and introduces XForms step-by-step. It covers essentially
all of XForms except some technical details about events, and no more than a passing reference to the use
of Schemas.

Emphasis is on how to improve the user experience, and how XForms improves accessibility and device
independence, and makes the author’s life easy in producing a better experience.

CHI 2004 iv Steven Pemberton

Plan

9.00-9.45 Introduction. HTML equivalents
9.45-10.30 Practical: Converting HTML to XForms
10.30-11.00 Break
11.00-11.45 Types; bind; constraints
11.45-12.30 Practical: Adapting to earlier answers
12.30-13.30 Lunch
13.30-14.15 Instance data; XPath; submission variants.
14.15-15.00 Practical: Editing XML with XForms
15.00-15.30 Break
15.30-16.15 Events, shopping baskets and wizards
16.15-17.00 Practical: A shopping basket-style form.
17.00 End

Forms

Forms have been the basis of the e-commerce revolution
You find them everywhere on the web: search, login, email, shopping,
blogs, wiki, configuring hardware, ...
HTML Forms are really quite simple, and it is quite startling how much has
been done with them
But they have some problems

CHI 2004 1 Steven Pemberton

Problems with HTML Forms

Presentation oriented
No types
Reliance on scripting
Problems with non-Western scripts
Ping-ponging to the server
Impoverished data-model
Hard to manage, hard to see what is returned
No support for wizards and shopping carts etc.

Soundbite: "Javascript accounts for 90% of our headaches in complex forms,
and is extremely brittle and unmaintainable."

XForms

e-forms are a current hot topic.
The W3C XForms working group started out as a sub-group of the HTML
working group, but soon spun off as an independent group when it
emerged how much work there was to be done.
XForms has been designed based on an analysis of HTML Forms, what they
can do, and what they can't.

CHI 2004 2 Steven Pemberton

The Approach

The essence is to separate what is being returned from how the values are
filled in.
The model specifies an instance (the values being collected) and details
about them:

Types, restrictions
Initial values, Relations between values

The body of the document then binds forms controls to values in the
instance

Advantages

XForms improves the user experience:
XForms has been designed to allow much to be checked by the browser,
such as types of fields being filled in, or that one date is later than
another. This reduces the need for round trips to the server or for
extensive script-based solutions, and improves the user experience by
giving immediate feedback to what is being filled in.
It is XML, and it can submit XML:
More and more data is in XML; XForms allows you access to that data in a
uniform manner.

CHI 2004 3 Steven Pemberton

... Advantages

It combines existing XML technologies:
Rather than reinventing the wheel, XForms uses a number of existing XML
technologies, such as XPath for addressing and calculating values, and
XML Schemas for defining data types. This has a dual benefit: ease of
learning for people who already know these technologies, and
implementors can use off-the-shelf components to build their systems.
It is internationalized:
Thanks to using XML, there are no problems with loading and submitting
non-Western data.
It is accessible:
XForms has been designed so that it will work equally well with accessible
technologies (for instance for blind users) and with traditional visual
browsers.

... Advantages

It is device independent:
The same form can be delivered without change to a traditional browser, a
PDA, a mobile phone, a voice browser, and even some more exotic
emerging clients such as an Instant Messenger. This greatly eases
providing forms to a wide audience, since forms only need to be authored
once.
It is easier to author complicated forms:
By design it supports things that can only be done with scripting in HTML
Forms.

CHI 2004 4 Steven Pemberton

Basic structure of XForms

Take this simple HTML form:

<html>
<head><title>Search</title></head>
<body>
 <form action="http://example.com/search"
 method="get">
 Find <input type="text" name="q">
 <input type="submit" value="Go">
 </form>
</body>
</html>

The main difference in XForms is that details of the values collected and how
to submit them are gathered in the head, in an element called model; only
the form controls are put in the body.

... basic structure

So in this case the minimum you need in the head is (XForms elements and
attributes are in lower case):

<model>
 <submission
 action="http://example.com/search"
 method="get"
 id="s"/>
</model>

The <form> element is now no longer needed; the controls in the body look
like this:

<input ref="q"><label>Find</label></input>
<submit submission="s">
 <label>Go</label>
</submit>

CHI 2004 5 Steven Pemberton

... basic structure

What you can hopefully work out from this is that form controls have a
<label> element as child, the <input> uses "ref" instead of "name", and
there is a separate submit control that links to the details of the submission
in the head. So the complete example is:

Complete XForms search example

<h:html xmlns:h="http://www.w3.org/1999/xhtml"
 xmlns="http://www.w3.org/2002/xforms">
<h:head>
 <h:title>Search</h:title>
 <model>
 <submission
 action="http://example.com/search"
 method="get" id="s"/>
 </model>
</h:head>
<h:body>
 <h:p>
 <input ref="q"><label>Find</label></input>
 <submit submission="s"><label>Go</label>
 </submit>
 </h:p>
</h:body></h:html>

CHI 2004 6 Steven Pemberton

Namespaces

Another obvious difference is the use of h: prefixes
Nothing to do with XForms, but with XML
Namespace says which language elements belong to
One language may be the 'default' language
In the above XForms is the default
XHTML could have been made the default:

HTML as default namespace

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://www.w3.org/2002/xforms">
<head><title>Search</title>
 <f:model>
 <f:submission method="get" id="s"
 action="http://example.com/search"/>
 </f:model>
</head>
<body>
 <p><f:input ref="q">
 <f:label>Find</f:label>
 </f:input> <f:submit submission="s">
 <f:label>Go</f:label>
 </f:submit>
 </p>
</body></html>

CHI 2004 7 Steven Pemberton

Choice of prefixes

You can make nothing the default, and prefix all elements
You can choose any prefix; h: or x: or html: or form:, or ...

Making XForms documents interoperable

Unfortunately , Microsoft Internet Explorer does not allow you to choose
default language
HTML must be default
Some magic words are needed, but your documents will also run on true
XML systems

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://www.w3.org/2002/xforms">
<head>
 <object width="0" height="0" id="FormsPlayer"
 classid="CLSID:4D0ABA11-C5F0-4478-991A-375C4B648F58">
 FormsPlayer failed to load
 </object>
 <?import namespace="f"
 implementation="#FormsPlayer"?>

CHI 2004 8 Steven Pemberton

XForms equivalents for simple HTML Forms
features

Now to compare one for one HTML forms controls with XForms equivalents

Simple Text Input

To input a single text element

First name: <input type="text" name="fname">

is written

<input ref="fname"><label>First name:</label>
</input>

There is no need to indicate that it is text: in the absence of any other
information, by default it is text (called string in XForms).

We will see later how to give any control an initial value.

CHI 2004 9 Steven Pemberton

Textarea

To input multiline text

Message:
 <textarea name="message" rows="20" cols="80">
 </textarea>

is written

<textarea ref="message"><label>Message:</label>
</textarea>

Styling controls

Styling is done using a style sheet. For instance:

textarea[ref="message"]
 { font-family: sans-serif;
 height: 20em; width: 80em }

or

textarea[ref="message"]
 { font-family: serif;
 height: 2cm; width: 20% }

If you want all your textareas to have the same dimensions, you can use

textarea { font-family: sans-serif;
 height: 20em; width: 80em }

CHI 2004 10 Steven Pemberton

Adding a stylesheet

The easiest way to include a style sheet in your document is to add this at
the beginning of the document:

<?xml version="1.0"?>
<?xml-stylesheet href="style.css"
 type="text/css"?>

where 'style.css' is the name of your stylesheet, although in XHTML you can
also say in the <head>:

<link rel="stylesheet" type="text/css"
 href="style.css"/>

Radio Buttons

Radio buttons select one value from a set:

Gender:
<input type="radio" name="sex" value="M"> Male
<input type="radio" name="sex" value="F"> Female

becomes

<select1 ref="sex">
 <label>Gender:</label>
 <item>
 <label>Male</label><value>M</value>
 </item>
 <item>
 <label>Female</label><value>F</value>
 </item>
</select1>

CHI 2004 11 Steven Pemberton

Presentation of controls

Controls principally represent their purpose
select and select1 may be presented as radio buttons, a (scrollable)
select area, or a menu.
Use the hint appearance="full" to suggest presentation as radio buttons.
Use appearance="compact" to suggest a select area
Use appearance="minimal" to suggest a menu

We will see later how to preselect a value.

Checkboxes

HTML Checkboxes select zero or more from a list.

Flavors:
<input type="checkbox" name="flavors" value="v"> Vanilla
<input type="checkbox" name="flavors" value="s"> Strawberry
<input type="checkbox" name="flavors" value="c"> Chocolate

is written

CHI 2004 12 Steven Pemberton

... checkboxes

<select ref="flavors" appearance="full">
 <label>Flavors:</label>
 <item>
 <label>Vanilla</label><value>v</value>
 </item>
 <item>
 <label>Strawberry</label><value>s</value>
 </item>
 <item>
 <label>Chocolate</label><value>c</value>
 </item>
</select>

Menus

Depending on the presence of the multiple attribute in HTML, menus select
one, or zero or more from a list of options. You either use <select1> to
select a single choice, or <select> to select zero or more.

Month:
<select multiple name="spring">
 <option value="Mar">March</option>
 <option value="Apr">April</option>
 <option>May</option>
</select>

would be written:

CHI 2004 13 Steven Pemberton

... menus

<select ref="spring" appearance="compact">
<label>Month:</label>
<item>
 <label>March</label><value>Mar</value>
</item>
<item>
 <label>April</label><value>Apr</value>
</item>
<item>
 <label>May</label><value>May</value>
</item>
</select>

If multiple isn't on the HTML select, use select1 instead.

File Select

To select a file to be uploaded

<form method="post"
 enctype="multipart/form-data" ...>
 ...
File: <input type="file" name="attachment">

is written

<submission method="form-data-post" .../>
...
<upload ref="attachment">
 <label>File:</label>
</upload>

CHI 2004 14 Steven Pemberton

Passwords

Password: <input type="password" name="pw">

is written

<secret ref="pw">
 <label>Password:</label>
</secret>

Reset

Hardly anyone actually uses reset buttons
Yet very many Web forms include them.
Often the reset button with the text "Reset" is larger than the submission
button that is often marked "OK" (and there's no undo)
While it is possible to create a reset button in XForms, it is deliberately
harder to do:

<input type="reset">

is therefore written

<trigger>
 <label>Clear all fields</label>
 <reset ev:event="DOMActivate"/>
</trigger>

CHI 2004 15 Steven Pemberton

Buttons

Buttons have no predefined behavior, but have a behavior attached to them
which is triggered when a relevant event occurs.

The button element

<input type="button" value="Show"
 onclick="show()">

can be written

<trigger><label>Show</label>
 <h:script ev:event="DOMActivate"
 type="text/javascript">show()
 </h:script>
</trigger>

or

... buttons

<trigger ev:event="DOMActivate"
 ev:handler="#show">
 <label>Show</label>
</trigger>

where "#show" locates the element (for instance a script element) that
implements the behavior:

<script id="show" ...>...

XForms has a number of built in actions that can be executed by a button;
see the reset button above for an example.

CHI 2004 16 Steven Pemberton

... buttons

The fact that the event attribute has a prefix, means that you have to add
the following XML Namespace to the head:

xmlns:ev="http://www.w3.org/2001/xml-events"

We will be dealing more with events later.

Image Buttons

<input type="image" src="..." ...>

is written by putting an image into the <label> element:

<trigger...><label><h:img src="star.gif" .../>
</label></trigger>

or by specifying it in a stylesheet

<trigger id="activate" ...>

with a stylesheet rule

trigger#activate {
 background-image: url(button.png);
 background-repeat: none}

(Likewise for <submit>.)

CHI 2004 17 Steven Pemberton

Optgroup

Drink:
<select name="drink">
 <option selected value="none">None</option>
 <optgroup label="Soft drinks">
 <option value="h2o">Water</option>
 <option value="m">Milk</option>
 <option value="oj">Juice</option>
 </optgroup>
 <optgroup label="Wine and beer">
 <option value="rw">Red Wine</option>
 <option value="ww">White Wine</option>
 <option value="b">Beer</option>
 </optgroup>
</select>

is written

... optgroup

<select1 ref="drink">
 <label>Drink:</label>
 <item><label>None</label><value>none</value></item>
 <choices>
 <label>Soft drinks</label>
 <item><label>Water</label><value>h2o</value></item>
 <item><label>Milk</label><value>m</value></item>
 <item><label>Juice</label><value>oj</value></item>
 </choices>
 <choices>
 <label>Wine and beer</label>
 <item><label>Red wine</label><value>rw</value></item>
 <item><label>White wine</label><value>ww</value></item>
 <item><label>Beer</label><value>b</value></item>
 </choices>
</select1>

CHI 2004 18 Steven Pemberton

Grouping Controls

<fieldset>
 <legend>Personal Information</legend>
 Last Name: <input name="lastname" type="text">
 First Name: <input name="firstname" type="text">
 Address: <input name="address" type="text">
</fieldset>

is written

<group>
 <label>Personal Information</label>
 <input ref="lastname"><label>Last name:</label></input>
 <input ref="firstname"><label>First name:</label></input>
 <input ref="address"><label>Address:</label></input>
</group>

Note the consistent use of <label>.

Hidden Controls

As you will see shortly, there is no need for hidden controls in XForms.

CHI 2004 19 Steven Pemberton

Practical: Converting an existing HTML Form

Take the file practical1.html and view it in your browser. Now create an
equivalent XForm

You will find a template file template.xfm that you can copy to start from

Output Controls

XForms has two controls that are not in HTML, output and range.

The output control allows you to include values as text in the document.

Your current total is: <output ref="sum"/>

or

<output ref="sum"><label>Total</label></output>

This can be used to allow the user to preview values being submitted.

CHI 2004 20 Steven Pemberton

... output

You can also calculate values:

Total volume:
 <output value="height * width * depth"/>

(where height, width and depth are values collected by other controls.)

Range Controls

This control allows you to specify a constraint on a value.

<range ref="volume"
 start="1" end="10" step="0.5"/>

A user agent may represent this as a slider or similar.

CHI 2004 21 Steven Pemberton

Submitted Values

The attribute named ref on each control actually refers to a child of an
instance element in the model, where the values are gathered before
submission.
If there is no instance element there (as in the search example above),
then one is silently created.

Making the Submitted Values Explicit

It is good practice to include an explicit instance, like this for the search
example:

<model>
 <instance>
 <data xmlns=""><q/></data>
 </instance>
 <submission
 action="http://example.com/search"
 method="get" id="s"/>
</model>
...
<input ref="q">
 <label>Search</label>
</input>

CHI 2004 22 Steven Pemberton

... explicit values

You immediately see that the only data value submitted is called "q".
The system will now also check that when you say ref="q" that there
really is a q in the instance.
It is essential that you put the xmlns="" on your instance data, to tell the
processor that the elements here are neither XHTML nor XForms
elements.
We've used the tag <data> here, but you can choose any tag you like.

Initial Values

For initialising controls including initialising checked boxes, and selected
menu items etc., you just supply an instance with pre-filled values. For the
search example:

<instance>
 <data xmlns=""><q>Keywords</q></data>
</instance>

would pre-fill the text control with the word Keywords.

CHI 2004 23 Steven Pemberton

... initial values for checkboxes

<select ref="flavors">
 <label>Flavors:</label>
 <item>
 <label>Vanilla</label><value>v</value>
 </item>
 <item>
 <label>Strawberry</label><value>s</value>
 </item>
 <item>
 <label>Chocolate</label><value>c</value>
 </item>
</select>

You can preselect vanilla and strawberry like this:

<instance>
 <data xmlns=""><flavors>v s</flavors></data>
</instance>

... initial values for menus

Similarly for the menus example, which looked like this:

<select ref="spring">
<label>Month:</label>
<item><label>March</label><value>Mar</value></item>
<item><label>April</label><value>Apr</value></item>
<item><label>May</label><value>May</value></item>
</select>

You can preselect March and April like this:

<instance>
 <data xmlns=""><spring>Mar Apr</spring></data>
</instance>

CHI 2004 24 Steven Pemberton

... initial values for choices

And for the optgroup example:

<select1 ref="drink">
 <label>Drink:</label>
 <item><label>None</label><value>none</value></item>
 <choices>
 <label>Soft drinks</label>
 <item><label>Water</label><value>h2o</value></item>
 <item><label>Milk</label><value>m</value></item>
 <item><label>Juice</label><value>oj</value></item>
 </choices>
 <choices>
 <label>Wine and beer</label>
 <item><label>Red wine</label><value>rw</value></item>
 <item><label>White wine</label><value>ww</value></item>
 <item><label>Beer</label><value>b</value></item>
 </choices>
</select1>

... choices

Preselect the value none like this:

<instance>
 <data xmlns=""><drink>none</drink></data>
</instance>

CHI 2004 25 Steven Pemberton

Hidden Values

Any values in the instance that haven't been bound to by a control are by
definition not visible to the user.
Therefore there is no need for hidden controls
To add a hidden value results to the search form, we change the instance
to:

<instance>
 <data xmlns="">
 <q/>
 <results>10</results>
 </data>
</instance>

Getting Initial Values From Elsewhere

You don't have to specify the initial instance in the document itself,
because you can load it from an external resource, like this:

<instance
 src="http://example.org/templates/t21.xml"/>

The resource then contains your data, like

<data><w>640</w><h>480</h><d>8</d></data>

You don't need the xmlns="" in external instances, though it doesn't do
any harm either.
You can use a local file, like src="file:data.xml"

CHI 2004 26 Steven Pemberton

'Editing' any XML document

External instances give you immense power
The ref attribute can be any XPath expression
XPath lets you select any element or attribute in an XML document
You can bring in any XML document as instance, even an XHTML document

... example

For instance to bind to the <title> element in an XHTML document

<input ref="h:html/h:head/h:title">...

(i.e. the title element within the head element within the html element,
all in the XHTML namespace)
or the class attribute on the body element:

<input ref="h:html/h:body/@class">...

Note the need to put prefixes on elements that are in a namespace. This is
why the xmlns="" attribute is needed on instance data.

CHI 2004 27 Steven Pemberton

Editing example

Suppose a shop has very unpredictable opening hours (perhaps it depends
on the weather), and they want to have a Web page that people can go to to
see if it is open. Suppose the page in question has a single paragraph in the
body:

<p>The shop is closed today.</p>

Well, rather than teaching the shop staff how to write HTML to update this,
we can make a simple form to edit the page instead:

Editing XHTML page

<model>
 <instance
 src="http://www.example.com/shop.xhtml"/>
 <submission
 action="http://www.example.com/shop.xhtml"
 method="put" id="change"/>
</model
...
<select1 ref="/h:html/h:body/h:p/h:strong">
<label>The shop is now:</label>
<item><label>Open</label><value>open</value></item>
<item><label>Closed</label><value>closed</value></item>
</select1>
<submit submission="change"><label>OK</label></submit>

The page must be correct XHTML (not HTML)
The server must accept the "put" method

CHI 2004 28 Steven Pemberton

XPath

XPath selectors look like filename selectors

Relative: "q", "person/name/first"
Absolute: "/data/q"
Attributes of elements with "@": "h:img/@alt"
Selection is relative to the context
At the top level the context is the instance itself, but some bindings set a
new context
Current: .
Parent: ..
Any descendent: "h:body//h:p"
There are other selectors, but you seldom need them

... XPath

A selector selects all elements matching the selector.
In places in XForms where only one is needed, the first is used, eg in
ref="h:body/h:p"
There are also methods of specifying which you want:

employees/person[1]
employees/person[position()=last()]
tutorial[name="xforms"]/tutor

CHI 2004 29 Steven Pemberton

Submitting

We shall now look at details of submission, like multiple submissions,
submission methods, and what happens after submission.

Multiple Submissions

HTML only allows you to submit the data to one server, in a single way.
XForms allows you to submit the data to different servers, or in different
ways.
For instance, the search example could allow the user to submit the
search string to different search engines:

<model>
 <instance><data xmlns=""><q/></data></instance>
 <submission id="com"
 action="http://example.com/search"
 method="get"/>
 <submission id="org"
 action="http://example.org/search"
 method="get"/>
</model>

CHI 2004 30 Steven Pemberton

... multiple submissions

and then in the body:

<input ref="q"><label>Find:</label></input>
<submit submission="org">
 <label>Search example.org</label>
</submit>
<submit submission="com">
 <label>Search example.com</label>
</submit>

Find:

Search example.org Search example.com

Submission Methods

Just as with HTML there are a number of ways to submit the data.
In HTML how to submit is expressed in two attributes, method and enctype
In XForms it is expressed in method only

HTML and XForms Equivalent Submission Methods
HTML XForms

method="get" method="get"

method="post"
enctype="application/x-www-form-urlencoded"

method="urlencoded-post"

method="post"
enctype="multipart/form-data"

method="form-data-post"

CHI 2004 31 Steven Pemberton

... submission methods

There are some new ways of submission; the most interesting are:
method="post": posts the results as XML
method="put": puts the results as XML.
An interesting use of this is something like:

<submission
 action="file:results.xml"
 method="put"/>

which saves your results to the local filestore by using the file: scheme.
For a large form, you could have separate 'save to disk' and 'submit'
buttons.

Practical: Editing an XML document with
XForms

CHI 2004 32 Steven Pemberton

Life after Submit

The default when values have been submitted is for the result returned by
the server to replace the whole document, just as with HTML.
There are other options, specified with the attribute replace on the
submission element.
replace="instance" replaces only the instance
replace="none" leaves the form document as-is without replacing it.

... example of different submissions

For instance, for an address-change form for a bank, you can provide two
buttons, one to prefill the form with name and address based on the
account number, and one to submit the changed results
The 'find' button replaces the instance with a new instance containing the
details of the person with the account number, which you can then
change;
the 'submit' button will then send the changed instance back, leaving the
form as-is in the browser to allow further changes or to input a new
account number to prefill.

CHI 2004 33 Steven Pemberton

... example

<model>
 <instance><data xmlns="">
 <accountnumber/><name/><address/>
 </data></instance>
 <submission method="get"
 action="http://example.com/prefill"
 id="prefill" replace="instance"/>
 <submission method="get"
 action="http://example.com/change"
 id="change" replace="none"/>
</model>
...
<input ref="accountnumber"><label>Account Number</label></input>
<submit submission="prefill"><label>Find</label></submit>
<input ref="name"><label>Name</label></input>
<textarea ref="address"><label>Address</label></textarea>
<submit submission="change"><label>Submit</label></submit>

Controlling Controls

In HTML you can specify that controls are disabled, or read-only but the
only way you can change the property is with scripting.
XForms offers easy ways to control these properties, but has other
properties you can specify as well

CHI 2004 34 Steven Pemberton

Properties

The 'model binding' properties that you can control are:

that a value is only relevant in certain circumstances (for instance name
of spouse only if married)
that a value is readonly in certain circumstances
that a value is required (that a value must be supplied before the form
can be submitted)
that a value has a constraint (for instance that the year of birth is earlier
than the year of death)
that the value must conform to a type (for instance that it must be an
integer), or
that it is calculated from other values (for instance that the total is the
sum of some other values).

... properties

Note that in XForms it is the collected value that has the property, not the
control, but the property shows up on all controls bound to the value.

These properties use a <bind> element that goes in the <model>. To use
bind, you must have an explicit <instance> element.

CHI 2004 35 Steven Pemberton

Disabled Controls = relevant

To disable controls you use the relevant property. For instance, to say that
the credit card number only needs to be filled in if the person is paying by
credit, you can write:

<model>
 <instance><data xmlns="">
 <amount/><method/><cc/><expires/>
 </data></instance>
 <bind nodeset="cc"
 relevant="../method='credit'"/>
 <bind nodeset="expires"
 relevant="../method='credit'"/>
</model>

... relevant

This states that the fields cc and expires are only relevant when method
has the value credit, and will therefore be disabled for other values of
method.
You have to say "../method" rather than just method, because in a bind
you are talking about the thing referred to in the nodeset (which might be
a structured element itself).
This is an XPath change of context we talked about earlier. It is as if you
have done a 'change directory' to that element.
If you said just "method", it would refer to a child element of cc or
expires.
You can also use absolute addressing, like /data/method, which would
have the same effect as ../method in this case.

CHI 2004 36 Steven Pemberton

... relevant

A browser is free to decide how disabled controls are presented (and it
may also allow you to specify in a stylesheet how they should look), but
typically they will be grayed out in the normal way.

... writing the controls

The controls could be written like this (but note that there is no indication
that they may get disabled: that is inherited from the value they refer to):

<select1 ref="method">
 <label>Method of payment:</label>
 <item>
 <label>Cash</label>
 <value>cash</value>
 </item>
 <item>
 <label>Credit card</label>
 <value>credit</value>
 </item>
</select1>
<input ref="cc"><label>Card number:</label></input>
<input ref="expires"><label>Expiry date:</label></input>

CHI 2004 37 Steven Pemberton

... using structured instance values

If we used a structured instance, we could simplify this:

<model>
 <instance><data xmlns="">
 <amount/><method/>
 <cc>
 <number/><expires/>
 </cc>
 </data></instance>
 <bind nodeset="cc"
 relevant="../method='credit'"/>
</model>

and the controls then reference the children of 'cc':

<input ref="cc/number"><label>Card number:</label></input>
<input ref="cc/expires"><label>Expiry date:</label></input>

... using grouping on the controls

Instead of:

<input ref="cc/number"><label>Card number:</label></input>
<input ref="cc/expires"><label>Expiry date:</label></input>

grouping can be used to reset the context of the refs:

<group ref="cc">
 <input ref="number"><label>Card number:</label></input>
 <input ref="expires"><label>Expiry date:</label></input>
</group>

CHI 2004 38 Steven Pemberton

... works on buttons too

Although putting a ref on a trigger has no effect on the instance value being
referred to, the relevance of the value can be used to affect the trigger:

<trigger ref="nextok">
 <label>Next</label>
 ...
</trigger>

Readonly Controls

Similarly to relevant, you can specify a condition under which a value is
read-only. For instance:

<model>
 <instance><data xmlns="">
 <variant>basic</variant>
 <color>black</color>
 </data></instance>
 <bind nodeset="color"
 readonly="../variant='basic'"/>
</model>

This example says that the default value of color is black, and can't be
changed if variant has the value basic.

CHI 2004 39 Steven Pemberton

Required Controls

A useful new feature in XForms is the ability to state that a value must be
supplied before the form is submitted.

The simplest case is just to say that a value is always required. For instance,
with the search example:

<model>
 <instance><data xmlns=""><q/></data></instance>
 <bind nodeset="q" required="true()"/>
 <submission .../>
</model>

... required

but like the readonly and relevant attributes, you can use any XPath
expression to make a value conditionally required:

<bind nodeset="state"
 required="../country='USA'"/>

which says that the value for state is required when the value for country
is "USA".

It is up to the browser to decide how to tell you that a value is required, but
it may also allow you to define it in a stylesheet.

CHI 2004 40 Steven Pemberton

Constraint Property

This property allows you to add extra constraints to a value. For instance:

<bind nodeset="year" constraint=". > 1970"/>

constrains the year to be after 1970.

Note the XPath use of "." to mean "this value".

">" has to be written as > because of XML rules, but you should be used
to that already.

Calculate Property

It is possible to indicate that a value in the instance is calculated from other
values. For instance:

<bind ref="volume"
 calculate="../height * ../width * ../depth"/>

When a value is calculated like this, it automatically becomes readonly.

CHI 2004 41 Steven Pemberton

... calculate functions

There are a number of functions available, including:

arithmetic: + - * div mod
string manipulation: concat, substring, ...
date handling: @@@
booleans: <= < >= > = != and or
conditionals using 'if':

<bind nodeset="taxrate"
 calculate="if(../salary > 50000, 50, 33)"/>

Types

Another useful new feature is the ability to give a value a type. The
browser can then check that the values match the required type.
For instance, if the search example is actually only for searching for
numbers (for instance for searching in a bug database), then we only have
to add:

<bind nodeset="q" type="xsd:integer"/>

This will prevent the value being submitted unless it is an integer.
You need to add xmlns:xsd="http://www.w3.org/2001/XMLSchema" to
the root element.

CHI 2004 42 Steven Pemberton

... types

If you want to collect the URL of someone's homepage, then you can
specify

<bind nodeset="homepage" type="xsd:anyURI"/>

Some user agents do special things when they know the data type of a
value. For instance, when they know that the value is a date, they pop up
a date picker rather than require you to type in the characters of the date.

... types

There are a number of useful built-in types you can use, including:

xsd:string, xsd:normalizedString (a string with whitespace characters
replaced by the space character).
xsd:integer, xsd:nonPositiveInteger, xsd:negativeInteger,
xsd:nonNegativeInteger, xsd:positiveInteger
xsd:boolean
xsd:decimal, xsd:double
xsd:date, xsd:time, xsd:dateTime
xsd:anyURI (A URI)
xforms:listItems (A space-separated list of strings for use with select)
xforms:listItem (A string without any spaces)

CHI 2004 43 Steven Pemberton

Combining Properties

If you have several binds referring to the same value, you can combine
them:

<bind nodeset="q" type="xsd:integer"
 required="true()"/>

More than one form in a document

For more than one form in a document, you can use one model per form,
but then you need to identify which form each control refers to
You do this with an id attribute on each model, and a model attribute on
each control:

CHI 2004 44 Steven Pemberton

... more than one form

<model id="search">
 <instance><data xmlns=""><q/></data></instance>
 <submission id="s" .../>
</model>
<model id="login">
 <instance><data xmlns=""><user/><passwd/></data></instance>
 <submission id="l" .../>
</model>
...
<input model="search" ref="q"><label>Find</label></input>
<submit submission="s"><label>Go</label></submit>
...
<input model="login" ref="user"><label>User name</label></input>
<secret model="login" ref="passwd"><label>Password</label></input>
<submit submission="l"><label>Log in</label></submit>

More than one instance in a model

You can have more than one instance in a model.
You identify which one you want with an id attribute and the use of the
instance() function.
If you don't identify which, then the first instance in the model is used

CHI 2004 45 Steven Pemberton

... more than one instance

<model>
 <instance id="currencies">
 <currencies>
 <currency name="USD">125</currency>
 ...
 </instance>
 <instance id="costs">
 <item>
 <date/><amount/><currency/>
 ...
 </item>
 </instance>
</model>
...
<input ref="instance('costs')/date">
 <label>Date</date>
</input>

... more than one instance

<model>
 <instance id="tax" src="/finance/taxes"/>
 <instance>
 <employee xmlns="">

Practical: Adapting to earlier answers

CHI 2004 46 Steven Pemberton

Events

XForms uses a specification called XML Events to deal with eventing
The important thing to know about XML Events is that it uses the same
event mechanism as HTML, only written differently.
In HTML:

<input type="submit"
 onclick="verify(); return true;">

says that if the <input> element (or any of its children) gets the click
event, then the piece of code in the onclick attribute is performed.

... HTML Events

We say "or any of its children" because in a case like:

A very
 nice place to go

you want the onclick to be performed even if the click actually happens
on the element.

The element that was clicked on is called the target
The element that responds to the event is called an observer
Often target and observer are the same element.
Three things involved: an event, an observer, and a piece of script (called
a handler).

CHI 2004 47 Steven Pemberton

Problems with HTML Events

The event name is hard-wired into the language, rather than being a
parameter (so that to be able to deal with a new sort of event you have to
add a new attribute)
You can only use one scripting language (since you can't have two
attributes called onclick, one for JavaScript and one for VB)
The Event names are hardware dependent (e.g. click)
You are forced to intertwine document and scripting

XML Events

XML Events specifies the relationship between the event, observer and
handler in a different way: (HTML example)

<input type="button">
 <script ev:event="DOMActivate"
 type="text/javascript">
 DoSomething();
 </script>
</input>

The <script> element is a handler for the event DOMActivate and in the
absence of any other information, the parent element is the observer
(<input> in this case).
Note that <script> elements have to be performed differently from vanilla
HTML.

CHI 2004 48 Steven Pemberton

... an advantage

This approach allows you to specify handlers for different scripting
languages: (HTML example)

<input type="button">
 <script ev:event="DOMActivate"
 type="text/javascript">
 ...
 </script>
 <script ev:event="DOMActivate"
 type="text/vbs">
 ...
 </script>
</input>

... another advantage

This approach allows you to specify handlers for different events: (HTML
example)

<input type="button">
 <script ev:event="event1"
 type="text/javascript">
 ...
 </script>
 <script ev:event="event2"
 type="text/javascript">
 ...
 </script>
</input>

CHI 2004 49 Steven Pemberton

Actions

XForms does not use script, but in-built actions.
You've already seen one example with reset:

<trigger>
 <label>Clear all fields</label>
 <reset ev:event="DOMActivate"/>
</trigger>

<reset> is an action that resets all values in the instance to their original
values (a copy is made on startup).

Other actions

setvalue: for setting values in an instance

<setvalue ref="total" value="0"/>

send: submit an instance

<send submission="s1"/>

message: display a message

<message>Done!</message>

level="ephemeral": hover style
level="modeless": window style
level="modal": "OK" style

CHI 2004 50 Steven Pemberton

... other actions

setfocus: set focus on a control

<setfocus control="inputdate"/>

action: for grouping

<action>
 <setvalue .../>
 <setvalue .../>
</action>

load: load a resource

<load resource="doc.html" show="new"/>

or

<load ref="homeurl" show="..."/>

... other actions

dispatch: dispatch an event

<dispatch name="DOMActivate" target="btn1"/>

rebuild, recalculate, revalidate, refresh: almost never needed
toggle: see later under wizards
insert, delete, setindex: see later under repeat

CHI 2004 51 Steven Pemberton

Help, hint and alert

All forms controls have, as well as a <label> element, also <help>, <hint>
and <alert>.

help: is displayed if the user asks for help
hint: is for hover-type hints
alert: is for information if the value does not validate

<input ref="return">
 <label>Return</label>
 <alert>Must be a date later than today</alert>
</input>

Events

There are very many events you can catch in XForms, including initialisation
events, error notifications, values changing, validity changing, and
submission done.

<submission id="save"
 action="file:results.xml"
 method="put"
 replace="none">
 <message ev:event="xforms-submit-done">
 Saved!
 </message>
</submission>
...
<submit submission="save">
 <label>Save</label>
</submit>

CHI 2004 52 Steven Pemberton

Other ways to specify the event-observer-
handler relationship

One way is to move the handler to some other part of the document, and
specify the relationship there (like some variants of HTML use the for
attribute on the <script> element):

 <action ev:observer="#button"
 ev:event="DOMActivate">
 ...
 </action>
...
<trigger id="button"/>

... another way

Another way is to move the handler somewhere, and specify the relationship
in another place with the <listener> element:

<ev:listener observer="button"
 handler="dosomething"
 event="DOMActivate"/>
...
<action id="dosomething">...</action>
...
<input type="submit" id="button"/>

This allows you to use the same handler for more than one observer
Note that the ev: prefix goes on the element in this case, not the
attributes.

CHI 2004 53 Steven Pemberton

... another way

And finally, you can specify the relationship on the observer itself:

<action id="dosomething">
 ...
</action>
...
<trigger ev:handler="dosomething"
 ev:event="DOMActivate"/>

Wizards: toggle and switch

These are used to reveal and hide parts of the interface.

<switch>
 <case id="inputname">
 <input ref="name">...</input>
 <trigger>
 <label>Next</label>
 <toggle case="inputage"
 ev:event="DOMActivate" />
 </trigger>
 </case>
 <case id="inputage">
 <input ref="age">...</input>
 <trigger>...</trigger>
 </case>
 ...
</switch>

CHI 2004 54 Steven Pemberton

Repeat

Repeat allows you to bind to repeating items in an instance

<shoppinglist>
 <buy>eggs</buy>
 <buy>milk</buy>
 ...
</shoppinglist>

<repeat ref="buy" id="shoprepeat">
 <input ref="."><label>Buy</label></input>
</repeat>

A repeat sets the XPath context.

insert, delete, setfocus

You can use these with <repeat> to add and delete items, and to focus on a
specific item.

<trigger>
 <label>Add</label>
 <insert ev:event="DOMActivate"
 nodeset="buy"
 at="index('shoprepeat')"
 position="after"/>
</trigger>

<trigger>
 <label>Delete</label>
 <delete ev:event="DOMActivate"
 nodeset="buy"
 at="index('shoprepeat')"/>
</trigger>

CHI 2004 55 Steven Pemberton

Implementations

At release XForms had more implementations announced than any other
W3C spec had ever had at that stage
Different types of implementation:

plugin
native
'zero install'
proxy

Many big players doing implementations, e.g.
Novell
Oracle
IBM
Sun

"The age of the fat client is past" -- an implementor

The Future

Experience with XForms 1.0 has revealed a number of things:

Some ambiguities
Some missing functionality
Some 'low hanging fruit': additional features implemented on several
implementations, but in different ways

A future iteration of XForms will address these issues.

CHI 2004 56 Steven Pemberton

More Information

The origin: www.w3.org/Markup/Forms, and if your company is a member:
www.w3.org/Markup/Forms/Group

XForms: http://www.w3.org/TR/xforms/

XPath: http://www.w3.org/TR/xpath

XPath quick reference: http://www.mulberrytech.com/quickref/
XSLTquickref.pdf

XML Events: http://www.w3.org/TR/xml-events/

Practical: shopping basket style

CHI 2004 57 Steven Pemberton

