
Voice Browser Working
Group (VBWG)

Input on application
backplane topics

Scott McGlashan (HP)
Rafah Hosn (IBM)

W3C Backplane Meeting,
Amsterdam, November 2006

November 2006 VBWG 2

Agenda
• Key points
• VBWG specifications
• Data-Flow-Presentation (DFP) framework
• VoiceXML 2.0/2.1/3.0
• SCXML 1.0
• Key points

November 2006 VBWG 3

Key points
• VBWG specifications demonstrate loose coupling between

(distributed) application components
• Application components have independent data models

- Multiple data models for a given application
- Relationship between data models is under developer control

• Data model binding and submission is under developer
control
- Data binding allows validation
- Data submission is separate from document transition and may be

asynchronous

• SCXML is a generic state machine language
- a backplane mechanism to coordinate and synchronize application

components

November 2006 VBWG 4

VoiceXML 3.0
VoiceXML 2.1

SSML 1.1

VBWG specifications

SSML 1.0

Legend:

voice media presentation

call control

SRGS 1.0 PLS 1.0

state control

CCXML 1.0 SCXML 1.0

VoiceXML 2.0

REC LCWD IN PREP

SISR 1.0

WD

November 2006 VBWG 5

Data Flow Presentation (DFP)
application framework
• Logical framework for modular

voice-centric application
development (cf. MVC)

• Data: application data
representation

• Flow: controls application flow
- no interaction with user

• Presentation: input/output dialog
- interaction with user

• Benefits:
- Simplifies code reuse
- Improves intelligibility
- Extensible to multimodality; e.g.

presentations may be VoiceXML,
SVG, and/or XHTML

DATA

FLOW

PRESENTATION

midcall
notifications

+data

ECMAScript XML

CCXML 1.0 SCXML 1.0

VoiceXML 2.x VoiceXML 3.0

startDialog
+data

dialogExit
+data

November 2006 VBWG 6

Data models
• Some VBWG languages are executed in containers on flow layer,

others in containers on presentation layer
• Flow and presentation containers have their own independent data

models
- Data models are private to a container
- Container can send parts of its data model to other containers or resources
- Container can update its data model using information received from other

containers or resources
• Policy for updating data models is under developer control

- How data received by a container is used to update model; none,
automatic, filtered, translated, …

- How to resolve conflicts when incompatible data received from the same or
multiple resources

- Generally how one data model affects another
• These data model properties are embodied in both current and

emerging VBWG languages
- Expect continuation for mashups where document contains multiple

namespace

November 2006 VBWG 7

VoiceXML 2.0 – data
• Data model

- ECMAScript
- Scoped

• Data binding
- Automatic binding; e.g. user input

• <field name=“var2” type=“digits”>
- Manual binding

• <assign name=“var2” expr=“filter(var2)”/>
• <assign name=“application.myresult” expr=“var2”/>

• Data submission
- Synchronous with page transition
- Automatic: <submit next=“http://example.com/page.vxml”/>
- Manual: <submit next=“http://example.com/page.vxml”

namelist=“var1 var2”/>

(anonymous)

dialog

document

application

session

November 2006 VBWG 8

VoiceXML 2.1 – data submission
• synchronous without page transition
• 1. Automatic binding with ECMAScript

- <script srcexpr=“’http://example.com/service?param=var1’”/>
- ‘srcexpr’ evaluated when element executed – contents of the script

can be added to the data model at the current scope

• 2. Manual binding with XML
- <data name=“myxmldata”

srcexpr=“’http://example.com/service?param1=var1’”/>
- where ‘myxmldata’ is an ECMAScript variable which exposes the

received XML data as read-only DOM2 subset; ECMAScript then
used to access the XML data and bind it to data model

November 2006 VBWG 9

VoiceXML 3.0 – data submission
• Synchronously or asynchronously without page transition:

send data in event to external resource
<send async=“true” target=“http://www.example.com/app”

event=“myevent” namelist=“param1”/>

• Catch handler receives event asynchronously
<catch event=“externalevent”>

<log>
event name: <value expr=“application.lastmessage$.event”/>
</log>

</catch>

• Receive handler receive events synchronously
<receive maxtime=“10s” fetchaudio=“liftmusic.wav”>

<log>
received event <value expr=“application.lastmessage$.event”>
</log>

</receive>

November 2006 VBWG 10

VoiceXML 2.0 – event model
• VoiceXML 2.0 has its own event model

- <catch> event handlers and event propagation

• Event model is not compatible with DOM2, but
almost compatible with DOM3

• DOM3 addresses
- Partial name matching using event categories
- Document order selection using listener groups

• DOM3 restrictions required
- Only bubble phase supported
- Selected event handler always stops propagation

November 2006 VBWG 11

VoiceXML 3.0 – event model
• Key issue for DOM3 compatibility

- Events have a count (times the same event fired within FIA cycle)
- Propagate event to find best qualified handler; e.g. ‘nomatch’ event

with count = 2

• Possible solution: allow ‘count range’ syntax
- Compatible with DOM3, incompatible with VoiceXML 2.x

<form>
<catch event=“nomatch” count=“4”>

…
</catch>
<field>

<catch event=“nomatch” count=“1”>
…

</catch>
</field>

</form>

November 2006 VBWG 12

VoiceXML 3.0 – event model
• Key issue for DOM3 compatibility

- Events have a count (times the same event fired within FIA cycle)
- Propagate event to find best qualified handler; e.g. ‘nomatch’ event

with count = 2

• Possible solution: allow ‘count range’ syntax
- Compatible with DOM3, incompatible with VoiceXML 2.x

<form>
<catch event=“nomatch” count=“4”>

…
</catch>
<field>

<catch event=“nomatch” count=“1-3”>
…

</catch>
</field>

</form>

This handler now
matches event count –
best qualified handler

can be determined
locally

November 2006 VBWG 13

SCXML 1.0
• Design Goals

- Flow control container in the VBWG DFP architecture
- Interaction manager in the MMIWG Multimodal architecture

• SCXML is a generic state machine language
- Can be used to manage flow between application components

(presentation or otherwise)
- Backplane mechanism to coordinate and synchronize application

components
• SCXML is based on Harel state charts:

- a mathematical representation of state machines
- the underpinning of UML state semantics
- Provide powerful, compact control abstractions

• SCXML re-uses CCXML concepts:
- CCXML: an event-driven language for managing flow between

telephony connections, conferences and dialogs (e.g. VoiceXML)
- SCXML inherits non-DOM event model, asynchronous data

submission, action handlers, (dialog) invocation, etc

November 2006 VBWG 14

SCXML 1.0 – state chart semantics
• State charts have all the traditional state machine

semantics:
- States – status of machine
- Transitions – move between states
- Events and conditions – transition triggers

• As well as advanced features:
- hierarchical states – state decomposed into child states
- parallel states – multiple active child states
- action handlers – executable behavior
- history states – checkpointed version of a state

• And SCXML has some state chart extensions:
- invocation of external resources

November 2006 VBWG 15

SCXML 1.0 – state chart in UML

November 2006 VBWG 16

SCXML 1.0 – state chart in XML
<scxml initialstate=“ValidatingCreditCard”>

<state id=“ValidatingCreditCard”>
<transition event=“ValidationResult” target=“InspectResult”/>

</state>

<state id=“InspectResult”>
<transition cond=“CardValid==true” target=“Success”/>
<transition cond=“CardValid==false” target=“Failure”/>

</state>

<state id=“Success” final=“true”/>
<state id=“Failure” final=“true”/>

</scxml>

November 2006 VBWG 17

SCXML 1.0 – data model
• XML data model rooted at <datamodel>

- Contains 0 or more <data> elements
• <data> element has a name and an XML value

- Data value can be specified inline or by reference

- <datamodel>
• <data name=“mycds” src=“http://example.com/cds.xml”/>
• <data name=“mydvds”>

- <dvds>
- <dvd artist=“alabama3” …/>
- </dvds>

• </data>
- <datamodel>

November 2006 VBWG 18

SCXML 1.0 – data binding
• XPath to specify location in data model

- Other languages may be supported

• ECMAScript to specify value in data model
- Other languages may be supported

• The data model is updated using <assign>; e.g.
with information in external event

<transition event=“incomingevent”>
<assign location=“/data[@name=‘mydvds’]/dvds”
expr=“_eventdata.update”/>

</transition>

November 2006 VBWG 19

SCXML 1.0 – data validation
• Data model may be validated on loading

- Optional ‘schema’ attribute on <datamodel>

• Developer can control validation on data binding
- Optional <validate> child of <assign>
- <validate> element has two attributes:

• optional ‘location’ to specify data model portion to validate
• optional ‘schema’ to specify schema to use for validation

(alternative to using data model’s schema)

<assign location=“/data[@name=‘mydvds’]/dvds”
expr=“_eventdata.update”>
<validate location=“.” schema=“mydvds.xsd”/>

</assign>

November 2006 VBWG 20

SCXML 1.0 – data submission
• Fragments of the data model may be sent

asynchronously to external resources

<send event=“myevent” target=“…” namelist=“mycds
mydvds”/>

<invoke targettype=“vxml” src=“myscript.vxml”>
<param name=“cds” expr=“mycds”/>
<param name=“dvds” expr=“mydvds”/>

</invoke>

November 2006 VBWG 21

Key points
• VBWG specifications demonstrate loose coupling between

(distributed) application components
• Application components have independent data models

- Multiple data models for a given application
- Relationship between data models is under developer control

• Data model binding and submission is under developer
control
- Data binding allows validation
- Data submission is separate from document transition and may be

asynchronous

• SCXML is a generic state machine language
- a backplane mechanism to coordinate and synchronize application

components

November 2006 VBWG 22

BACKUP

November 2006 VBWG 23

Typical VoiceXML deployment today

VoiceXML
documents

Voice dialog
Application
web server

<vxml version=“2.0” xmlns=“http://www.w3.org/2001/vxml”>

<form>

<field name=“choice1”>

<prompt>If you want a new ringing tone,
press 1 … </prompt>

<grammar src=“dtmf-choices.grxml”/>

</field>

<submit next=“result.jsp”/>

</form>

</vxml>

<vxml version=“2.0” xmlns=“http://www.w3.org/2001/vxml”>

<form>

<field name=“choice1”>

<prompt>If you want a new ringing tone,
press 1 … </prompt>

<grammar src=“dtmf-choices.grxml”/>

</field>

<submit next=“result.jsp”/>

</form>

</vxml>

“If you want a new
ringing tone, press 1 … ”

• Network browser
- Browser in network server
- Client (telephone) with basic

media capabilities
- Browser performance is

critical

VoiceXML
browser
(server)

InternetTelephony
network

(client)

November 2006 VBWG 24

CCXML 1.0 - event processor

1. Receives events (internal
or external) and stores
them in event queue

2. If no events in queue,
wait; otherwise, dispatch
head event to event
processor; if a transition
matches the event, it
processes the event:

- Sends another event
- Performs another action

• Event processing is
asynchronous

event processor

2. dispatch event

event queue
1. receive event

event handler

other action

send event
event handler

other action

send event
transition

other action

send event
3. send event

<ccxml version="1.0“ >
<eventprocessor>

<transition event="connection.alerting">
<send target=“’…’"/>

</transition>
</eventprocessor>

</ccxml>

November 2006 VBWG 25

CCXML 1.0 – data model
• An event-driven language for managing flow

between telephony connections, conferences and
dialogs (e.g. VoiceXML)

• Data model
- ECMAScript
- Scoped

• Data binding
- <assign name=“application.myvar” expr=“’astring’”/>

• Data submission
- Asynchronous without page transition; e.g.
- <send target="'http://example.com/service'“

targettype=“’basichttp’” namelist=“param1 param2”/>

November 2006 VBWG 26

CCXML 1.0 – event model
• Event model

- Not DOM based – own event processor

• CCXML can invoke external dialogs using <dialogstart>
- <dialogstart> as shortcuts for <send …> event with data payload
- Dialog can <send> events back to CCXML

<transition event=“connection.connected”>
<dialogstart src="‘http://example.com/page.vxml'“
type="'application/voicexml+xml'“ data=“param1 param2”/>

</transition>

<transition event=“dialog.exit”>
<assign name=“dm” expr=“event$.values.input”/>

</transition>

November 2006 VBWG 27

SCXML 1.0 – state chart in UML

November 2006 VBWG 28

SCXML 1.0 – state chart in XML
<scxml initialstate=“ValidatingCreditCard”>
<state id=“ValidatingCreditCard”>

<onentry>
<send event=“validate” target=“http:/card-validator.jsp” namelist=“cardData”/>

</onentry>
<transition event=“ValidationResult” target=“InspectResult”>

<assign location=“CardValid” expr=“_eventData.valid?”/>
</transition>

</state>
<state id=“InspectResult”>

<transition cond=“CardValid==true” target=“Success”/>
<transition cond=“CardValid==false” target=“Failure”/>
<onexit>

<assign location=“CardProcessed” expr=“true”/>
</onexit>

</state>
<state id=“Success” final=“true”/>
<state id=“Failure” final=“true”/>
</scxml>

