
V I E W S
from the past

Lambert Meertens

Declarative Amsterdam

4 October 2019

“V I E W S” stands for

 V isual

 I nterfaces

 E quipped

 W ith

 S emantics

“V I E W S” stands for

 V isual

 I nterfaces

 E quipped

 W ith

 S emantics

However, that is a backronym.

backronym noun.

an existing word turned into an acronym by creating an apt
phrase whose initial letters match the word.

In the beginning ...

In the beginning ...

…. was the ABC project.

The ABC project (then named B project) was
started at CWI (then MC) in 1975 by Leo Geurts
and myself.

In the beginning ...

…. was the ABC project.

The ABC project (then named B project) was
started at CWI (then MC) in 1975 by Leo Geurts
and myself.

Aim: to design a new “beginners’ programming
language”, which was to be
• suitable for structured programming,
• and yet very simple.

What is a “beginner”?

• Basic assumption: someone who does not know
any programming language and is not familiar
with even basic programming concepts

• To serve such users:
– hide low-level implementation details;
– instead, provide powerful high-level (task-

oriented) features;
– make the implementation interactive.

Design by iteration

1975:

1978:

1979:

1985: = ABC

1982: A new face appears

• In 1982 I accepted a one-year appointment as
Visiting Associate Professor at NYU.

• So for that year we were looking for an interim
replacement for the B project; someone
understanding both programming language
design and programming language
implementation – someone who was not too
senior.

• There was a young fellow in Brighton who had
written a book on Pascal implementation and
designed a language Newspeak.

1982: A new face appears

1982: A new face appears

1982: A new face appears

(visual approximation)

Fast forward to 1985

• Steven is still with us!
• The ABC implementation is released (for Unix

and IBM PC)
• We start designing a dedicated programming

environment

Design objectives

• As before, we wanted to:
– hide low-level implementation details;
– instead, provide powerful high-level (task-

oriented) features.
• So start with a task analysis:

– analyze what happens during a typical
session.

Does this have to be so awkward?

Why can’t the user just edit the incorrect input in
the session record as shown on the screen, and
let the system react accodingly?

Let’s go back to the earliest error message...

How to model this?

• The session record is formed by the zipped
merge of the (user-supplied) session input and
the (system-produced) session output.

• The session output is a function of the session
input.

• The user can edit the session record, but only
the input part.

• Upon a user edit (of the screen), the input
changes, and then the output also changes.

• Then their zip as seen on the screen is updated.

More generally

• There is a collection of objects.
• Their values are related by invariants.
• An autonomous agent (such as the user) can

modify the value of some of these objects.
• If thereby invariants are violated, the system

updates other objects to restore them.
• This can trigger a cascade of updates.

Insights

• Not only can the session be modelled this way,
but in fact a complete operating environment.

• By doing this systematically, you obtain a
system that can be driven fully by direct
manipulation using familiar editing methods.

• Example: no more typing arcane commands like
$ mv decalration-08 declaration-08

Instead, a user just edits the file name in a table
of contents (directory listing).

Observations

• Applications that follow this paradigm are easy
to learn and to use.

• Applications that follow this paradigm but with
some exceptions are confusing precisely at
these exceptions.

• So it appears that the “Views paradigm” is a
good paradigm for application design, not only
for an ABC environment, but in general.

Relationship with the MVC pattern

• The Model–View–Controller pattern is a special,
simple case:

– there are just two objects: the model and the
view, whereas the Views paradigm allows a
complex network through which updates can
cascade;

– the model–view relation is one-way, whereas
the relations of the Views paradigm are
generally maintained bidirectionally.

What about implementing applications?

• Designing an application this way is one thing;
implementing the design is another thing.

• The point is that it is very easy to overlook some
case where a change would invalidate an
invariant. This leads to an inconsistent system
state, causing confusion or worse.

• It is also costly to define all possible updates,
also for cases that the designer expects to be
rare, so it is alluring to disallow some types of
changes for no particular good reason, thus
creating a potential source of user frustration.

What about implementing applications?

• Designing an application this way is one thing;
implementing the design is another thing

What about implementing applications?

• Designing an application this way is one thing;
implementing the design is another thing – or is
it?

What about implementing applications?

• Designing an application this way is one thing;
implementing the design is another thing – or is
it?

• Why not derive the implementation automatically
from a description of the design? Surely, that
should be possible.

• Thus, the Views project was born.

Multiple views on one entity

The views correspond to presentations of
different objects linked by invariants.

Clock example

• The analog clock presentation could have been
defined by (simplified):

• This is not a one-way street; the definition
defines a network schema that links objects

AnalogClock(h, m, s, size) =

 Combine[ClockFace size, ClockHands(h, m, s, size)]

ClockHands(h, m, s, size) = Combine[

 UprightLine 0.80*size RightRotated s*(360/60),

 UprightLine 0.65*size RightRotated m*(360/60),

 UprightLine 0.50*size RightRotated (h + m/60)*(360/12)

]

How to specify a new application

• Define any new data types, including their
default representations

• Declare objects as instances of types
• Specify invariants between objects in the form of

equations:

expression1 = expression2

Views on Views

• Steven has written:

• While not untrue, I feel that this does not do
justice to how innovative the whole approach
was.

Views was an early example of a
declarative paradigm

• Not “how”, but “what”; the only code that was
“executed” were the invariants.

• The system had many aspects of the Web, such
as hyperlinks, but many other aspects of Views
were not present in the Web technology, such
as the ease of interoperability of independently
developed applications.

• Applications following the Views paradigm (but
implemented with ad hoc methods) have
become more consistent, but exceptions still
abound.

Further reading

https://homepages.cwi.nl/~steven/views/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

