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1. This exercise is about code-based cryptography.

(a) The binary Hamming code H4(2) has parity check matrix

H =


0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


and parameters [15, 11, 3].

Correct the word (0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1). 4 points

2. This exercise is about attacks on code-based cryptography.

Lee and Brickel’s algorithm finds low-weight codewords. Assume for
concreteness that the code contains a word of weight t and assume for
simplicity that there is only one word c of weight t.

The outer loop randomizes the columns of the parity-check matrix H
and turns the rightmost n−k columns into an (n−k)×(n−k) identity
matrix (if these columns are not linearly independent more columns are
swapped).

The inner loop picks p of the remaining k columns and computes the
sum of these p columns, resulting in a column vector of length n − k.
The algorithm succeeds if the resulting vector has weight t− p.

(a) Explain how to obtain the word c of weight t from the steps de-
scribed above, i.e., assume that you have found p columns so that
their sum has weight t− p. 4 points

(b) Compute the probability that the column swap distributes the
positions of c in such a way that p of the ones land in the k
positions on the left and t− p of them land in the n− k positions
on the right. 8 points

(c) Compute the probability of picking the correct p columns to get
the weight t − p vector, given that the outer loop has swapped
the columns to end up with a split suitable to find c this way.
4 points

3. This exercise is about the NTRU encryption system.

(a) Let p = 2, df = dφ = dg = 2 and N = 13. Compute the maximum
size of the coefficients of a = f · c in R and determine how large q
needs to be so that decryption is guaranteed to be unique.

8 points
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4. This exercise is about differential cryptanalysis of the same toy cipher
from the lectures. Using key (k1, k2, k3, k4, k5) ∈ ({0, 1}16)5 it encrypts
a plaintext P = P1|| . . . ||P16 ∈ {0, 1}16 as follows. Let S be the current
state, we start with S = P . Rounds i = 1, 2, 3 perform key mixing

S ← S ⊕ ki,

substitution using a Sbox (Table 2)

S ← Sbox(S1 . . . S4)|| . . . ||Sbox(S12 . . . S16),

and finally applies permutation πP (Table 1) on the state bits:

S ← SπP (1)|| . . . ||SπP (16) = S1||S5||S9|| . . . ||S12||S16.

Round 4 applies key mixing with round key k4, substitution using the
sbox and finally applies another key mixing with round key k5. After
round 4, the cipher outputs the current state S as the ciphertext C.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
πP (i) 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Table 1: State bit permutation

In contrast to the lecture notes, we use the following SBox:

in 0 1 2 3 4 5 6 7 8 9 A B C D E F
out 0 3 5 8 6 9 C 7 D A E 4 1 F B 2

Note most significant bit is left most bit and using hexidecimal notation.
So ‘C’ represents number 12 or ‘1100’ in binary.

Table 2: Sbox
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This SBox has the following Difference Distribution Table (Table 3:

out
0 1 2 3 4 5 6 7 8 9 A B C D E F

0
1
2
3 0 2 4 2 2 0 2 2 0 0 0 0 0 0
4 0 0 0 4 4 0 0 2 2 0 2 0 0 2
5 4 0 2 2 0 0 0 2 0 2 2 0 0 2
6 0 2 2 0 2 0 2 0 0 2 2 0 0 2
7 0 0 0 2 0 2 0 0 0 0 2 0 2 4

in 8 0 0 0 2 2 4 0 2 0 2 2 2 0 0
9 0 0 0 0 2 0 2 2 2 0 2 0 4 0
A 2 0 0 0 0 2 4 0 0 2 0 4 2 0
B 2 2 4 2 2 0 0 0 0 0 0 2 0 2
C 2 4 0 0 0 0 0 0 2 2 2 0 2 0
D 2 2 2 0 0 2 2 2 0 0 2 0 0 2
E 0 0 2 0 0 2 2 0 0 2 0 4 0 0
F 4 0 0 0 2 2 2 2 4 0 0 0 0 0

Table 3: Sbox difference distribution table

(a) Complete the DDT. You only have to write down the missing

numbers in a table. 4 points

(b) Consider the boomerang with input plaintext difference

∆P = (0000 1111 0000 0000)

and output ciphertext difference

∆C = (0000 1110 0000 0000),

then a quartet (P (1), P (2), P (3), P (4)) satisfies this boomerang if

P (1) ⊕ P (2) = ∆P, P (3) ⊕ P (4) = ∆P, and

C(1) ⊕ C(3) = ∆C, C(2) ⊕ C(4) = ∆C.

Compute the total success probability of finding such quartets over
all round 1 & 2 differentials with the given ∆P and all round 3 & 4
differentials with the given ∆C. (Hint: in round 2 each Sbox has
either input difference 0 or 4 (0100), so every active round 2 Sbox
contributes a term 2× (4/16)2 + 4× (2/16)2. Likewise, in round 3

each active Sbox has output difference 4.) 8 points
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(c) Consider all 3-round differentials that have only 1 active Sbox in
round 1 and only 1 active Sbox in round 3. Prove that all such
3-round differentials are impossible differentials. 8 points

5. This exercise is about hash-based signatures.

The HORS (Hash to Obtain Random Subset) signature scheme is an
example of a few-time signature scheme. It has integer parameters k, t,
and `, uses a hash function H : {0, 1}∗ → {0, 1}k·log2 t and a one-way
function f : {0, 1}` → {0, 1}`.
To generate the key pair a user picks t strings si ∈ {0, 1}` and computes
vi = f(si) for 0 ≤ i < t. The public key is P = {k, v0, v1, . . . , vt−1}; the
secret key is S = {k, s0, s1, . . . , st−1}.
To sign a message m ∈ {0, 1}∗ compute H(m) = (h0, h1, . . . , hk−1),
where each hi ∈ {0, 1, 2, . . . , t − 1}. The signature on m is σ =
(sh0 , sh1 , sh2 , . . . , shk−1

).

To verify the signature, compute H(m) = (h0, h1, . . . , hk−1) and f(σ) =
(f(sh0), f(sh1), f(sh2), . . . , f(shk−1

)) and verify that f(shi) = vhi for
0 ≤ i < t.

(a) Let ` = 80, t = 5, and k = 3. How many different signatures
exist? How large (in bits) are the public and secret keys? How

large is a signature? 4 points

(b) The same public key can be used for r + 1 signatures if H is r-
subset-resilient, meaning that given r signatures and thus r vectors
σj = (shj,0 , shj,1 , shj,2 , . . . , shj,k−1

), 1 ≤ j ≤ r the probability that
H(m′) consists entirely of components in ∪shj,i is negligible. Even
for r = 1, i.e. after seeing just one signature, an attacker has
an advantage at creating a fake signature. What are the options
beyond exact collisions in H? 2 points

(c) Analyze the following two scenarios for your chances of faking a
signature on m: 1. You get to see signatures on random messages.
2. You get to specify messages that Alice signs. You may not ask
Alice to sign m in the second scenario.

How many HORS signatures do you need on average in order to
construct a signature on m? How many HORS signatures do you
need on average to be able to sign any message? Answer these
questions in both scenarios for ` = 80, t = 5, and k = 3. You
should assume that H and f do not have additional weaknesses
beyond having too small parameters 8 points
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(d) Explain how to improve the scheme by using Winternitz signatures
instead of the function f and state how this would affect the key
size. 8 points

6. This exercise is about the cryptanalysis of the broken cryptographic
hash function MD5. In brief, MD5 uses a compression function
Compress that takes as input a chaining value CVin = (A,B,C,D) ∈
(Z/232Z)4 and a message block M = (m0, . . . ,m15) ∈ (Z/232Z)16. It
initializes (Q0, Q−1, Q−2, Q−3) = (B,C,D,A) and computes 64 steps
i = 0, . . . , 63:

Fi = BFi(Qi, Qi−1, Qi−2); Ti = Qi−3 + Fi + ACi +Wi;

Ri = RL(Ti, RCt); Qi+1 = Qi +Ri,

where BFi is a boolean function, ACi is an addition constant, Wi is
message word mπ(i) and RL(·, n) is bitwise cyclic left rotation by n bit
positions (see Table 4). It outputs an update chaining value CVout:

CVout = CVin + (Q61, Q64, Q63, Q62).

i 0 1 2 3 4 5 6 7

RC32+i 4 11 16 23 4 11 16 23
W32+i m5 m8 m11 m14 m1 m4 m7 m10

RC40+i 4 11 16 23 4 11 16 23
W40+i m13 m0 m3 m6 m9 m12 m15 m2

RC48+i 6 10 15 21 6 10 15 21
W48+i m0 m7 m14 m5 m12 m3 m10 m1

RC56+i 6 10 15 21 6 10 15 21
W56+i m8 m15 m6 m13 m4 m11 m2 m9

BF32(x, y, z) = · · · = BF47(x, y, z) = x⊕ y ⊕ z

BF48(x, y, z) = · · · = BF63(x, y, z) = y ⊕ (x ∨ z)

Table 4: MD5 Round 3 & 4 boolean functions, rotation constants and mes-
sage word permutations.

(a) Fill in the missing values in the following partial Sufficient Con-
dition Tables for the boolean functions of round 3 & 4:

5
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BF32−47 g = {0} g = {+1} g = {−1}
XY Z cBF32,XY Z,g cBF32,XY Z,g cBF32,XY Z,g

... ... n/a n/a

..+ n/a ^.+ !.+

..-

BF48−63 g = {0} g = {+1} g = {−1}
XY Z cBF48,XY Z,g cBF48,XY Z,g cBF48,XY Z,g

... ... n/a n/a
-.. -.0 -11 -01

+..

++.

4 points

(b) Determine a partial differential path for MD5 over steps 48 up
to 63 using δm11 = 211 (and δmi = 0 for i 6= 11) such that
δQ45 = . . . δQ61 = 0 and δQ62 = δQ63 = δQ64 = 221. Specify ∆Qi

for i = 45, . . . , 64 and for non-trivial steps i = 61, 62, 63 specify
∆Fi, δTi and δRi. 4 points

(c) Determine a partial differential path for MD5 over steps 32 up
to 47 using δm11 = 211 (and δmi = 0 for i 6= 11) such that
δQ32 = . . . δQ48 = 0. Specify ∆Qi for i = 29, . . . , 49 and for non-
trivial steps i = 32, 33, 34 specify ∆Fi, δTi and δRi. 4 points

(d) As treated in the lecture notes, it is possible given any CVin, CV
′
in

to compute a full differential path over steps 0, . . . , 63 that com-
pletes above found partial differential path over steps 32, . . . , 63.
Finding a solution (M,M ′) for that full differential path results in

CVout = Compress(CVin,M), CV ′out = Compress(CV ′in,M
′),

with
δCVout = δCVin + (0, 221, 221, 221).

This in fact works for any δm11 = 2b with b = 0, . . . , 31 and
δQ62 = δQ63 = δQ63 = RL(2b, 10). Prove that given any CVi, CV

′
i

with δCVi = (0, x, x, x) for some x ∈ Z/232Z, one can use a series
of r of these near-collision attacks to obtain δCVi+r = (0, 0, 0, 0)

with r ≤ 32. 6 points

(e) To reduce the amount of near-collision attacks required, one can
also consider the negated versions with δm11 = −2b. As thereby
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one can add ±(0, 2a, 2a, 2a) for any a = 0, . . . , 31, one can use a
binary signed digit representation of x.

Describe a procedure that given any x computes a series of r tuples
(δm11, δQ61 = δQ62 = δQ63) that one can use to construct r near-
collision attacks to reduce δCVi = (0, x, x, x) to zero, where r is
minimal. That is, there exists no shorter series that also reduces
δCVi to zero. 4 points

(f) Write down an algorithm that given any CVi−1, CV
′
i−1 computes

blocks Mi,M
′
i such that

Compress(CVi−1,Mi)− Compress(CV ′i−1,M
′
i) = (0, x, x, x),

for some x ∈ Z/232Z and estimate its complexity. (Hint: rewrite
the condition δCVi = (A,B,C,D) = (0, x, x, x) as δA = 0, δ(B −
C) = 0 and δ(B −D) = 0). 8 points
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