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1 Introduction: Cryptanalysis

The topic of the first half of this course is cryptanalysis. Cryptanalysis is the study of the security
of cryptologic primitives. The security of cryptologic primitives is always bounded from above due
to the existence of generic attacks that work against every primitive of the same type. Attacks
that prove the security to be below this upper bound will have to use the internal structure of
the primitive and are called cryptanalytic attacks. Practical cryptanalytic attacks have immediate
impact on the security of deployed cryptographic systems. If a cryptanalytic attack is faster than
generic attacks, yet practically infeasible, then we call it a certificational cryptanalytic attack.
Certificational attacks are also important as they disprove the security claims of the primitive
by exposing a structural weakness, which may eventually lead to practical attacks. Existence of
certificational attacks thus indicate it’s high time to start migrating to more secure primitives,
especially since such migrations typically take more than a few years.

These lecture notes will cover symmetric primitives:

� Stream ciphers

� Block ciphers
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� Modes of operations on Block ciphers

� Cryptographic hash functions

� Message Authentication Codes (MAC)

We will first treat generic attacks. The cryptanalytic techniques used to build cryptanalytic
attacks vary widely and are tailored to each specific primitive. In this course we will visit various
important cryptanalytic techniques and apply them on example (toy) primitives.

Security of cryptographic primitives can be analyzed in three notions:

� Information-theoretic security, also called perfect security, using adversaries with infinity
computational resources;

� Asymptotic computational security, using adversaries that can perform only polynomial time
computations where security relies on asymptotic computationally hard problems;

� Real world security, using adversaries that can perform only a realistic number of computa-
tions where security relies on real world computational resource bounds.

1.1 Notation

We will use the following style in these lecture notes:

� lower capitalized names for variables taking values in Z, e.g., interval variables i, j, number
of key bits k, number of message bits n, number of message blocks l;

� upper capitalized names for other variables, e.g., the key K, plaintext P , message M , ci-
phertext C, algorithm A;

� calligraphic names for sets and oracles, e.g., key space K, message (block) space M, oracle
O;

� selecting a value X uniformly at random from the set X is denoted as X
r← X ;

� Pr[event ] denotes the probability of event , E[X] denotes the expected value of the random
variable X;

� poly(n) is the set of polynomial functions f(n) in n;

� negl(n) is the set of negligible functions g(n) in n, i.e., functions g(n) that go faster to 0
than any polynomial f(n) when n goes to infinity: ∀f(n) ∈ poly(n) : limn→∞ f(n)g(n)→ 0.

1.2 Exercises

The webpage for this course half will contain exercises to practice examined course material. These
are recommended. For verification, solutions can be submitted to marc AT marc-stevens DOT
nl.

1.3 Challenges

The webpage for this course half will also contain challenges that are voluntary but will allow you
to get more experience with the techniques from this course. Solutions can be submitted to marc
AT marc-stevens DOT nl.

2 One Time Pad

The one-time-pad (OTP) cipher is essentially the only encryption method that provides perfect
secrecy or information-theoretical secrecy, i.e., even given infinite computational resources one
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cannot learn information about the enciphered plaintext given only the ciphertext other than the
obvious observation about its length.

For given M ∈ {0, 1}l, the cipher selects uniformly at random a key K
r← {0, 1}l of the same

length l and outputs the ciphertext C = M ⊕K computed as the bitwise XOR of the message and
key. Decryption is simple with M = C ⊕K.

Perfect secrecy can be shown with the observation that for any two messages M1,M2 ∈ {0, 1}l
and a ciphertext C belonging to either M1 or M2:

Pr[C = M1 ⊕K] = Pr[K = C ⊕M1] = 2−l = Pr[K = C ⊕M2] = Pr[C = M2 ⊕K].

Thus the ciphertext distribution perfectly statistically hides the plaintext distribution. The OTP
provides perfect secrecy, but no authenticity, i.e., any attacker within the communication channel
can apply a difference D to the ciphertext C: C ′ = C ⊕ D, that results directly in that the
deciphered plaintext on the receiving end is also altered: M ′ = C ′⊕K = D⊕C⊕K = M⊕D.

Finally, the OTP does NOT provide perfectly secrecy if:

� The key is not kept secret

� The key is not selected uniformly at random, but with some biased distribution

� The key is reused to encrypt more than one message. Then the attacker learns C1 ⊕ C2 =
M1 ⊕K ⊕M2 ⊕K = M1 ⊕M2 about M1 and M2.

3 Stream ciphers

Stream ciphers operate very similar to the one-time pad, adding a keystream to the messagestream
to obtain a ciphertext. Except that the large keystream, instead of being chosen uniformly at
random, is generated from a relative small key (used only once). Predominantly the streams are
bitstreams, but in general, any alphabet may be used for the stream characters. We’ll assume
that keys and streams consist of bits.

There are two types of stream ciphers, namely synchronous and asynchronous or self-synchronizing
stream ciphers.

The first type takes as input a key to initialize its state and in each iteration will update its
state and output some keystream that is added to the message to form the cipherstream. More
formally:

� Initialization: generate large state from input small key K:

S0 ← Init(K)

� Iteration i = 0, . . . , |M | − 1:

1. first do state update & produce key stream symbol:

(Si+1, Oi)← Update(Si)

2. then encryption:
Ci ← Oi ⊕Mi

The state update is thus independent from the message and cipherstream.

The second type also allows the state update to use the cipherstream from the last l iterations,
that can be used to allow deciphering to recover from missing symbols:

(Si+1, Oi)← Update(Si, Ci−1, . . . , Ci−l).
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We will limit ourselves to the most common type of stream cipher, namely synchronous stream
ciphers.

3.1 Security

The following security properties are required for a cryptographic stream cipher:

� Key Recovery Hardness: it is hard to recover the key from the output keystream

� State Recovery Hardness: it is hard to recover the state from the output keystream

� Indistinguishability : the output keystream is indistinguishable from a uniform randomly
chosen stream

Indistinguishability is the most important as it implies both Key Recovery Hardness and State
Recovery Hardness. Being able to recover the key or the state using nearly all of the output
keystream allows one to exactly predict the remaining portion, thus distinguishing it from random.
Also, it implicates that there are no (significant) biases for any portion of the keystream that may
be exploited to obtain more information about the message stream.

3.1.1 Indistinguishability definition

Let k be the input key size in bits, d(k) be an upper bound on the generated output keystream
length, c(k) be the upper bound on the number of operations. We denote by A(O,d(k),c(k)) an
algorithm with access to a keystream oracle O that reads a stream of size ≤ d(k) from Oracle O
and performs at most c(k) operations and returns either 0 or 1.

We can define two oracles. Firstly, the oracle Osc that first selects a key K
r← {0, 1}k selected uni-

formly at random and returns the output key stream of the stream cipher under key K. Secondly,
the oracle Our that returns a stream of bits selected independently and uniformly at random. So
we can call a stream cipher (d(k), c(k), ε(k))-indistinguishable if for any algorithm A:∣∣∣Pr[A(Osc,d(k),c(k)) = 1]− Pr[A(Our,d(k),c(k)) = 1]

∣∣∣ ≤ ε(k).

For a stream cipher with fixed input key size k and state size l, one can require practical parameters,
e.g., d(k) = c(k) = 2min(k,l), ε(k) = 2−80.

For a stream cipher with variable input key size k, one can also define security against efficient,
i.e., probabilistic polynomial time (PPT), attackers: With slight abuse of notation we set d(k) =
poly(k), c(k) = poly(k), ε(k) = negl(k) to define security against adversaries that read only a
polynomial (in k) size output stream and perform a polynomial number of operations which are
successful with a negligible (in k) success probability.

Note that information-theoretical security with c(k) =∞ is unattainable.

3.2 Generic key recovery attack

A generic key recovery attack against an observed key stream is simply an exhaustive search
among all possible keys. Computing a portion of output keystream, it returns the first candidate
keys whose output key stream is equal to the observed key stream, or ⊥ otherwise. It requires
O(2k) operations and succeeds with probability 1 if the observed key stream is sufficiently long to
dismiss all bad candidate keys.

3.3 Generic state recovery attack

A generic state recovery attack against an observed key stream is simply an exhaustive search
among all possible states. Computing a portion of output keystream starting from that state, it
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returns the first candidate state whose output key stream is equal to the observed key stream, or ⊥
otherwise. It requires O(2l) operations where l is the size of the state and succeeds with probability
1 if the observed key stream is sufficiently long to dismiss all bad candidate states.

3.4 Generic distinguishing attacks

Both the generic key recovery and generic state recovery attacks lead to a generic distinguishing
attack, where it returns 0 if the attack returned , and 1 otherwise. The security of the stream
cipher is thus upper bounded by O(2min(k,l)).

3.5 Trivial malleability attack

Like the one-time-pad, secure stream ciphers provide only privacy, i.e., any eavesdropper does not
learn any new information about the message by observing the ciphertext other than the its length.
Importantly, the one-time-pad and any stream cipher provide no security against malleability. I.e.,
an active attacker may trivially add any difference to the messagestream M ′ = M ⊕D by adding
the difference to the cipherstream C ′ = C ⊕D between sender and receiver, as then the receiver
decodes:

C ′ ⊕K = C ⊕D ⊕K = M ⊕K ⊕D ⊕K = M ⊕D.

Note that even though the attacker is able to modify the message, he does not learn the message
itself.

Such an attack can be exploited with prior knowledge about the message, say the attacker knows
the format and amount of a bank transfer, then it would be simple to change a 1M$ transfer into
a 2M$ transfer. To obtain security against malleability, one may use a Message Authentication
Code.

3.6 Key reuse

Note that when a key k is reused to encrypt 2 messages M and M ′ with the same keystream K
then the difference is leaked via C ⊕ C ′ = M ⊕K ⊕M ′ ⊕K = M ⊕M ′. Hence it is important
to ensure that a different key is used for every message. To achieve this one may split up the full
key into a private key part and a public nonce part. Then the key can be reused while ensuring
no nonce value will be reused. E.g., the nonce can be a message counter, or if sufficiently long,
picked from random and communicated separately.

4 Block ciphers

A Block Cipher only encrypts fixed-size blocks and has three parameters, the security parame-
ter n (e.g., 128 or variable), the key space K(n) (e.g, {0, 1}n) and the block space M(n) (e.g.,
{0, 1}n).

Then a Block Cipher is a mapping Enc : K(n)×M(n)→M(n) with the constraint that for every
K ∈ K(n): EncK = Enc(K, ·) :M(n)→M(n) is a permutation and its inverse DecK = EncK−1
is efficiently computable. For easy of exposition, we’ll only consider Block Cipher designs with
fixed n, key space K = K(n) and block space M =M(n).

4.1 Generic key recovery attack

Suppose an attack has access to a block cipher oracle, i.e., an oracle chooses a key uniformly at
random and then upon request returns plaintext-ciphertext pairs. Depending on the allowed type
of requests one can distinguish different type of attacks, e.g.:

� Known plaintext attacks: oracle returns pairs for randomly chosen plaintexts.
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� Chosen plaintext attacks: oracle returns pairs for plaintexts requested by the attacker.

A generic key recovery attack against such an block cipher oracle is simply an exhaustive search
among all possible keys. The attacker first makes a few queries obtaining pairs (P1, C1), . . . , (Pl, Cl).
Then it simply goes through all possible key candidates K, it returns the first candidate key K
that satisfies Ci = EncK(Pi) for i = 1, . . . , l, or ⊥ otherwise. It requires O(|K|) operations and
succeeds with almost certainty (there is a probability that another key is found first that satisfies
the pairs, but this probability decreases exponentially in the size of the list l).

4.2 Generic 1-out-of-L key recovery attack

Now consider a variation wherein the attacker has access to L block cipher oracles, each with its
own secret key, and the attackers aim is to succeed to recover the key of at least one oracle. With
this variation, we can do better in a chosen plaintext setting with O(|K|/L) operations.

The attacker selects a few plaintexts P1, . . . , Pl and queries these for every oracle and obtains
ciphertexts C1,1, . . . , Cl,L. Then it simply goes through all possible key candidates K, it returns
the first candidate key K that satisfies Ci,j = EncK(Pi,j) for some j = 1, . . . , L for all i = 1, . . . , l,
or ⊥ otherwise.

4.3 Generic L-out-of-L key recovery attack / generic non-uniform key
recovery attack

There also exist generic attacks that require fewer operations than O(|K|) per problem instance
using pre-computation. Note that the pre-computation must cost no less than O(|K|), otherwise
the entire attack on just one instance would be better than exhaustive key search. In general, we
can break such attacks into two parts:

1. An offline part that performs a pre-computation costing at least O(|K|) operations;

2. An online part that attacks each of the L keys independently using the pre-computed data
in less than O(|K|) operations.

An extreme example of such an attack is a codebook dictionary:

1. Offline: for a given block B, compute CK = EncK(B) for every possible key K and create
a sorted (CK ,K)-table.

2. Online: query B to get a ciphertext C and lookup the entry (CK ,K) in the table with
CK = C.

Note that the online algorithm uses O(|K|) memory and O(log |K|) time (or O(1) time if using
hash tables).

Note that once the pre-computed data is known, one can write down an algorithm that includes
the data in its description. This algorithm would be able to recover a single key in less than O(|K|)
operations. This means that for every block cipher there exists an algorithm that can recover a key
in less than O(|K|) operations. Fortunately, or unfortunately depending on your view, we, mere
humans, cannot write down such algorithm without performing the pre-computation. These kinds
of algorithms where the cost of pre-computation has been hidden by including pre-computated
data already in their description are called non-uniform.

4.3.1 Hellman’s Time-Memory Trade Off attack

An algorithm that uses less memory, but more computational time, is Hellman’s Time-Memory
Trade Off attack1. This attack uses an iterative function that ’walks’ through the key-space to

1http://www.cs.miami.edu/home/burt/learning/Csc609.102/doc/36.pdf
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create a table of many chains or walks. One can trade-off between the online complexity (time)
and the size of the table (memory).

We assumeM = K so we only need one message block B to create an iterative function F : K → K
out of Enc that walks through the key-space. Let R : M → K be a fixed bijective reduction
function, then we define F (K) = R(EncK(B)).

The main idea is to find the unknown key K̂ for a given ciphertextblock C = EncK̂(B) by
comparing the outcome F j(R(C)) of repeat application of F with stored walks (ki, F

t(ki)) in a

table. We want all walks to cover essentially the entire key space, so that K̂ = F j
′
(ki) for some

i and j′ < t. As R(C) = F (K̂), it follows that then F t−j
′−1(R(C)) = F t−j

′
(K̂) = F t(ki). So

whenever F j(R(C)) equals an stored walk endpoint F t(ki) for some i and j < t we have potentially
found a walk that contains the key. When additionally R(C) is actually in the walk from ki to

F t(ki), i.e., R(C) = F t−j(ki), then K̃ = F t−j−1(ki) satisfies EncK̃(B) = C and is thus a key

candidate for the sought K̂.

Because we expect F to behave as a random function, there should exist many collisions F (x) =
F (y) for x 6= y. And thus many collisions F t(x) = F t(y) for x 6= y: the walks from x and y have
merged. This implies that we must deal with false positives: F j(R(C)) matches an endpoint, but
is not actually in the walk. Moreover, these merges make it hard to effectively cover the entire key
space with a single table based on a single F . That’s why the following algorithmic description of
the attack generates several tables, each using a different bijective reduction function R.

Offline attack: we use F to create a large table of m chains, all of length t:
1. Pick distinct starting points SP1, . . . , SPm uniformly at random from K;
2. Compute EPi = F t(SPi) for all i = 1, . . . ,m;
3. Store (EPi, SPi) in a sorted table.

Online attack given C = EncK̂(B) for some unknown key K̂:

1. P0 = R(C)(= F (K̂))
2. For i = 0, . . . , t− 1:

2.1. If Pi = EPj for some j then let K̃ = F t−i−1(SPj), if EncK̃(B) = C then return K̃
2.2. Compute Pi+1 = F (Pi)

3. Return ⊥
Below we analyze the complexity of this algorithm.

Ideally, the chains (all of length t) would be disjoint as depicted above. If the unknown key K is on
some chain then the known P0 (C in the picture) is the next point after K, with at most t iterations
we will detect the end point EP1. Then we can start iterating from SP1 to find K.

However, the iteration function (F = R · Enc) behaves as a random function and has many
collisions as depicted above. Each collision will cause chains to merge. Even if we detect an
endpoint EP , the sought-for key K might not be on the chain starting from SP , but on some
other chain that merges with it. There will be a significant amount of overlap between chains,
so many keys will be covered twice or more, and by extension many keys will NOT be covered.
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This phenomena will start once the first collision occurs which happens when m · t reaches size
≈
√
|K| due to the birthday paradox (covered later on), the expected number of collisions grows

quadratically in m · t.

The attack would be successful if the sought-for key K occurred in one of the m chains and one
would hope that choosing m · t = |K| would lead to success probability 1. Unfortunately, as F
behaves as a random function there will be many collisions F (P1) = F (P2) and any two chains Q1

and Q2 containing such P1 and P2, respectively, will merge after P1/P2 and will follow the exact
same walk.

Hence, the key space covered by the chains will be significantly smaller than expected. The
success probability, or the ratio of the key space covered, is close to the following lower bound
(here N = |K|):

Pr[success] ≥ 1

N
·
m∑
i=1

t−1∑
j=0

(
N − i · t

N

)j+1

.

Proof. Let A denote the set of unique keys covered by the m chains, then Pr[success] = E[|A|]/N .
Let I{X} denote the indicator function of the event X, then

Pr[success] = E[|A|]/N =
1

N
· E

 m∑
i=1

t−1∑
j=0

I{kij is new}

 =
1

N
·
m∑
i=1

t−1∑
j=0

Pr[kij is new].

Where ”kij” denotes the event that the value of kij of chain i at iteration j has not already
occurred in chain i before iteration j or in any previous chain l < i. By looking only at the current
chain we find:

Pr[kij is new]

≥ Pr[ki0, ki1, . . . , kij are all new]

= Pr[ki0 is new] · Pr[ki1 is new | ki0 is new] · · ·
· · ·Pr[kij is new | ki0, . . . , ki(j−1) are new]

=
N − |Ai−1|

N
· N − |Ai−1| − 1

N
· · · N − |Ai−1| − j

N

≥
(
N − i · t

N

)j+1

.

Where Ai−1 denotes the set of unique keys covered by chains l = 1, . . . , i− 1. Clearly, each of the
(j + 1) terms is larger than (N − it)/N , as |Ai−1| ≤ (i− 1)t.

One can approximate that for m·t2 = N , the success probability is about 0.80mt/N , see Hellman’s
paper. To avoid merging to a large extent, Hellman proposed to use r tables constructed with
different reduction functions Rs, more specifically he proposed to set m = t = r = N1/3, such that
for each individual table the success probability is 0.80mt/N = 0.80N−1/3. Even though there
will be collisions between different tables, due to the different reduction functions there will be no
merging. Thus overall we expect a success probability close to 0.80. The total memory required
is m · r = N2/3 (endpoint,startpoint)-pairs, the offline complexity is O(mtr) = O(N), the online
complexity, excluding the cost evaluating candidate keys, is O(rt) = O(N2/3).

Note that for each table it is possible that the chain starting from P0 merges with a chain in the
table, in that case we will find a false alarm: we find the endpoint in the table, compute the
chain, but will never find the preimage to P0 as it’s not on the beginning part of chain in the
table. There are t points on the P0-chain and mt points in the table, with each independent pair
of points having probability 1

N to collide. So the expected number Z of false alarms is bounded
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by E[Z] ≤ mt · t · 1
N . Actually one can show a slightly tighter bound mt(t+ 1)/2N , see Hellman’s

paper. For Hellman’s parameter choices, one expects 1 false alarm per table, each costing at most
t operations to dismiss, hence a total of O(rt) = O(N2/3) operations are wasted on evaluating
false key candidates.

A slightly different approach is using rainbow tables. This improvement by Oechslin (see http:

//lasec.epfl.ch/~oechslin/publications/crypto03.pdf) uses, instead of r tables, for each
of the t iterations a different Reduction Function. This avoids merging significantly, but the online
cost increases slightly.

4.4 Generic distinguishing attack

As with stream ciphers we can define an indistinguishability notion: a block cipher is called
(d(n), c(n), ε(n))-indistinguishable if for any algorithm A(O,d(n),c(n)):

|Pr[A(Obc,d(n),c(n)) = 1]− Pr[A(Our,d(n),c(n)) = 1]| ≤ ε(n).

where A can make d(n)-queries and perform c(n)-operations, Obc is a block cipher oracle that
chose a key uniformly at random and answers encryption and decryption queries, Our is a random
permutation oracle that chose a permutation π :M(n)→M(n) uniformly at random and answers
encryption π(·) queries and decryption π−1(·) queries. The generic key recovery attack leads to a
generic distinguishing attack, where it returns 0 if the attack returned ⊥, and 1 otherwise, with
expected complexity O(|K(n)|).

5 Block cipher Modes of Operation

Let Enc : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher with k-bit keys and n-bit message blocks.
To use block cipher Enc to encrypt an arbitrary length message can be done in various ways, here
we will treat various modes of operation, necessarily all operations need to be reversible to be
able to decrypt. We will assume given key k and that a message M is already preprocessed with
unambigious padding and split into blocks M1, . . . ,Ml.

5.1 ECB - Electronic Code Book

This mode simply encrypts each block independently:

Ci = Enck(Mi), i = 1, . . . , l.

The ciphertext is simply C1| . . . |Cl.

5.2 CBC - Cipher Block Chaining

CBC uses a random IV (Initialization Vector), to randomize encryptions for each encryption that
has be communicated together with – or as part of – the ciphertext. Thus when encrypting the
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same message twice, one obtains two blockwise-different ciphertexts. Also, it uses the ciphertext
in the encryption of the subsequent block to prevent the ECB-distinguishing attack. CBC is the
most commonly used mode. Formally:

C0 = IV, Ci = Enck(Ci ⊕Mi).

5.3 CFB - Cipher Feedback

CFB, like most modes, also uses an IV, but here the input to the blockcipher is the previous
ciphertext or the IV and, similar to stream ciphers, the plaintext is added to the output of the
blockcipher. Formally:

C0 = IV
r←M(n), Ci = Mi ⊕ Enck(Ci−1).

5.4 OFB - Output FeedBack

OFB operates like a stream cipher: using an IV it generates a keystream independently of the
message which are then added to each other. Formally:

O0 = IV
r←M(n), Oi = Enck(Oi−1), Ci = Mi ⊕Oi.
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5.5 CTR - Counter Mode

Counter Mode is another mode that operates like a stream cipher, however now all keystream
blocks are generated independently by combining the k − c bit IV (here called nonce) with a
unique c bit counter for each block. Formally:

Oi = Enck(nonce||i), Ci = Mi ⊕Oi.

5.6 Other Modes

See NIST for other modes: http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.
html

5.7 Generic attacks

As with stream ciphers and block ciphers there exist generic key recovery attacks with complexity
O(2k) by exhaustive search. However, for all these modes there exist distinguishing attacks in-
dependent of the used block cipher with complexity O(2n/2) or less. CBC mode has a particular
vulnerability because it is a mode that requires padding and a simple change in the ciphertext
causes a simple change in the decrypted plaintext. These attacks are described in the following
sections.

Mode Generic key recovery Generic distinguishing Padding oracle attacks
ECB O(2k) O(1) N/A
CBC O(2k) (O(2n/2) O(256 · (n/8) · l)
CFB O(2k) (O(2n/2) only if padding used
OFB O(2k) (O(2n/2) only if padding used
CTR O(2k) (O(min(2c, 2n/2)) only if padding used

5.8 Trivial ECB distinguishing attack

Using ECB is not recommended as there is a trivial distinguishing attack. Encrypt M = 0||0, i.e.,
M1 = 0, M2 = 0, return 0 if C1 = C2 and 1 otherwise. In fact this mode leaks information about
repetitive data in the message quite clearly2:

2https://blog.filippo.io/the-ecb-penguin/
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5.9 O(2n/2) distinguishing attacks

This section illustrates a distinguishing attack against CBC with complexity O(
√
|M|) = O(

√
2n)

instead of the expected O(|K|) = O(2k) using a generic block cipher key recovery attack. This
shows that long encrypted plaintexts are distinguishable from random bitstrings. This attack can
be modified to work against modes CFB, OFB, and CTR as well.

Let us denote C = CBCEncK(P ) as the ciphertext C resulting from encrypting P using CBC
and key K. We assume the ciphertext bit length only depends on the plaintext bit length, so let
` : N→ N be the ciphertext bit length function: `(|P |) = |CBCEncK(P )| for all P and K.

Formally we first have to define a similar, but ideal, encryption primitive IEnc. There are only 2
requirements for this ideal primitive:

� For any P ∈ {0, 1}∗ the corresponding ciphertext has the same length `(|P |) = |IEnc(P )| as
for CBC;

� The encryption function is injective: IEnc(P1) = IEnc(P2) ⇔ P1 = P2. This ensures every
valid ciphertext has an unique preimage (plaintext);

To ensure ciphertexts offer no information other than the unavoidable implied information about
the plaintext length, we would like to choose IEnc uniformly at random from all functions f :
{0, 1}∗ → {0, 1}∗ that fulfill these requirements. However this cannot be done directly, due to the
issue of uniformly at random sampling from an infinite set. Therefore we partition the plaintext
input domain of IEnc based on the resulting ciphertext length into finite subdomains. More
specifically for every possible ciphertext length t ∈ `(N), we define the finite set of plaintexts with
ciphertexts of length t is Pt = {P ∈ {0, 1}∗ | `(|P |) = t} and choose a function IEnct uniformly
at random from the set of all injective functions f : Pt → {0, 1}t.

It should be easily verifiable that the implied encryption primitive IEnc(P ) = IEnc`(|P |)(P ) in-
deed fulfills the ciphertextlength and injectivity requirements. Importantly, one should note that
sampling IEnc and then quering only one plaintext C = IEnc(P ) is statistically equivalent to

simply sampling a bit string C
r← {0, 1}`(|P |) of the correct length uniformly at random. More

specifically, since C is a sequence of block C0, . . . , Cl, it is statistically equivalent to sampling l+ 1
blocks C0, . . . , cL independently and uniformly at random from {0, 1}n. The objective below is
to distinguish the output of a single CBC query P ∈ Pt under an unknown random key from t
independently and uniformly at random chosen blocks.

This distinguishing attack works by asking for the encryption of a very large plaintext consisting
of l = 4

√
2n blocks B, for some fixed value B, then the ciphertext blocks are:

C0 = IV
r← {0, 1}n, Ci = EncK(Ci−1 ⊕B) =: F (Ci−1)

The function F is a permutation as both EncK(·) and (·⊕B) are permutations, thus there can be
no collisions F (C) = F (C ′) with C 6= C ′. This implies that any CBC-encryption oracle returns a
ciphertext with all distinct ciphertext blocks, or one finds a cycle of length s, e.g. Cs+i = C0+i for
all i. Whereas a random oracle returns a ciphertext with independent uniform randomly chosen
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ciphertext blocks. The probability that they are all unique is:

Pr[Ci 6= Cj , 0 ≤ i < j ≤ l]

= 1 · N − 1

N
· · · N − l

N
= 1 · (1− (1/N)) · · · (1− (l/N))

≈ 1 · e−1/N · · · e−l/N = e−(1+2+···+l)/N = e−l(l+1)/2N = e−4
√
N(4
√
N+1)/2N

≈ e−8 ≈ 0.00033

(using N = |M| = 2n and the Taylor series approximation ex = 1 + x + x2/2! + · · · ) This is
also called the birthday paradox: namely that out of a set of size N one only needs to select
approx.

√
N samples uniformly at random to find a collision, thus in a group of 23 people one can

expect there are 2 people with the same birthday.

Thus with overwhelming probability there will be at least two same ciphertext blocks Ci = Cj
with i 6= j and with overwhelming probability i 6= 0 and j 6= 0. Hence, one can distinguish between
a block cipher in CBC-mode and a random oracle by querying a message of l = 4

√
N blocks B

and returning 1 if there are two same ciphertext blocks Ci = Cj , 0 < i < j < l, but Ci+1 6= Cj+1

and returning 0 otherwise.

5.10 CBC Padding Oracle Attack

CBC is vulnerable to a so-called padding oracle attack(e.g., see the 2014 POODLE-attack3 against
SSLv3 and some implementations TLS) that allows to recover a plaintext given a (IV,ciphertext)-
pair and access to a padding oracle, i.e., an oracle that simply answers whether a given (IV,ciphertext)-
pair decrypts to a plaintext that has been properly padded to a length that is a multiple of the
blocksize. Such a padding oracle may exist due to implementation flaws, e.g., distinguishing be-
tween correct and incorrect padding may be achieved via an abnormal response (error code) or a
noticable difference in response time. As the attack described below will show, it is thus impor-
tant to prevent any padding oracle in implementations by ensuring no information leaks via error
codes and using constant-time constant-memory code (i.e., independent of correctness of padding,
decryption executes the same instructions and accesses the same memory locations).

The attack described below assumes PKCS7 padding, i.e., if r ≥ 1 bytes need to be appended to
achieve the length to be a multiple of the blocksize, then r bytes of integer value r are appended.
Below we conveniently describe blocks as concatenation of byte values, e.g., 0L−i||ii means the
L-byte block consisting of L− i bytes of value 0 followed by i bytes of value i.

First note that a one-bit change to the ciphertext will cause the corresponding plaintext block to be
completely different, but very importantly the only other change to the decrypted plaintext is the
same one-bit change in the following plaintext block.

Thus one can apply arbitrary differences to the last block that contains the padding. Let L be
the blocksize in bytes, Opad : C → {true, false} be the padding oracle, then one can recover all
plaintext blocks as follows:

3https://www.openssl.org/~bodo/ssl-poodle.pdf
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For block j = 1, . . . , l do:

Set recovered last plaintext block Pj,rec = 0

For byte i = 1, . . . , L of the block do:

For byte value b = 0, . . . , 255 do:

Let block Ppad = 0L−i||ii and block Pguess = 0L−i||b||0i−1

Let Ĉj−1 = Cj−1 ⊕ Pj,rec ⊕ Pguess ⊕ Ppad
If Opad(C0|| · · · |Cj−2||Ĉj−1||Cj) = true then

Set Pj,rec = Pj,rec ⊕ Pguess
Continue with next i

Return P1,rec|| · · · ||Pl,rec

Note that while guessing the last byte of each block there may be two possibilities:

1. we guessed correctly and the last byte is now 1, which forms a correct padding.

2. the second-last plaintext byte is 2 and our guess turned the last plaintext byte in 2, and 2||2
is also a correct padding.

Continuing with the second possibility will fail quickly once all guesses fail for a byte and can
then be dismissed, then one needs to go back to the previous i and now skipping the incorrect
guess b.

6 Linear cryptanalysis

This section is an introduction to linear cryptanalysis. We’ll explain the basic techniques by
demonstrating how to use them against a toy cipher built similar to modern block ciphers. The
examples here follow those from http://www.engr.mun.ca/~howard/PAPERS/ldc_tutorial.pdf.
Modern block ciphers (like AES) proceed in rounds. Every round uses a separate round key (also
called subkey) derived from the (master) key using an algorithm called the key schedule. A
simple structure commonly used to design block ciphers is the substitution-permutation-network
(SPN).

6.1 Substitution-Permutation Networks Ciphers

SPN Ciphers consist of a number of rounds. Every round consists of the following operations:

� key mixing : add the round key to the current state (linear operation)

� substitutions: the state is split into words, each word is substituted using a one-to-one value
mapping called an SBox. (non-linear operation)

� permutation: a linear operation performing inter-word mixing, e.g., a simple permutation
over the bits of the state. (linear operation)

The very last round does no permutation, but instead does a final key mixing. A permutation
does not add security there as any attacker can immediately revert it independently of the key.
Without the final key mixing, the same would hold for the substitution.

As an example for exposition of the techniques we will consider a SPN Cipher of the following
bit-oriented form (e.g., in contrast AES is byte-oriented as it uses GF (28)). Let w, s, r ∈ N+,
where w is the word size in bits, s is the number of words in the state, and r is the number of
rounds. Then the block size, and thus state size, is w · s. For simplicity we will use only one SBox
for all substitution:

πS : {0, 1}w → {0, 1}w, πS ∈ Sym({0, 1}w)
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and one state bit permutation:

πP : {1, . . . , w · s} → {1, . . . , w · s}, πP ∈ Sym({1, . . . , w · s}).

Also, we will assume independent random keys K1, . . . ,Kr+1 for every round, instead of round
keys derived from a master key. The SPN Cipher takes as input a plaintext P ∈ {0, 1}ws which is
used as the initial state S0 = P . For round i = 1, . . . , r:

1. XOR round key Ki into state: S
(K)
i = Si−1 ⊕Ki;

2. Apply SBox on word-splitted state S
(K)
i = S

(K)
i,1 || · · · ||S

(K)
i,s :

S
(KS)
i = πS(S

(K)
i,1 ) || πS(S

(K)
i,2 ) || · · · || πS(S

(K)
i,s ).

3. Permute state bits of S
(KS)
i = b0||b1|| · · · ||bws:

Si = S
(KSP )
i = bπP (1)||bπP (2)||bπP (3)|| · · · ||bπP (ws).

Note that in the last round the state bits permutation is typically skipped for efficiency, but
includes a final key mixing before outputting the state as the ciphertext block:

C = Sr = S(KS)
r ⊕Kr+1

6.2 Toy Cipher

In this course we will use the following toy cipher to demonstrate linear cryptanalysis as well as
differential cryptanalysis in the next section.

This toy cipher has a state of 16 bits (b1 · · · b16) split into s = 4 words of w = 4 bits:

W1 = b1b2b3b4, W2 = b5b6b7b8, W3 = b9b10b11b12, W4 = b13b14b15b16.

The cipher only has r = 4 rounds using the following SBox πS on {0, 1}4:

x 0 1 2 3 4 5 6 7
πS(x) 14 4 13 1 2 15 11 8
x 0000 0001 0010 0011 0100 0101 0110 0111

πS(x) 1110 0100 1101 0001 0010 1111 1011 1000
x 8 9 10 11 12 13 14 15

πS(x) 3 10 6 12 5 9 0 7
x 1000 1001 1010 1011 1100 1101 1110 1111

πS(x) 0011 1010 0110 1100 0101 1001 0000 0111

Note: here 4 bits are represented as integers, where the most significant bit corresponds to the
left most bit, e.g., bit b1 in W1.

The cipher uses the following state bits permutation πP on {1, . . . , 16}:

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
πP (x) 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16
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The toy cipher is visually depicted below:

As you can see, SPN Ciphers are simple and can be very efficient, especially in hardware. Decryp-
tion is analogous to encryption, each operation is simply reversed.

6.3 Linear cryptanalysis

Linear cryptanalysis tries to linearly approximate the cipher, in particular that means a linear
approximation of the SBoxes as these are the only non-linear component. The main attack idea
is to find a linear relation that holds with a probability that has a significant bias away from the
expected probability 1/2. Using linear relations between a subset of the plaintext bits and a subset

of the bits of the state S
(K)
r , i.e., the state before the last substitution, one can try to recover bits

of the last round key.

As we show later on, the overall attack uses the probability bias of the linear relation to statistically
distinguish when the relation holds (in order to derive information about a subset of the final round
key bits). Therefore the attack will require a lot of plaintext-ciphertext pairs in a known-plaintext
scenario. The bigger the magnitude of the bias, the fewer pairs are required.

6.4 SBox Linear Approximation Table (LAT)

Let X1, X2, X3, X4 be random variables for the input bits assumed to be independent and uni-
formly random distribution and let Y1, Y2, Y3, Y4 be random variables for the output bits:
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Thus for the toy cipher’s SBox:

X1X2X3X4 0000 0001 0010 0011 0100 0101 0110 0111
Y1Y2Y3Y4 1110 0100 1101 0001 0010 1111 1011 1000
X1X2X3X4 1000 1001 1010 1011 1100 1101 1110 1111
Y1Y2Y3Y4 0011 1010 0110 1100 0101 1001 0000 0111

We are interested in linear relations for the SBox, i.e., relations of the form∑
i

aiXi ⊕
∑
j

bjYj = c,

where in the current case of F2 (bits): ai, bj , c ∈ {0, 1}. There are 24 = 16 different values for
X1X2X3X4 all equally likely (by assumption). Hence, the probability that such a linear relation
holds can be determined by counting the number of input-output pairs (X1X2X3X4, Y1Y2Y3Y4)
that satisfy the relation, divided by 16.

E.g., for the relations X2+X3+Y1+Y3+Y4 = 0, X1+X4+Y2 = 0 and X3+X4+Y1+Y4 = 0:

X1X2X3X4 Y1Y2Y3Y4 X2 +X3 Y1 + Y3 + Y4 X1 +X4 Y2 X3 +X4 Y1 + Y4

0000 1110 0 0 0 1 0 1
0001 0100 0 0 1 1 1 0
0010 1101 1 0 0 1 1 0
0011 0001 1 1 1 0 0 1
0100 0010 1 1 0 0 0 0
0101 1111 1 1 1 1 1 0
0110 1011 0 1 0 0 1 0
0111 1000 0 1 1 0 0 1
1000 0011 0 0 1 0 0 1
1001 1010 0 0 0 0 1 1
1010 0110 1 1 1 1 1 0
1011 1100 1 1 0 1 0 1
1100 0101 1 1 1 1 0 1
1101 1001 1 0 0 0 1 0
1110 0000 0 0 1 0 1 0
1111 0111 0 0 0 1 0 1

Thus:

Pr[X2 +X3 + Y1 + Y3 + Y4 = 0] = 12/16 = 0.75, Pr[X1 +X4 + Y2 = 0] = 8/16 = 0.5,

Pr[X3 +X4 + Y1 + Y4 = 0] = 2/16 = 0.125.

For independent Xi and Yj a linear relation has probability 0.5 to hold. The stronger the prob-
ability bias away from 0.5 for a relation, the more useful the relation is. We can describe the
probability bias for all possible relations in the Linear Approximation Table (LAT), which is a
table whose rows (respectively columns) describe the possible input (respectively output) variable
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sums. The cell at row I and column O contains the number of matches between the sum of input
bits and the sum of output bits: ∑

i∈I
Xi =

∑
j∈O

Yj

minus half the number of possible input values (for a 4-bit SBox: 0.5 · 24 = 8):

Output sum
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In
p

u
t

su
m

0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 -2 -2 0 0 -2 6 2 2 0 0 2 2 0 0
2 0 0 -2 -2 0 0 -2 -2 0 0 2 2 0 0 -6 2
3 0 0 0 0 0 0 0 0 2 -6 -2 -2 2 2 -2 -2
4 0 2 0 -2 -2 -4 -2 0 0 -2 0 2 2 -4 2 0
5 0 -2 -2 0 -2 0 4 2 -2 0 -4 2 0 -2 -2 0
6 0 2 -2 4 2 0 0 2 0 -2 2 4 -2 0 0 -2
7 0 -2 0 2 2 -4 2 0 -2 0 2 0 4 2 0 2
8 0 0 0 0 0 0 0 0 -2 2 2 -2 2 -2 -2 -6
9 0 0 -2 -2 0 0 -2 -2 -4 0 -2 2 0 4 2 -2
10 0 4 -2 2 -4 0 2 -2 2 2 0 0 2 2 0 0
11 0 4 0 -4 4 0 4 0 0 0 0 0 0 0 0 0
12 0 -2 4 -2 -2 0 2 0 2 0 2 4 0 2 0 -2
13 0 2 2 0 -2 4 0 2 -4 -2 2 0 2 0 0 2
14 0 2 2 0 -2 -4 0 2 -2 0 0 -2 -4 2 -2 0
15 0 -2 -4 -2 -2 0 2 0 0 -2 4 -2 -2 0 2 0

Here, as before, input and output variable sums are described in decimal, e.g.,

X2 +X3 = 0X1 + 1X2 + 1X3 + 0X4 → 0110→ 6

Y1 + Y3 + Y4 → 1Y1 + 0Y2 + 1Y3 + 1Y4 → 1011→ 11.

Each table cell contains the count of inputs for which the corresponding linear approximation
holds minus 8. Note that the sum for each row and column is either +8 or -8.

Thus the probability bias for any relation can be found by looking up the corresponding number
in the LAT and dividing by 16. Such a linear approximation table can be easily computed using
SAGE:

sage: S=sage.crypto.sbox.SBox(14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7);

sage: S.linear approximation table()

6.5 Piling-Up Lemma

In the attack we will combine several linear relations over individual Sboxes to obtain a linear
relation over the first 3 rounds. To determine the probability bias for the resulting linear relation
we can use the Piling-Up Lemma (see the original linear cryptanalysis paper by Matsui4.

Let X1, X2 be two independent binary random variables and p1 = Pr[X1 = 0], p2 = Pr[X2 = 0],
then:

Pr[X1⊕X2 = 0] = Pr[X1 = X2] = Pr[X1 = 0∧X2 = 0]+Pr[X1 = 1∧X2 = 1] = p1p2+(1−p1)(1−p2).

Let ε1 = p1 − 0.5 and ε2 = p2 − 0.5 be the probability biases of X1 = 0 and X2 = 0, then:

Pr[X1 ⊕X2 = 0] = 0.5 + 2ε1ε2.

Hence, the probability bias of X1⊕X2 = 0 is ε12 = 2ε1ε2. This can be generalized to n independent
binary random variables:

4http://link.springer.com/chapter/10.1007%2F3-540-48285-7_33
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Lemma 1 (Piling-Up Lemma (Matsui)). For n independent binary random variables X1, . . . , Xn

with probability biases εi = Pr[Xi = 0]− 0.5:

Pr[X1 ⊕ · · · ⊕Xn = 0] = 0.5 + 2n−1
n∏
i=1

εi.

Or equivalently,

ε1,...,n = 2n−1
n∏
i=1

εi.

Note that if pi = 0 for all i then Pr[X1 ⊕ · · ·Xn = 0] is either 0 or 1. Also, if there is at least one
pi = 0.5 then Pr[X1 ⊕ · · ·Xn = 0] = 0.5.

6.6 Linear approximation over multiple rounds

Using the SBox LAT and the piling-up lemma we will show an example how to use them to
obtain a linear relation over the first three rounds of the toy cipher, i.e., only the first three
key-mixings, substitutions and permutations, and not the last round key- mixing, substitution
and final key-mixing. We will use Pi to denote the i-th bit of the plaintext, Kj,i to denote the
i-th bit of the round key Kj , Xj,i and Yj,i to denote the i-th input and output bit of SBox
j ∈ {11, . . . , 14, 21, . . . , 24, 31 . . . , 34, 41 . . . , 44}.

1. We start with the linear approximation X12,1 ⊕ X12,3 ⊕ X12,4 ⊕ Y12,2 = 0 over SBox S12

which has probability bias +1/4. Note that X12,1 = P5 ⊕ K1,5, X12,3 = P7 ⊕ K1,7 and
X12,4 = P8 ⊕ K1,8. Although key bits are unknown, for a given problem instance they’re
fixed. Therefore we gather sums of key bits on the right-hand side:

P5 ⊕ P7 ⊕ P8 ⊕ Y12,2 = K1,5 ⊕K1,7 ⊕K1,8 with bias +1/4. (1)

2. Output bit Y12,2 is the 6-th state bit remains the 6-th state bit through the permutation.
Then key mixing is applied and Y12,2 ⊕K2,6 = X22,2, where X22,2 is the 2-nd input bit of
SBox S22.

3. We use the linear approximation X22,2⊕Y22,2⊕Y22,4 = 0 over SBox S22 with bias −1/4 and
obtain:

Y12,2 ⊕ Y22,2 ⊕ Y22,4 = K2,6 with bias −1/4. (2)

4. With the Piling-Up Lemma we can combine Equation 1 and Equation 2 to obtain:

P5⊕P7⊕P8⊕Y22,2⊕Y22,4 = K1,5⊕K1,7⊕K1,8⊕K2,6 with bias 2(1/4)(−1/4) = −1/8. (3)

Note that we make an assumption of independence here which isn’t necessarily true. In
truth we simple hope that in reality they behave close enough to independence such that
the bias is very close or equal to −1/8. In practice it turns out to work quite well.

5. Output bits Y22,2 and Y22,4 pass through another permutation and key-mixing such that

Y22,2 ⊕K3,6 = X32,2 and Y22,4 ⊕K3,14 = X34,2.

6. For both SBoxes S32 and S34, we use the same linear relation as for SBox S22:

X32,2 ⊕ Y32,2 ⊕ Y32,4 = 0 with bias − 1/4

X34,2 ⊕ Y34,2 ⊕ Y34,4 = 0 with bias − 1/4

Substituting the input bits with the previous output bits we get:

Y22,2 ⊕ Y32,2 ⊕ Y32,4 = K3,6 with bias − 1/4 (4)

Y24,2 ⊕ Y34,2 ⊕ Y34,4 = K3,14 with bias − 1/4 (5)
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7. Applying the Piling-Up Lemma we can combine three linear relations (Eqs. 3, 4, 5) to obtain:

P5⊕P7⊕P8⊕ Y32,2⊕ Y32,4⊕ Y34,2⊕ Y34,4 = K1,5⊕K1,7⊕K1,8⊕K2,6⊕K3,6⊕K3,14, (6)

with the following bias: 4(−1/8)(−1/4)(−1/4) = −1/32.

This linear relation for the toy cipher is visually depicted below:

Note that the final bias of −1/32 depends on the biases of the individual relations and the number
of SBoxes actively involved in the relation. To strengthen a cipher one can thus try to use SBoxes
that have very small biases and a structure that tries to maximize the minimum number of active
Sboxes.

6.7 Extracting final round key bits

Once we have a linear approximation over all but the last round for a given cipher that has a
suitably large enough probability bias, we can try to exploit it to recover some bits of the final
round key bits from the final key-mixing. The linear approximation we obtained above

P5 ⊕ P7 ⊕ P8 ⊕ Y32,2 ⊕ Y32,4 ⊕ Y34,2 ⊕ Y34,4 = K1,5 ⊕K1,7 ⊕K1,8 ⊕K2,6 ⊕K3,6 ⊕K3,14

can be extended with another key-mixing Y32,2⊕K4,6 = X42,2, Y32,4⊕K4,8 = X42,4, Y34,2⊕K4,14 =
X44,2, and Y34,4 ⊕K4,16 = X44,4:

P5 ⊕ P7 ⊕ P8 ⊕X42,2 ⊕X42,4 ⊕X44,2 ⊕X44,4

= K1,5 ⊕K1,7 ⊕K1,8 ⊕K2,6 ⊕K3,6 ⊕K3,14 ⊕K4,6 ⊕K4,8 ⊕K4,14 ⊕K4,16
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Let’s replace the sum of key bits by zero:

P5 ⊕ P7 ⊕ P8 ⊕X42,2 ⊕X42,4 ⊕X44,2 ⊕X44,4 = 0.

Now this linear relation holds with bias −1/32 if the sum of the involved key bits indeed equals 0,
and with bias 1/32 otherwise. Note that only the sign of the bias changes, the magnitude remains
the same. In our attack the sign has no importance, only the magnitude is important to be able
to statistically distinguish a correct guess. Hence we can simplify to:

P5 ⊕ P7 ⊕ P8 ⊕X42,2 ⊕X42,4 ⊕X44,2 ⊕X44,4 = 0 with bias ± 1/32.

6.7.1 Attack

Given oracle-access to the toy cipher for unknownK1, . . . ,K5, the attack proceeds as follows:

� Sample n (plaintext,ciphertext)-pairs (P 1, C1), . . . , (Pn, Cn) by querying the encryption of
uniformly random chosen plaintexts P 1, . . . , Pn;

� For each possible value K̂ for the 8 bits K5,5−8|13−16 of K5 (those K5 bits that are involved
with SBoxes S42 and S44, whose input bits are part of the linear relation) we do the following:

– For i = 1, . . . , n compute 4-bit words Xi
42 and Xi

44 by partially decrypting Ci:

Xi
42 = π−1

S (Ci5−8 ⊕ K̂5−8), Xi
44 = π−1

S (Ci13−16 ⊕ K̂13−16);

– Determine Count(K̂) := {#i | P i5 ⊕ P i7 ⊕ P i8 ⊕Xi
42,2 ⊕Xi

42,4 ⊕Xi
44,2 ⊕Xi

42,4 = 0};

� The attack’s guessed valueKguess is the K̂ with largest sampled biasBias(K̂) = |Count(K̂)−
(n/2)|.

key guess |Bias| key guess |Bias|
K5,5−8|13−16 K5,5−8|13−16

1C 0.0031 2A 0.0044
1D 0.0078 2B 0.0186
1E 0.0071 2C 0.0094
1F 0.0170 2D 0.0053
20 0.0025 2E 0.0062
21 0.0220 2F 0.0133
22 0.0211 30 0.0027
23 0.0064 31 0.0050
24 0.0336 32 0.0075
25 0.0106 33 0.0162
26 0.0096 34 0.0218
27 0.0074 35 0.0052
28 0.0224 36 0.0056
29 0.0054 37 0.0048

Experimental results for the linear attack with 10,000 (plaintext,ciphertext)-pairs. It shows partial
subkey guesses and the determined |Bias| = |count − 5, 000|/10, 000, where the 8-bit partial
subkeys are written down in hexidecimal. The correct partial subkey in this case is listed in bold
and has the highest bias magnitude, not only in the showed listing, but among all guesses for the
partial subkey.

6.7.2 Number of samples required

For a linear relation with absolute bias ε > 0, the number of samples n for the attack to work well
is a small factor times ε−2 which can be seen as follows.
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For the correct key guess we expect that Count(K̂) has Binomial Distribution with n samples and

probability p = 0.5+ε or probability p = 0.5−ε. Thus the expectation of the measured Count(K̂)
will be n · p = (n/2) + n · ε or (n/2)− n · ε, both leading to measured absolute bias n · ε.

For wrong key guesses we expect that Count(K̂) has Binomial Distribution with n samples and

probability p = 0.5. Thus the expectation of the measured Count(K̂) will be n/2, leading to
measured absolute bias 0. However, this ’incorrect guess’ discrete distribution can be well approx-
imated with the continuous Normal distribution with mean n/2 and variance n · p · (1− p) = n/4,
and thus with standard deviation SD =

√
n/4. This means we can use the following rules of

thumb for bounds on the measured absolute biases:

� for 68.3% of incorrect key guesses the measured absolute bias will be smaller than the
standard deviation: Bias(K̂) < SD ;

� for 95.4% of incorrect key guesses the measured absolute bias will be smaller than twice the
standard deviation: Bias(K̂) < 2 · SD ;

� for 99.73% of incorrect key guesses the measured absolute bias will be smaller than three
times the standard deviation: Bias(K̂) < 3 · SD .

� for 99.9937% of incorrect key guesses the measured absolute bias will be smaller than four
times the standard deviation: Bias(K̂) < 4 · SD .

� for 99.999943% of incorrect key guesses the measured absolute bias will be smaller than five
times the standard deviation: Bias(K̂) < 5 · SD .

� for 99.99999980% of incorrect key guesses the measured absolute bias will be smaller than
six times the standard deviation: Bias(K̂) < 6 · SD .

Note that the expected fraction z of measured absolute biases smaller than x·SD is z = erf (x/
√

2),
given by the error-function erf (x). The expected fraction 1− z of measured absolute biases larger
than x · SD is bounded as follows:

1− z = 1− erf (x/
√

2) = erfc(x/
√

2) ≤ e−(x/
√

2)2 = e−x
2/2, x > 0.

That means that with x = 4 we can expect in about 1 out of 15787 cases to find an incorrect key
guesses’ measured absolute bias to be larger than 4 ·SD . With only 28−1 = 255 possible incorrect
key guesses, we expect all their measured absolute biases to be smaller than 4 ·SD with very high
probability.

Thus for the measured absolute bias of the correct key guess to stand out as the largest with high
probability, we need n · ε > 4 · SD = 4 ·

√
n/2 which can be rewritten to n > 4 · ε−2. Since the

blocksize of the toy cipher is 16 bits, there are only 216 possible samples. That means this attack
only works for linear relations with absolute bias at least ε >

√
2−16 = 2−8, otherwise there aren’t

enough possible samples for the attack to work.

6.7.3 Extending the attack

Once we have determined the correct value for the final round subkey bits (or at least a short list
of highly-likely values that we can go through), we can continue in the following manner:

1. Try to exploit other linear relations in order to obtain all final round key bits, guess all
remaining unknown final round key bits;

2. Strip the last round of all known (plaintext,ciphertext)-pairs, i.e., revert the last cipher
operations till the second-last key-mixing;

3. One can view the cipher as having r− 1 rounds, continue to attack the cipher using a linear
relation over r − 2 rounds;

4. Iterate 1-3 until all round keys have been broken.
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6.7.4 Using SAGE

To experiment with linear cryptanalysis on this toy cipher one can use SAGE and the sage files
found on the course website. Install SAGE from http://www.sagemath.org/doc/installation/

or use SAGE in the cloud https://cloud.sagemath.com/.

The files ptctlist.txt and ptctlist.sobj (SAGE binary format) contain a plaintext-ciphertext
list generated with the following commands:

sage: load(’toycipher_definition.sage’)

sage: load(’toycipher_gendata.sage’)

Be careful: executing this yourself will overwrite the file ptctlist.sobj.

To execute a linear cryptanalysis attack using the above linear relation to recover bits 5,6,7,8,13,14,15,16
of final round key K5, do the following in sage with access to the *.sage and ptctlist.sobj

files:

sage: load(’toycipher_definition.sage’)

sage: load(’linearcryptanalysis.sage’)

sage: result

[[1,167]

...

,[173,19]

,[220,200]]

sage: int2K5sub(200)

[0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Read the comments in the *.sage files to see what’s exactly happening. ’result’ is a list of
(|bias|, k5sub) sorted for increasing bias. The function int2K5sub maps an 8-bit integer to the
corresponding guess of bits 5,6,7,8,13,14,15,16 of K5, other bits of K5 are set to 0. In this case
the largest bias indeed belongs to the correct K5 sub key, this may not always be the case.

6.8 Space of all linear relations

It is easy to build other linear relations and naturally we can consider the entire space Lr of all
r-round linear relations with non-zero bias for the toy cipher.

6.8.1 Using multiple linear relations

A simple variation on the above linear relation is to drop P8 and K1,8 and use the linear relation
X12,1 ⊕X12,3 ⊕ Y12,2 = 0 over SBox S12 which has bias −4/16 instead of +4/16, hence this leads
to the linear relation with bias +1/32:

P5 ⊕ P7 ⊕X42,2 ⊕X42,4 ⊕X44,2 ⊕X44,4 = K1,5 ⊕K1,7 ⊕K2,6 ⊕K3,6 ⊕K3,14.

Note that we now have 2 relations that have overlapping plaintext bits and the same round-4
SBoxes. We can execute the attack in section 8.6 for each attack individually and obtain the
measured bias for each subkey guess. As mentioned, the correct subkey guess will hopefully
show the predicted bias. However the measured bias is a random variable itself, so other incorrect
subkey guesses may show random biases possibly of the same magnitude depending on the number
of samples.

E.g., the top 5 measured biases for the SAGE example data and the first linear relation, written
as (keyguess, |bias| ∗ 8192), are:

(60, 237), (236, 192), (190, 164), (252, 149), (44, 142)
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For the second linear relation above these are:

(60, 342), (236, 267), (252, 234), (44 : 231), (226, 204)

The predicted absolute bias is 1/32 · 8192 = 256, so we indeed observe random biases of the
same magnitude, we’re rather lucky that in both cases the correct keyguess (60) has the highest
bias.

In such a case we can use multiple linear relations to obtain an attack with increased success
probability in obtaining the correct key guess (by taking the key guess with highest total abso-
lute bias, e.g., 60:237+342=579), or an attack that requires fewer samples for the same success
probability.

6.8.2 Interference

Note that in the attack we’re trying to find the correct key guess by counting for how many
samples P i5 ⊕ P i7 ⊕ P i8 ⊕Xi

42,2 ⊕Xi
42,4 ⊕Xi

44,2 ⊕Xi
42,4 = 0 holds. We use the single linear relation

with large bias as a first order approximation of the real bias. However there may be multiple
linear relations that involve exactly the same plaintext bits and round-4 SBox input bits having
different biases and/or different involved key bits.

When one linear relation has a large bias and the remaining linear relations have small bias, it
should not be a problem to use the large bias as a first order approximation of the real bias in
practice.

However, when two or more linear relations have about the same absolute bias then depending on
the value of the involved key bits, the biases of these linear relations can either cancel or enlarge
each other in the real bias. That means that for half the keys the real bias will be small, whereas
for the other half of the keys the real bias will be even larger.

E.g., consider the following two linear relations:

� One having active SBoxes S11 (LAT(10,6)), S14 (LAT(10,6)), S22 (LAT(9,8)), S23 (LAT(9,8)),
S31 (LAT(6,11)) and bias 24(2/16)2(−4/16)2(4/16) = 1/256:

P1 ⊕ P3 ⊕ P13 ⊕ P15 ⊕ Y31,1 ⊕ Y31,3 ⊕ Y31,4

= K1,1 ⊕K1,3 ⊕K1,13 ⊕K1,15 ⊕K2,5 ⊕K2,8 ⊕K2,9 ⊕K2,12 ⊕K3,2 ⊕K3,3

� And one having active SBoxes S11 (LAT(10,12)), S14 (LAT(10,12)), S21 (LAT(9,8)), S22

(LAT(9,8)), S31 (LAT(6,11)) and bias 24(2/16)2(−4/16)2(4/16) = 1/256:

P1 ⊕ P3 ⊕ P13 ⊕ P15 ⊕ Y31,1 ⊕ Y31,3 ⊕ Y31,4

= K1,1 ⊕K1,3 ⊕K1,13 ⊕K1,15 ⊕K2,1 ⊕K2,4 ⊕K2,5 ⊕K2,8 ⊕K3,1 ⊕K3,2

In the attack described in section 8.6., we ignored the sum of the key bits as that sum is fixed for
fixed key and only affects the sign of the bias. But when multiple linear relations have the same
input (plaintext) and output (round-3 sbox) bits their biases will interact:

� They may partially cancel when they have opposing sign, i.e., when

K1,1 ⊕K1,3 ⊕K1,13 ⊕K1,15 ⊕K2,5 ⊕K2,8 ⊕K2,9 ⊕K2,12 ⊕K3,2 ⊕K3,3

6= K1,1 ⊕K1,3 ⊕K1,13 ⊕K1,15 ⊕K2,1 ⊕K2,4 ⊕K2,5 ⊕K2,8 ⊕K3,1 ⊕K3,2

⇔ 1 = K2,1 ⊕K2,4 ⊕K2,9 ⊕K2,12 ⊕K3,1 ⊕K3,3

� Or a greater bias can be observed when they have identical sign, i.e., when

K1,1 ⊕K1,3 ⊕K1,13 ⊕K1,15 ⊕K2,5 ⊕K2,8 ⊕K2,9 ⊕K2,12 ⊕K3,2 ⊕K3,3

= K1,1 ⊕K1,3 ⊕K1,13 ⊕K1,15 ⊕K2,1 ⊕K2,4 ⊕K2,5 ⊕K2,8 ⊕K3,1 ⊕K3,2

⇔ 0 = K2,1 ⊕K2,4 ⊕K2,9 ⊕K2,12 ⊕K3,1 ⊕K3,3
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In such a case, one can use the two linear relations as a single linear relation that has a higher
bias for half of the keys, and a lower bias for the other half of the keys. Most often there will
only be one linear relation with a high bias, and all other relations with same input and output
bits have significantly lower or zero bias, therefore the high bias can be used as a first order
approximation.

7 Differential cryptanalysis

In differential cryptanalysis we simultaneously consider two encryptions C = EncK(P ) and C ′ =
EncK(P ′) and look at all differences between their computations. For any variable X related to
(P,C), we denote by X ′ the corresponding variable related to (P ′, C ′) and denote ∆X = X ⊕X ′
as the XOR difference. A key property we will be using is that key additions cancel out:

(Y = X ⊕K) ∧ (Y ′ = X ′ ⊕K) ⇒ ∆Y = X ⊕K ⊕X ′ ⊕K = ∆X

Consider input difference ∆P and output difference ∆C then we call the pair (∆P,∆C) a dif-
ferential. For an ideally randomizing cipher, the expected probability that ∆C occurs given that
∆P holds is 2−n where n is the plaintext block bit length. Whereas linear cryptanalysis uses the
probability bias, for differential cryptanalysis we will use the probability itself:

p∆P,∆C = Pr[∆C | ∆P ] = Pr
P

[EncK(P )⊕ EncK(P ⊕∆P ) = ∆C].

Differential cryptanalysis tries to exploit high probability occurrences of certain input and output
differences of the SBoxes. Very similar to linear cryptanalysis, we try to construct a differential
relating plaintext differences to second-last round output differences with a sufficiently high prob-
ability. Similar to linear cryptanalysis, we can then again try final round subkey values and check
for which fraction of (P,C, P ′, C ′)-pairs the differential holds in order to distinguish the correct
final round subkey value. The attack is a chosen-plaintext attack as we need to be able to query
encryptions of P and P ′ = P ⊕∆P .

7.1 SBox Difference Distribution Table (DDT)

Let X1, X2, X3, X4 be random variables for the input bits assumed to be independent and uni-
formly random distribution and let Y1, Y2, Y3, Y4 be random variables for the output bits of one
instance. Similarly, let X ′1, X

′
2, X

′
3, X

′
4 and Y ′1 , Y

′
2 , Y

′
3 , Y

′
4 for the second instance.

We are interested in differentials for the SBox of the form

(∆X1 ∆X2 ∆X3 ∆X4,∆Y1 ∆Y2 ∆Y3 ∆Y4).

There are 24 = 16 different values for X1X2X3X4 all equally likely (by assumption). Hence the
probability that such a differential holds can be determined by counting the number of values for
X1X2X3X4 such that (X1X2X3X4, Y1Y2Y3Y4)⊕ (X ′1X

′
2X
′
3X
′
4, Y

′
1Y
′
2Y
′
3Y
′
4) satisfies the differential,
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divided by 16. Here the Yi’s are determined through the SBox with input X1X2X3X4, where the
Y ′i ’s are determined through the SBox with inputX ′1X

′
2X
′
3X
′
4 = X1X2X3X4⊕∆X1∆X2∆X3∆X4.

E.g., consider the output difference for input differences ∆X1∆X2∆X3∆X4 = 1011, 1000 and
0100:

X1X2X3X4 Y1Y2Y3Y4 ∆Y | ∆X = 1011 ∆Y | ∆X = 1000 ∆Y | ∆X = 0100
0000 1110 0010 1101 1100
0001 0100 0010 1110 1011
0010 1101 0111 1011 0110
0011 0001 0010 1101 1001
0100 0010 0101 0111 1100
0101 1111 1111 0110 1011
0110 1011 0010 1011 0110
0111 1000 1101 1111 1001
1000 0011 0010 1101 0110
1001 1010 0111 1110 0011
1010 0110 0010 1011 0110
1011 1100 0010 1101 1011
1100 0101 1101 0111 0110
1101 1001 0010 0110 0011
1110 0000 1111 1011 0110
1111 0111 0101 1111 1011

Thus note that p1011,0010 = 8/16 = 0.5, p1000,1011 = 4/16 = 0.25, and p0100,0110 = 6/16 = 0.375.
Ideally, a SBox would have probability 1/16 for every differential, which is impossible, so a good
SBox comes as close as possible.

We can describe the probability for all possible differentials in the Difference Distribution Table
(DDT), which is a table whose rows (respectively columns) describe the possible input (respectively
output) difference:

Output sum
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In
p

u
t

su
m

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 2 0 0 0 2 0 2 4 0 4 2 0 0
2 0 0 0 2 0 6 2 2 0 2 0 0 0 0 2 0
3 0 0 2 0 2 0 0 0 0 4 2 0 2 0 0 4
4 0 0 0 2 0 0 6 0 0 2 0 4 2 0 0 0
5 0 4 0 0 0 2 2 0 0 0 4 0 2 0 0 2
6 0 0 0 4 0 4 0 0 0 0 0 0 2 2 2 2
7 0 0 2 2 2 0 2 0 0 2 2 0 0 0 0 4
8 0 0 0 0 0 0 2 2 0 0 0 4 0 4 2 2
9 0 2 0 0 2 0 0 4 2 0 2 2 2 0 0 0
10 0 2 2 0 0 0 0 0 6 0 0 2 0 0 4 0
11 0 0 8 0 0 2 0 2 0 0 0 0 0 2 0 2
12 0 2 0 0 2 2 2 0 0 0 0 2 0 6 0 0
13 0 4 0 0 0 0 0 4 2 0 2 0 2 0 2 0
14 0 0 2 4 2 0 0 0 6 0 0 0 0 0 2 0
15 0 2 0 0 6 0 0 0 0 4 0 2 0 0 2 0

Each cell at row I and column O contains the number of matches between the input difference
and output difference:

SBox (X)⊕ SBox (X ⊕∆I) = ∆O.

Here, as before, input and output variable sums are described in decimal, e.g.,

X2 +X3 = 0X1 + 1X2 + 1X3 + 0X4 → 0110→ 6
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Y1 + Y3 + Y4 → 1Y1 + 0Y2 + 1Y3 + 1Y4 → 1011→ 11.

Each table cell contains the count of inputs for which the corresponding differential characteristic
holds. Note that the sum for each row and column is always 16.

Thus the probability bias for any relation can be found by looking up the corresponding number
in the LAT and dividing by 16. Such a linear approximation table can be easily computed using
SAGE:

sage: S=sage.crypto.sbox.SBox(14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7);

sage: S.difference distribution table()

7.2 Piling-Up Differentials

Piling up differentials is very similar to piling-up linear relations, but instead of combining prob-
ability biases we can multiply probabilities directly. However, differentials cannot be arbitrarily
combined as they can contradict each other, whereas linear relations can simply be added to each
other. So to simplify notation we will construct 1-round differentials over the entire state from
differentials over SBoxes in the same round, and we will construct (r + s)-round differentials by
combining a r-round differential and a s-round differential. One can also take a similar view for
linear cryptanalysis.

7.2.1 Constructing 1-round differentials

Consider the toy cipher from chapter 8. Let (∆X1,2,3,4,∆Y1,2,3,4), (∆X5,6,7,8,∆Y5,6,7,8),
(∆X9,10,11,12,∆Y9,10,11,12), and (∆X13,14,15,16,∆Y13,14,15,16) be differentials for SBoxes Sr1, Sr2,
Sr3, and Sr4, respectively, for some round r with probabilities pr1, pr2, pr3, and pr4, respectively.
We combine these to obtain a differential over the entire substitution step:

(∆X1 . . .∆X16,∆Y1 . . .∆Y16) with probability psubst = pr1 · pr2 · pr3 · pr4.

Let Ir and Or denote the input and output state of round r. Then Xi = Ir,i ⊕ Kr,i, thus
∆Ir,i = ∆Xi for i = 1, . . . , 16. Also, Or,πP (i) = Yi, thus ∆Or,j = ∆Yπ−1

P (j) for j = 1, . . . , 16.

Therefore:
(∆X1 . . .∆X16,∆Y1∆Y5∆Y9∆Y13 . . .∆Y12∆Y16)

is a 1-round differential with probability psubst.

7.2.2 Concatenating a r-round and a s-round differential

Let (∆I1,∆O1) be a r-round differential with probability p1. Let (∆I2,∆O2) be a s-round dif-
ferential with probability p2. If ∆I2 = ∆O1 then (∆I1,∆O2) is a (r + s)-round differential with
probability p = p1 · p2.

7.3 Constructing a 3-round differential for the Toy Cipher

Let Ir and Or denote the input and output state of round r, and Xr and Yr the state before
and after the substitution step of round r. As an example: we start with a differential over
SBox S12 : (∆X,∆Y ) = (1011, 0010) which has probability 8/16 (lookup row 11=1011 column
2=0010 in the DDT). With zero differences for the other SBoxes in round 1, this translates to a
differential

(∆P,∆Y1) = (∆X1,∆Y1) = (0000 1011 0000 0000, 0000 0010 0000 0000), p = 1/2,

and we get the round 1 differential by applying the permutation πP on Y1:

(∆P,∆O1) = (0000 1011 0000 0000, 0000 0000 0100 0000), p = 1/2,
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For round 2 we only have a non-zero difference for SBox S23 and we use differential (∆X,∆Y ) =
(0100, 0110) with probability 6/16 (DDT row 4 column 6). This leads to

(∆X2,∆Y2) = (0000 0000 0100 0000, 0000 0000 0110 0000), p = 3/8,

and round-2 differential

(∆I2,∆O2) = (0000 0000 0100 0000, 0000 0010 0010 0000), p = 3/8.

Combining the round-1 differential and round-2 differential we get

(∆P,∆O2) = (0000 1011 0000 0000, 0000 0010 0010 0000), p = 3/16.

For round 3 we have a non-zero difference for Sboxes S32 and S33, we’ll use the same differential
(∆X,∆Y ) = (0010, 0101) with probability 6/16 for both. This leads to

(∆X3,∆Y3) = (0000 0010 0010 0000, 0000 0101 0101 0000), p = 9/64,

and round-3 differential

(∆I3,∆O3) = (0000 0010 0010 0000, 0000 0110 0000 0110), p = 9/64.

Combining the earlier 2-round differential and this round-3 differential we get

(∆P,∆O3) = (0000 1011 0000 0000, 0000 0110 0000 0110), p = 27/1024,

which is a 3-round differential.

This differential for the toy cipher is visually depicted below:
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7.4 Extracting final round key bits

The attack procedure is very similar to that for linear cryptanalysis. Once we have a differential
over all but the last round for a given cipher that has a suitably large enough probability, we can
try to exploit it to recover some bits of the final round key bits from the final key-mixing. The
differential and its probability we obtained above

(∆P,∆O3) = (0000 1011 0000 0000, 0000 0110 0000 0110), p = 27/1024,

can be trivially extended with the key-mixing with K4:

(∆P,∆X4) = (0000 1011 0000 0000, 0000 0110 0000 0110), p = 27/1024.

We will assume that we have access to a large amount of n samples of (P, P ′, C, C ′)-tuples where
P ′ = P ⊕ ∆P , C = EncK(P ), C ′ = EncK(P ′), that were obtained in a chosen-plaintext attack
scenario. To be able to check whether the differential holds we need to guess the key bits corre-
sponding to the output bits of the two active SBoxes S42 and S44 in round 4: K5,{5,6,7,8,13,14,15,16},
we call these bits the final round subkey. The idea is to guess the final round subkey bits and
that we hope that for the correct guess the measured differential probability is what is expected,
whereas for incorrect guesses we hope to see a measured differential probability very close to 2−8,
since we check the difference over just 8 bits instead of 16 bits.

For wrong key guesses we assume a Binomial distribution with parameter 2−8. The measured
count of correct differences can be approximated for a large number of samples with a Normal
distribution with mean n·2−8 and standard deviation (SD)

√
n · 2−8 · (1− 2−8) ≈

√
n · 2−8. Again

we can use an upperbound of 4 times the SD: a measured count for a wrong key guess will exceed
n ·2−8 +4 ·

√
n · 2−8 only with probability 0.000063. For the right key guess we assume a Binomial

distribution with parameter p, so for n samples the expected count of correct differences is n · p.
We need at least n ≥ c/p, for some small constant c ≥ 1, say c = 6, to ensure this expected count
is sufficiently large to observe and larger than the above upper bound.

For n = 228 ≈ 6/p, we can clearly distinguish the right key guess from all wrong key guesses with
near certainty:

n · p ≈ 6 > 4.67 ≈ n · 2−8 + 4 ·
√
n · 2−8.

Hence, for differential cryptanalysis the number of required (P, P ′, C, C ′)-tuples for the attack is
mostly proportional to 1/p. In practice, it is generally reasonable to use a small multiple of 1/p
tuples.

Once we have determined the correct value for the final round subkey bits (or at least a short list
of highly-likely values that we can go through), we can continue in the following manner identical
as for linear cryptanalysis:

1. Try to exploit other differentials in order to obtain all final round key bits, guess all remaining
unknown final round key bits;

2. Strip the last round of all known (plaintext,ciphertext)-pairs, i.e., revert the last cipherop-
erations till the second-last key-mixing;

3. One can view the cipher as having 1 less round, continue to attack the cipher using a
differential over fewer rounds;

4. Iterate 1-3 until all round keys have been broken.

7.5 Assumption of independence and using multiple different differen-
tials

For differential cryptanalysis we make the same kind of assumption of independence between the
SBox differentials as between the linear relations in linear cryptanalysis. Hence, for differential
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cryptanalysis we hope that the predicted differential probability is a very good approximation for
the real probability.

There may exist several ways to construct the same 3-round differential whose probabilities always
add up as they are so-called disjoint probability events. So unlike with linear cryptanalysis, there
can be no interference between differentials.

E.g., consider just two distinct SBox differentials with the same input difference (∆X,∆Y1) and
(∆X,∆Y2) with probabilities p1 and p2. Now depending on the bits X1X2X3X4 we’ll see output
difference either ∆Y1 with probability p1, or ∆Y2 with probability p2 or some other difference with
probability 1− p1 − p2. But it is impossible to obtain both ∆Y1 and ∆Y2 simultaneously.

7.6 Truncated differential cryptanalysis

The fact that probabilities of differentials with the same input difference can be added, is used in
so-called truncated differential cryptanalysis where a characteristic is defined over a set of input
differences and a set of output differences.

E.g., the following SBox truncated differential ({3, 7, 14}, {2, 4}) has probability 4/16: given input
difference 3, 7, or 14, one obtains output difference in the set {2, 4} with probability 4/16. This is
because differentials (3, 2), (3, 4), (7, 2), (7, 4), (14, 2), (14, 4) all have probability 2/16, so, e.g., for
input difference 14 the probability of an output difference in the set {2, 4} is 2/16+2/16=4/16. As
you can see using truncated differential cryptanalysis we can obtain significantly higher differential
probabilities.

7.7 Impossible differential cryptanalysis

Another advanced form of differential cryptanalysis is impossible differential cryptanalysis5 In im-
possible differential cryptanalysis one tries to exploit a differential (∆P,∆O3) that has probability
zero, i.e., a 3-round differential for which there exist no construction that leads to a non-zero
predicted probability. Thus it does not suffice to consider only one non-zero probability construc-
tion for (∆P,∆O3), but all constructions that lead to (∆P,∆O3) must have predicted probability
zero.

An example impossible differential is

(∆P,∆O3) = (1000 0000 0000 0000, 1000 0000 0000 0000).

One way to construct this differential to simply concatenate the following 1-round differential 3
times:

(∆I,∆O) = (1000 0000 0000 0000, 1000 0000 0000 0000).

This 1-round differential has probability 0 as for the only active SBox Sr1 table cell (8, 8) of the
DDT is 0.

But we can actually prove there exist no construction with non-zero probability that leads to
the above 3-round differential. First off, we will exclude all constructions that use differentials
of the form (x, 0) or (0, x) (either input or output difference zero) with non-zero x as they have
probability zero anyway. Then note that in round 1 the only active SBox is SBox S11 and that
its output bits are all mapped to the first input bit of round 2 SBoxes S21, S22, S23, S24. This
implies that the output mask determines which round 2 SBoxes are active and that the active
round 2 SBoxes have input difference 8(=1000) (difference only in the first bit). E.g., consider
Sbox differential (8, 11) = (1000, 1011) for S11, then output difference 11 (=1011) implies that
S21, S23 and S24 are active and have input difference 8 (=1000).

On the other hand, in round 3 the only active SBox is SBox S31 and its input bits are all mapped
to the first output bit of the round 2 Sboxes S21, S22, S23, S24. This implies that in order to

5E.g., see http://link.springer.com/chapter/10.1007/3-540-48910-X_2.
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obtain ∆O3 = 1000 0000 0000 0000, the output bits of SBoxes S21, S22, S23, S24 that map to
the other SBoxes S32, S33, S34 should all have difference zero. In other words, the active round 2
SBoxes should have output difference 8=(1000).

To conclude, the active round 2 SBoxes must have input difference 8 and output difference 8,
but SBox characteristic (8, 8) has probability 0, so this will always lead to a zero-probability
characteristic.

To exploit an impossible differential we can use a procedure very similar to the one from section
9.5 with the following modification:

1. For every guess for the entire round key K5 we do

1.1. We go over all (P, P ′, C, C ′)-tuples with plaintext difference ∆P = 1000 0000 0000 0000.

1.2. We partially decrypt the ciphertexts with K5 and determine ∆O3.

1.3. As soon as we find a tuple for which ∆O3 = 1000 0000 0000 0000 we can cross off this
key guess.

Note that even for incorrect K5 guesses the probability of running into the target ∆O3 is 2−16, so
we can expect many key guesses left that pass this filter. So in order to have only the correct key
guess remaining, we’ll need many more impossible differentials and use each one to filter out bad
key guesses.

7.8 Boomerang distinguishers

This attack by David Wagner6 effectively doubles the range of differentials and was designed as a
distinguisher attack (remember: an attack that distinguishes a cipher with a random key from a
random permutation). The idea is to split the cipher into 2 parts (e.g., rounds 1&2 and rounds
3&4) and determine a high probability differential over each part independently and then to find a
quartet of plaintext-ciphertext pairs that satisfies these differentials. Thus we’ll have a differential
over say rounds 1&2: (∆P,∆O2) with probability p1 and a differential over the remaining rounds:
(∆I3,∆C) with probability p2.

For the toy cipher we can use almost the same differential for both parts, where the only difference
is caused due to the fact that there is no permutation step in the final round. We use differential
(11, 2) for SBox S13 and differential (2, 5) for SBox S23:

(∆P,∆O1) = (0000 0000 1011 0000, 0000 0000 0010 0000), probability 1/2

(∆I2,∆O2) = (0000 0000 0010 0000, 0000 0010 0000 0010), probability 3/8

This combines to:

(∆P,∆O2) = (0000 0000 1011 0000, 0000 0010 0000 0010), probability 3/16.

Also, we use differential (11, 2) for SBox S33 and differential (2, 5) for SBox S43:

(∆I3,∆O3) = (0000 0000 1011 0000, 0000 0000 0010 0000), probability 1/2

(∆I4,∆O4) = (0000 0000 0010 0000, 0000 0000 0101 0000), probability 3/8

This combines to:

(∆I3,∆O4) = (0000 0000 1011 0000, 0000 0000 0101 0000), probability 3/16.

Given the two separate differentials we try to find a quartet of plaintext-ciphertext pairs
(P1, P2, P3, P4, C1, C2, C3, C4) that satisfy the following properties:

6See http://link.springer.com/chapter/10.1007%2F3-540-48519-8_12
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� P1 ⊕ P2 = ∆P

� P3 ⊕ P4 = ∆P

� C1 ⊕ C3 = ∆C

� C2 ⊕ C4 = ∆C

This can be done in the following manner:

1. Select P1 at random, determine P2 = P1 ⊕∆P ;

2. Ask to encrypt P1 and P2: C1 = EncK(P1), C2 = EncK(P2);

3. Determine C3 = C1 ⊕∆C and C4 = C2 ⊕∆C;

4. Ask to decrypt C3 and C4: P3 = DecK(C3), P4 = DecK(C4);

5. If P3 ⊕ P4 6= ∆P then go back to step 1;

6. Return (P1, P2, P3, P4, C1, C2, C3, C4).

The predicted success probability for each iteration is p2
1 · p2

2, hence the expected number of tries
required is p−2

1 · p
−2
2 , which in the example is (3/16)4 ≈ 809.

However the success probability may be amplified by other differentials that only differ in ∆O2

or ∆I3. Given a set R1 of round-1,2 differentials with identical ∆P and a set R2 of round-3,4
differentials with identical ∆C, the total predicted success probability is:

psuccess =

 ∑
(∆P,∆O2)∈R1

Pr[(∆P,∆O2)]2

 ·
 ∑

(∆I3,∆C)∈R2

Pr[(∆I3,∆C)]2

 .

In theory also sets of characteristics over round 1 and round 2-4 increase the total success proba-
bility. But note that a quartet may satisfy both 1-2/3-4-round split differentials and 1/2-4-round
split differentials, so these events are not disjoint and therefore we may not simply add success
probabilities of differential-pairs with different round splits.

The measured expected number of tries for the above is actually about 100, about 8 times less
than expected...

Finding such a quartet against a uniformly selected random permutation instead of a block cipher
has a success probability of 2−N , where N is the state size in bits. So when p−2

1 p−2
2 << 2N , we

can distinguish the cipher from a uniformly selected random permutation by trying to find such a
quartet in a number of tries significantly smaller than 2N .

8 Cryptographic hash functions

Cryptographic hash functions map messages of arbitrary size to a fixed size hash, e.g. a bitstring
of length 256. For cryptographic purposes we distinguish several security properties for families
F of hash functions with the same range H (see https://eprint.iacr.org/2004/035):

� Pre (pre-image resistance): no algorithm A, given randomly selected inputs f
r← F , H r← H,

that returns M = A(f,H) such that f(M) = H is faster than exhaustive search.

� ePre (everywhere pre-image resistance): no algorithm A, that chooses a hash H ← A before

f
r← F is selected at random, that returns M = A(f,H) such that f(M) = H is faster than

exhaustive search.

� aPre (always pre-image resistance): no algorithm A, that chooses a hash function f ← A

before H
r← H is selected at random, that returns M = A(f,H) such that f(M) = H is

faster than an exhaustive search.
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� Sec (second pre-image resistance) [n] : no algorithm A, given randomly selected inputs f
r←

F , M
r← {0, 1}≤n, that returns M ′ = A(f,M) such that f(M) = f(M ′) and M ′ 6= M is

faster than exhaustive search.

� eSec (everywhere second pre-image resistance): no algorithm A, that chooses a message

M ← A before f
r← F is selected at random, that returns M ′ = A(f,M) such that f(M) =

f(M ′) and M ′ 6= M is faster than exhaustive search.

� aSec (always second pre-image resistance) [n] : no algorithm A, that chooses a hash function

f ← A before M
r← {0, 1}≤n is selected at random, that returns M ′ = A(f,M) such that

f(M) = f(M ′) and M ′ 6= M is faster than exhaustive search.

� Coll (collision resistance): no algorithm A, given randomly selected hash function f
r← F ,

that returns (M,M ′) with f(M) = f(M ′) and M 6= M ′ is faster than a generic collision
attack.

The most widely used hash functions are SHA-1, SHA-2-256 and SHA-2-512, whereas SHA-3 is
the future standard. Collisions have been found for SHA-1 this year7 and is thus not collision
resistant, while its late predecessor and prior de facto standard MD5 is very weak8. All of these
hash function standards are fixed hash functions and there is no family F to speak of, hence of
the above security properties only aPre and aSec apply. Note that for fixed hash functions there
is no formal definition of collision resistance, in facts this seems to be fundamentally impossible
due to Foundations-of-Hashing dilemma (see https://eprint.iacr.org/2006/281):

Any hash function’s range is smaller than the domain, thus the pigeon-hole principle states that
there exist collisions. For a fixed hash function f consider some message spaceM with |M| > |H|
and the family of algorithms A = {AM,M ′ | M,M ′ ∈ M′} consisting of trivial algorithms AM,M ′

that simply print a pair (M,M ′) Given the pigeon hole principle, there exist collisions f(M) =
f(M ′), M 6= M ′, M,M ′ ∈ M, thus inside A there exist trivial algorithms that return a collision
for the fixed hash function. This is another example of non-uniform algorithms.

8.1 Generic (second) pre-image attack

Given a hash function f(
r← F) and hash H (

r← H or = f(M). Let M be a finite message
space with |M| >> |H|. Then one can find a (second) pre-image using a brute force search:

While (true)

M ′
r←M, H ′ = f(M ′)

if H = H ′ return M ′

Assuming a geometric distribution, i.e., a success probability of 1/|H| in each iteration independent
of other iterations, one expects to need |H| tries to succeed.

8.2 Generic low-entropy pre-image attack

Hash functions are often used to store passwords more securely by storing their hash, a given
password can easily be verified against the hash. Yet from the hash it is hard to recover the
password. However, passwords have notoriously low entropy. Like with block ciphers one can use
Time-Memory trade off attacks using Hellman’s tables or Rainbow tables to precompute table(s)
of chains covering a large set of passwords. Given such tables one can recover passwords (covered
by the table) with high probablity very fast. In fact, this is the foremost practical use for this type
of attack, where Rainbow tables offer some practical advantages over Hellman’s tables.

7https://shattered.io
8https://www.win.tue.nl/hashclash/rogue-ca
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To prevent this kind of practical attack to recover passwords, the proper way to store passwords
is using salted hashing (or keyed hashing), e.g., for each password P one selects a salt S ∈ {0, 1}k
and stores (S, f(S||P )). Now the attacker needs either a separate Rainbow table for each salt or a
significantly bigger Rainbow table to cover pairs of (password,salt). Hence if k is large enough this
will not be practical anymore compared to a simple brute force search. Note that a salt has almost
no impact on a brute force search. Therefore there are special hashing algorithms that have been
designed to be fast enough for a password verification, but slow enough to cause a significant factor
increase in resources required for a brute force search. See also https://password-hashing.net/

8.3 Generic collision attack

As we showed above, for a pseudo-random function with range H there is a high probability to
see a collision among the images of O(

√
|H|) uniformly randomly selected inputs. To be more

specific, we can compute the expected number X of inputs to find a collision. Let n be the number
of hash function output bits, i.e., |H| = 2n.

E[X] =

∞∑
k=1

kPr[X = k]

=

∞∑
k=1

k(Pr[X > k − 1]− Pr[X > k])

= 1(Pr[X > 0]− Pr[X > 1]) + 2(Pr[X > 1]− Pr[X > 2]) + 3(Pr[X > 2]− Pr[X > 3]) + . . .

= 1 Pr[X > 0] + (2− 1) Pr[X > 1] + (3− 2) Pr[X > 2] + (4− 3) Pr[X > 3] + . . .

=

∞∑
k=0

Pr[X > k]

Earlier we found that:

Pr[X > k] = Pr[no collision occurred within k samples] ≈ e−k(k−1)/(2·2n) ≈ e−k
2/(2·2n).

Now we can approximate:

E[X] =

∞∑
k=0

Pr[X > k] ≈
∞∑
k=0

e−k
2/(2·2n) ≈

∫ ∞
0

e−k
2/(2·2n) =

√
π/2 · 2n/2.

A direct approach to implement a generic collision attack would be to compute images Hi = f(Mi)

for Mi
r←M and store them until one finds a collision. Unfortunately this would require O(2n/2)

memory.

Assuming an embedding H ⊂M, one can do significantly better using chains EP = f l(SP ) and
distinguished points, (see e.g., http://people.scs.carleton.ca/~paulv/papers/JoC97.pdf).
Let S ⊂ H be some subset of hashes that are easily distinguished, e.g., the last l-bits are zero. We
call S the set of distinguished points, which we use to generate variable length chains that end
in a distinguished point, i.e., EP = f l(SP ) ⊂ S. Then we can find collisions using the following
procedure:
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Birthday search with distinguished points

1. Let T = ∅
2. While (true)

3. SP
r← H, P = SP , l = 0

4. While (P /∈ S)

5. P = f(P ), l = l + 1

6. For every (SP ′, EP ′, l′) ∈ T with EP ′ = P do

7. X = SP , r = l, X ′ = SP ′, r′ = l′

8. While (r′ > r)

9. X ′ = f(X ′), r′ = r′ − 1

10. While (r > r′)

11. X = f(X), r = r − 1

12. While (f(X) 6= f(X ′))

13. X = f(X), X ′ = f(X ′)

14. if f(X) = f(X ′) and X 6= X ′ return (X,X ′)

15. T = T ∪ (SP, P, l)

Steps 3-5, 15, produce new chains and add them to the table T . Steps 6-14 check whether the
distinguished endpoint already occurred in the table T and recomputes both chains until a collision
point is found.

The average chain length is t = |H|/|S|, thus we can expect to store
√
π/2 · 2n/2/t chains.

Once a collision occurs, i.e., two chains containing the same point, then those two chains merge
and stop at the same distinguished endpoint. Note that once a collision occurs in step 5. with a
previously computed point, it still takes t iterations on average to find a distinguished point, so the
expected overall complexity to detect a collision is

√
π/2 · 2n/2 + t function calls. To compute the

collision point itself also requires expectedly an 2.5t function calls, resulting in a total complexity
of
√
π/2 · 2n/2 + 3.5t.

However, there also exists the possibility that a chain never ends in a distinguished point when it
enters a loop, to resolve this issue we can add the following step:

5a. If l > 20t then return to step 3.

To estimate the amount of wasted work due to stopping with too long chains, we look at two cases.
First, for legitimate chains whose length exceeds 20t without reaching a loop. The probability p1

for this is

p1 =

(
1− |S|
|H|

)20t

=

(
1− 1

t

)20t

≈ (e−1/t)20t = e−20.

Second, the case where a chain enters a loop within 20t iterations. The probability p2 of this case,
i.e., when an internal collision occurs, is approximately p2 ≈ 1− e−(20t)2/(2·2n).

Together the expected work lost because of these two cases equals E[lost work per trail] = (p1 +
p2)·20t, where as E[work per trail] = t. Hence, the expected fraction of lost work is (p1+p2)·20·t/t,
which we want to be negligble. In particular, as p1 = e−20 is already sufficiently small, we need
(20t)2 << 2n to ensure p2 is also sufficiently small.

9 Hash Function Cryptanalysis

Cryptographic hash functions map messages of arbitrary size to a fixed size hash, e.g., a bitstring
of length 256. The most widely used hash functions are SHA-1, SHA-2-256 and SHA-2-512, with
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SHA-3-256 and SHA-3-512 being the most recent standard. SHA-1 is not collision resistant, its late
predecessor and prior de facto standard MD5 is very weak. All of these hash function standards
are fixed hash functions and there is no family F to speak of, hence of the security properties
discussed in Section 7 only aPre and aSec apply.

Remember that for fixed hash functions there is no formal definition of collision resistance due
to the Foundations-of-Hashing dilemma. Nevertheless many real world cryptographic systems
depend on the informal collision resistance definition that for these fixed hash functions no one
can find collisions faster than the birthday search. Note that hash functions with n-bit output
claim n-bit security against aPre, aSec(, Pre, ePre, Sec, eSec), but only (n/2)-bit security against
collision resistance.

9.1 Hash Function Construction

Hash functions can process messages of arbitrary size, but do so by splitting the message into
pieces and iteratively update its internal state using one piece. The two most well-known methods
are the Merkle-Damgard construction (independently proposed by Merkle and Damgard in 1989)
used by MD5, SHA-1 and SHA-2-224,256,384,512 and the Sponge construction (see http://www.

infosec.sdu.edu.cn/cans2011/Joan%20SpongeCANS2011.pdf) known from SHA-3.

9.2 Merkle-Damgard construction

To build a hash function H : {0, 1}∗ → {0, 1}n, the Merkle-Damgard construction uses a fixed-size
compression function

f : {0, 1}n × {0, 1}m → {0, 1}n

that takes as input the current n-bit state and a m-bit message piece and outputs the updated
n-bit state. The construction itself first unambigiously pads the message with 1s and 0s and the
message bitlength, so that the total bit length is a multiple of m, and splits the padded message
pad(M) = M1||M2|| · · · ||Ml into l pieces Mi of bitlength m.

It then starts with an internal state CV 0 called the chaining value initialized to a fixed known
value called the initial value: CV 0 = IV . Then for each message block it calls the compression
function together with the last chaining value to produce the next chaining value:

CV i = f(CV i−1,Mi), for i = 1, . . . , l.

Finally it outputs the last chaining value CV l as the hash (thus a trivial finalization).

9.2.1 Collision Reduction

For the Merkle-Damgard construction one can prove that any collision for the hash function
implies a collision for the compression function. Thus one can argue that if one cannot find
collisions for the compression function faster than the birthday search, then the same holds for
the hash function.
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Proof. Let M and M ′ be two messages with the same hash H(M) = H(M ′). If M and M ′ are
of different length then their last message pieces Ml and M ′l′ are different and together with the
second last chaining values form a collision of f :

f(CV l−1,Ml) = f(CV ′l′−1,M
′
l′), (CV l−1,Ml) 6= (CV ′l′−1,M

′
l′).

Otherwise M and M ′ have the same bitlength and same number of message pieces l, note that
CV l = CV ′l. Now consider the smallest i ∈ {0, . . . , l} such that (CV j−1,Mj) = (CV ′j−1,M

′
j) for

all i < j ≤ l. If i = 0 then M and M ′ are equal, which is a contradiction. So finally we have
(CV i−1,Mi) 6= (CV ′i−1,M

′
i) and CV i = CV ′i, thus (CV i−1,Mi), (CV

′
i−1,M

′
i) is a collision pair

of f .

9.2.2 Weaknesses: length extension

A rather trivial weakness is that given any message M and hash H(M), it is possible to compute
the hash of the extended message M ||padding ||S in time O(|S|). One can simply continue hashing
given H(M) using the pieces of S, naturally the final padding must use the total length including
M , the padding of M and S.

This forms a problem for very simple Message Authentication Codes (MAC), where one computes
a tag for a given message using a secret key. Appending this tag to the message allows the
receiver with knowledge of the secret key to verify that the message is authentic and has not been
tampered with. A very simple MAC would initialize CV 0 with the key, or equivalently output
H(key ||message), and this would be secure if the hash function behaves as a random function.
However, due to the length extension attack, anyone can compute another valid (message ′, tag ′)-
pair given (message, tag)-pair directly using the above length extension attack.

Although by some it may be considered a feature, not a bug, of the Merkle-Damgard based hash
functions, it forces some (unexpected) care in constructing MACs from Merkle-Damgard based
hash functions.

9.2.3 Weaknesses: Multi-collisions

Another weakness was exposed by Joux called the multi-collision attack. The idea is that one can
use the birthday search to find a one-block collision for the hash function:

CV 1 = f(IV ,M1) = f(IV ,M ′1) ⇒ H(M1) = H(M ′1).

And of course we can find another one-block collision using chaining value CV 1:

CV 2 = f(CV 1,M2) = f(CV 1,M
′
2) ⇒ H(M1||M2) = H(M1||M ′2).

But as f(IV ,M1) = f(IV ,M ′1), we actually have

H(M1||M2) = H(M ′1||M2) = H(M1||M ′2) = H(M ′1||M ′2).

Now iteratively construct one-block collisions in this manner:

H(M1|| · · · ||Mi−1||Mi) = H(M1|| · · · ||Mi−1||M ′i) for i = 1, . . . , t.

For each of the t collisions one can choose either block Mi or M ′i , leading to a total of 2t different
messages that all hash to the same hash value.

9.2.4 Weaknesses: Faster second preimages against long messages

Against very long message X of blocklength 2l, a second preimage can be constructed in complexity
O(max(2n/2+l, 2n−l)) using the following procedure by Kelsey and Schneier9:

9https://eprint.iacr.org/2004/304.pdf
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First, construct an expandable message, i.e., a variant on the above multi-collision where the i-th
collision consist of a single block part |Mi| = m and a (2i−1 + 1)-block part |M ′i | = (2i−1 + 1)m.
Here we actually need internal collisions, i.e., a collision in the chaining value after processing
only the message itself without any padding: all 2t messages hash without padding to the same
chaining value ĈV . Also, all 2t different messages that can be obtained have a different blocklength
between t-blocks and (t + 2t − 1)-blocks. In particular, for any blocklength r ∈ [t, t + 2t − 1] we

can construct a message P of blocklength r that hashes without padding to ĈV . This step
constructs t = l collisions and requires finding l collisions of at most 2l−1 + 1 blocks, thus on
average O(l(2l−1 + 2)2n/2) compression function calls.

Now, the original message X is of blocklength 2l, thus there are 2l chaining values CV 1, . . . ,CV 2l .

The idea is to find a block B such that f(ĈV , B) ∈ {CV l+1, . . . ,CV 2l}, this requires on average
about O(2n−l) attempts for large l (such that (l + 1)/2l is negligible).

Say we have found f(ĈV , B) = CV r+1, l+1 ≤ r+1 ≤ 2l, then we can construct another message
X ′ that hashes to the same hash as X:

� For blocks 1 up to r ∈ [l, 2l − 1], we choose the appropriate expandable message of length r

that hashes without padding to ĈV : CV ′r = ĈV .

� Block B will be the (r+1)-th block of X ′, so chaining value CV ′r+1 = f(CV ′r, B) = CV r+1.

� Blocks r+2 up to 2l of X ′ are identical to those of X, thus CV ′j = CV j for j = r+2, . . . , 2l.

As X and X ′ have the same length |X ′| = |X|, it follows that X ′ has the same hash as X.

9.2.5 Wide-pipe Merkle-Damgard

To counteract the above three weaknesses one can make a simple modification to the Merkle-
Damgard construction. As the above weaknesses depend either on the knowledge of the internal
state or on collision attacks against the internal state, it suffices to make the internal state bitlength
twice as big as the hash bitlength. The so-called wide-pipe Merkle-Damgard construction uses
an internal state twice as big as the output hash and uses a finalization function to produce
the hash from the last internal state, which can be a simple truncation. The length extension
attacks against simple MACs don’t work anymore as the attacker only knows the output hash and
therefore has only partial knowledge about the last internal state that depends on the secret key.
Both the multi-collision attack and the second-preimage attack against long messages also don’t
work as they require more than O(2n) operations to find collisions in the internal state.

9.2.6 Instantiation using a block cipher

A block cipher C = EncK(B) can be used to instantiate the compression function. A trivial
way would be to use a message block as the key input K, the current chaining value as the
plaintext input B and use the output ciphertext C as the updated chaining value. However, this
is insecure and leads to a second preimage attack of complexity O(2n/2) using a birthday search
in a meet-in-the-middle attack.

Black, Rogaway and Shrimpton have proven that there are 12 basic ways of instantiating a com-
pression function from a block cipher that leads to a secure hash function (see http://link.

springer.com/content/pdf/10.1007%2F3-540-45708-9_21.pdf). The most common secure
way to do so is the Davies-Meyer construction:

CV i = f(CV i−1,Mi) := EncMi
(CV i−1)⊕ CV i−1.
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Enc

Mi

CV i−1 CV i

9.3 A very broken hash function: MD5

9.3.1 Notation

MD5 is a hash function designed by Ron Rivest in 1991 and has been used a the de facto hash
function for digital signatures up to 2004. It has a hash size of 128 bits and thus was designed to
offer 64-bit security against collisions and 128-bit security against (second) pre-image attacks. As
we will show in these lecture notes below, MD5 is weak and differential cryptanalysis can be used
to construct collisions for MD5 within a second on modern PCs.

Note that 64-bit and even 80-bit security is not sufficient in practice: The combined Bitcoin
network, at the time of writing, performs 262.1 SHA-2 hashes per second or 287.0 SHA-2 hashes
per year in Bitcoin mining. See https://blockchain.info/charts/hash-rate.

MD5 uses 32-bit words X which can be seen as an integer modulo 232 and simultaneously as a
32-bit string:

X : x31x30 · · ·x1x0 ↔
31∑
i=0

xi2
i.

We will write 32-bit words using hexidecimal notation, and use word when we mean a 32-bit word.
It uses the following operations on 32-bit words X:

� Addition and subtraction modulo 232;

� Bitwise AND (X ∧ Y ), XOR (X ⊕ Y ), OR (X ∨ Y ), NOT (X̄) on words X and Y ;

� Cyclic bitwise left rotation RL(X,n) of a word X by n bit positions:

RL(x31x30 · · ·x1x0, 1) = x30 · · ·x1x0x31;

� Bit index: X[i] denotes the i-th bit of X.

It uses Little Endian ordering to parse a bit sequence or byte sequence into words, see http://en.
wikipedia.org/wiki/Endianness. In particular it means that a byte sequence b0b1b2b3b4b5b6b7 . . .
(with integers bi ∈ [0, 255]) is parsed into a word sequence w0w1w2 . . . using:

wi =

3∑
j=0

b4i+j2
8j .

E.g., w0 = b020 + b128 + b2216 + b3224, w1 = b420 + b528 + b6216 + b7224.

9.3.2 Compression function

The initial value is defined as the word tuple: IV = (67452301x, efcdab89x, 98badcfex, 10325476x).
The compression function takes as input a 4-word tuple CV in = (A,B,C,D) and a 16-word tuple
(W0, . . . ,W15) and outputs a 4-word tuple CV out that is computed as follows:

1. Let W16, . . . ,W63 and BFi(B,C,D) be defined as follows:

BFi(B,C,D) = (B ∧ C) ∨ (B̄ ∧D) for i ∈ [0, 15]
Wi = W1+5i mod 16 BFi(B,C,D) = (D ∧B) ∨ (D̄ ∧ C) for i ∈ [16, 31]
Wi = W5+3i mod 16 BFi(B,C,D) = B ⊕ C ⊕D for i ∈ [32, 47]
Wi = W7i mod 16 BFi(B,C,D) = C ⊕ (B ∨ D̄) for i ∈ [48, 63]
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2. Let the addition constants be AC i = b232 sin(i+ 1)c for i ∈ [0, 63];

3. Let the rotation constants RC i be defined as follows

(RC i,RC i+1,RC i+2,RC i+3) = (7, 12, 17, 22) for i = 0, 4, 8, 12
(RC i,RC i+1,RC i+2,RC i+3) = (5, 9, 14, 20) for i = 16, 20, 24, 28
(RC i,RC i+1,RC i+2,RC i+3) = (4, 11, 16, 33) for i = 32, 36, 40, 44
(RC i,RC i+1,RC i+2,RC i+3) = (6, 10, 15, 21) for i = 48, 52, 56, 60

4. Let (A,B,C,D) = CV in

5. For i = 0, . . . , 63 do

5.1. Fi = BFi(B,C,D)

5.2. Ti = A+ Fi +Wi + AC i mod 232

5.3. Ri = RL(Ti,RC i)

5.4. (A,B,C,D) = (D,B +Ri, B,C)

6. Return CV out = CV in + (A,B,C,D)
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For convenience, here are the full tables with AC i, RC i and Wi:
i AC i RC i Wi

0 d76aa478x 7 W0

1 e8c7b756x 12 W1

2 242070dbx 17 W2

3 c1bdceeex 22 W3

4 f57c0fafx 7 W4

5 4787c62ax 12 W5

6 a8304613x 17 W6

7 fd469501x 22 W7

8 698098d8x 7 W8

9 8b44f7afx 12 W9

10 ffff5bb1x 17 W10

11 895cd7bex 22 W11

12 6b901122x 7 W12

13 fd987193x 12 W13

14 a679438ex 17 W14

15 49b40821x 22 W15

i AC i RC i Wi

16 f61e2562x 5 W1

17 c040b340x 9 W6

18 265e5a51x 14 W11

19 e9b6c7aax 20 W0

20 d62f105dx 5 W5

21 02441453x 9 W10

22 d8a1e681x 14 W15

23 e7d3fbc8x 20 W4

24 21e1cde6x 5 W9

25 c33707d6x 9 W14

26 f4d50d87x 14 W3

27 455a14edx 20 W8

28 a9e3e905x 5 W13

29 fcefa3f8x 9 W2

30 676f02d9x 14 W7

31 8d2a4c8ax 20 W12

i AC i RC i Wi

32 fffa3942x 4 W5

33 8771f681x 11 W8

34 6d9d6122x 16 W11

35 fde5380cx 23 W14

36 a4beea44x 4 W1

37 4bdecfa9x 11 W4

38 f6bb4b60x 16 W7

39 bebfbc70x 23 W10

40 289b7ec6x 4 W13

41 eaa127fax 11 W0

42 d4ef3085x 16 W3

43 04881d05x 23 W6

44 d9d4d039x 4 W9

45 e6db99e5x 11 W12

46 1fa27cf8x 16 W15

47 c4ac5665x 23 W2

i AC i RC i Wi

48 f4292244x 6 W0

49 432aff97x 10 W7

50 ab9423a7x 15 W14

51 fc93a039x 21 W5

52 655b59c3x 6 W12

53 8f0ccc92x 10 W3

54 ffeff47dx 15 W10

55 85845dd1x 21 W1

56 6fa87e4fx 6 W8

57 fe2ce6e0x 10 W15

58 a3014314x 15 W6

59 4e0811a1x 21 W13

60 f7537e82x 6 W4

61 bd3af235x 10 W11

62 2ad7d2bbx 15 W2

63 eb86d391x 21 W9
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Another way to define the compression function that unrolls the cyclic state (step 5.3) is by
replacing the following steps:

4. Let (Q0, Q−3, Q−2, Q−1) = (A,B,C,D) = CV in

5. For i = 0, . . . , 63 do

5.1. Fi = BFi(Qi, Qi−1, Qi−2)

5.2. Ti = Qi−3 + Fi +Wi + AC i mod 232

5.3. Ri = RL(Ti,RC i)

5.4. Qi+1 = Qi +Ri

6. Return CV out = CV in + (Q61, Q64, Q63, Q62)

This description simplifies the cryptanalysis and is what we’ll use. We’ll leave it to the reader to
verify the equivalence of these two description.

9.3.3 Properties of the compression function

� Each message word is used four times, which makes it very hard given arbitrary values for
CV in and CV out to find a message block B that hashes CV in to CV out = f(CV in , B).

� Each step is a permutation on the state: for fixed Qi−2, Qi−1, Qi,Wi there is a bijective
mapping between Qi−3 and Qi+1.

� A consequence of 2. is that the 64 steps are a permutation on the state: for fixed message
block, there is a bijective mapping between (Q0, Q−1, Q−2, Q−3) and (Q64, Q63, Q62, Q61).
This means you can indeed view MD5’s compression function as a block cipher in Davies-
Meyer mode. Note that decryption (the inverse mapping) is as fast as encryption.

� In each step the message word fully contributes to the output, i.e.: for fixedQi−3, Qi−2, Qi−1, Qi,
there is a bijective mapping between Wi and Qi+1.

� For the ’decryption’ the same holds, i.e.: for fixed Qi−2, Qi−1, Qi, Qi+1, there is a bijective
mapping between Wi and Qi−3.

9.4 Modular differential cryptanalysis

One of the first attempts to break MD5 was using modular differential cryptanalysis, i.e., differen-
tial cryptanalysis using difference δX = X ′−X mod 232. (e.g., see http://link.springer.com/

content/pdf/10.1007%2F3-540-47555-9_6.pdf). Den Boer and Bosselaers (see http://link.

springer.com/content/pdf/10.1007%2F3-540-48285-7_26.pdf) showed in 1993 that one can
find collisions for the compression function of MD5 of the form:

f(CV ,M) = f(CV ′,M) with δCV = (231, 231, 231, 231).

The idea is that for all steps i = 0, . . . , 63, given δQi = δQi−1 = δQi−2 = δQi−3 = 231, it holds
that

δFi = BFi(Q
′
i, Q
′
i−1, Q

′
i−2)−BFi(Qi, Qi−1, Qi−2) = 231

with probability 1 (for i = 32, . . . , 47) or probability 0.5 (otherwise). Note that as there is no
difference in the boolean function inputs in bit positions 0,...,30, there can also be no output
difference in bit positions 0,...,30, i.e., δFi ∈ {231, 0}.

For each bit position we can view the boolean function as a 3-to-1 substitution box and thus
determine from DDTs that δFi = 231 with probability 1 for i = 32, . . . , 47 and probability 0.5
otherwise.
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In which case it follows that:

δFi = 231

δTi = δQi−3 + δFi + δWi + δAC i = 231 + 231 + 0 + 0 mod 232 = 0

δRi = RL(T ′i ,RC i)− RL(Ti,RC i) = RL(Ti,RC i)− RL(Ti,RC i) = 0

δQi+1 = δQi + δRi = 231 + 0 = 231

Then after 64 steps we find a collision:

δA+ δQ61 = 231 + 231 mod 232 = 0

δB + δQ62 = 231 + 231 mod 232 = 0

δC + δQ63 = 231 + 231 mod 232 = 0

δD + δQ64 = 231 + 231 mod 232 = 0

For random CV in and message block B, the success probability is 2−48, requiring 248 attempts
and 249 compression function calls.

9.5 Speed-up using simple message modification

However, an important difference between block cipher cryptanalysis and hash function cryptanal-
ysis, is that in hash function cryptanalysis the attacker knows all the intermediate computations
as there is no secret key. This can provide an immediate speed-up by using a single partial solu-
tion to generate many partial solutions, essentially reducing the cost of finding partial solutions
significantly.

Assume we have found a (CV , B)-pair (with implied CV ′ = CV + δCV ) such that δT0 = · · · =
δT15 = 0 as desired, requiring on average 216 attempts. Then note that by changing W15 to
another value, we do not change δF15 and thus δT15 also doesn’t change. As earlier steps aren’t
affected at all, so in fact we now know 232 different (CV , B)-pairs with δT0 = · · · = δT15 = 0. For
these pairs the probability that also δT16 = · · · = δT63 = 0 is 2−32, thus among those 232 pairs we
can expect to find one that leads to a collision. The expected cost is now 217 + 233 compression
function calls. By applying this idea also to the first 15 steps one can further reduce the expected
cost to 32 + 233.

Although den Boer and Bosselaers were able to find collisions for the compression function, the
attack did not produce collisions for MD5, as finding message blocks (M1,M

′
1) leading to the

required chaining value difference δCV 1 = (231, 231, 231, 231) remained an open problem. Let’s
call this type of collision function collision dBB-collisions.

9.6 Combined modular and bitwise differential cryptanalysis

The first successful collision attack on MD5 was due to Xiaoyun Wang and her team. See http://
link.springer.com/content/pdf/10.1007%2F11426639_2.pdf for the original paper, however
another paper provides a significant better exposure how the attack works: https://eprint.

iacr.org/2004/264.pdf.

They used a number of key ingredients to make their attack successful:

1. They used modular and bitwise differentials together to tackle both modular additions and
the bitwise operations with high probabilities, i.e., they used the difference

∆X = (X ′[i]−X[i])31
i=0 (bitwise signed difference between the bits of X ′ and X)

for variables that enter the boolean function, i.e., Q−2, . . . , Q63, and the modular difference
for other variables: Wi, Fi, Ti, Ri, Q−3, Q64.
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2. They chose very specific δM to make their attack work, assume these fixed for now. They
were chosen to create a high probability differential path over steps 16, . . . , 63. That means
that over steps 0, . . . , 15 one must create a more complex path that starts with IV and ends
with the state difference at step 16 required by the high probability differential path.

3. Given an exact differential path, i.e., given all (bitwise) differences δWi, ∆Qi, δFi, δTi, δRi,
one can determine sufficient conditions only on variables Qi and Ti related to M (and thus
not on variables Q′i, T

′
i related to M ′). If the sufficient conditions are satisfied and hold then

the different path is followed exactly obtaining δCV out = δCV in +(δQ61, δQ64, δQ63, δQ62).

4. They use speed-ups that use (more complex) message modifications. Given a partial solu-
tion (CV ,W ) (and thus (CV ′,W ′) = (CV ,W ) + (δCV, δW )) that satisfies the sufficient

conditions up to Qt and Tt for some t, one may make small changes to W into Ŵ such that
(CV , Ŵ ) is also a partial solution that satisfies the sufficient conditions up to Qt and Tt.
This is called a message modification technique and can considerably speed up the attack.
E.g., the changes we made to W15 to generate 232 solutions in the den Boer and Bosselaers
attack is a simple example.

9.6.1 Bitwise signed difference

The bitwise signed difference can be described by a binary signed digit representation. A 32-bit
binary signed digit representation is a sequence b31 . . . b0 = (bi)

31
i=0 with bi ∈ {−1, 0, 1}, whereas

a binary digit representation limits bi ∈ {0, 1}. We will call such a 32-bit binary signed digit
representation a BSDR, and note that a difference ∆X = (X ′[i]−X[i])31

i=0 is a BSDR.

Let the map σ : {−1, 0, 1}32 → {0, 1}32 from a BSDR Y to a word X be defined as:

σ(Y ) = σ((yi)
31
i=0) =

31∑
i=0

yi2
i mod 232.

Also let hw(Y ) denote the hamming weight (number of non-zero digits) for words Y as well as for
BSDRs Y .

Given BSDR ∆X we can uniquely determine the word δX = σ(∆X). However, for any given non-
zero word X there are many possible BSDRs Y such that X = σ(Y ). Let’s take as an example
X = 1, then the following BSDRs Y have σ(Y ) = X:

� y31 = · · · = y1 = 0, y0 = 1;

� y31 = · · · = y2 = 0, y1 = 1, y0 = −1;

� y31 = · · · = y3 = 0, y2 = 1, y1 = y0 = −1;

� y31 = · · · = y4 = 0, y3 = 1, y2 = · · · = y0 = −1;
...

� y31 = 0, y30 = 1, y29 = · · · = y0 = −1;

� y31 = 1, y30 = · · · = y0 = −1;

� y31 = · · · = y0 = −1;

We call this effect carry propagation. More generally for any BSDR Y and for any two consecutive
signed bits (yi, yi+1), we can make the following exchanges without σ(Y ):

� (1, 0)↔ (−1, 1), since 2i = 2i+1 − 2i;

� (−1, 0)↔ (1,−1), since −2i = −2i+1 + 2i.

Also, we can exchange between y31 = 1 and y31 = −1 without changing σ(Y ) as −231 ≡ 231 mod
232.
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9.6.2 Sufficient conditions

To show how one can derive sufficient conditions on just Qi and Ti such that a differential
path holds, let’s consider the exact differential path for the den Boer and Bosselaers attack,
we have:

� ∆Qi = (±1, 0, . . . , 0), δQi = σ(∆Qi) = 231;

� δWi = 0;

� δFi = 231;

� δRi = δTi = 0.

As the boolean function operates bitwise and there are no differences in the bit positions 0 up to
30, we see that ∆Fi[b] = 0 for b = 0, . . . , 30 and i = 0, . . . , 63. Let’s consider the boolean function
of the first 16 steps at bit position 31 where we have three input bits and thus eight possible input
cases:

Qi[31]‖Qi−1[31]‖Qi−2[31] Q′i[31]‖Q′i−1[31]‖Q′i−2[31] Fi[31] F ′i [31] ∆Fi[31]
000 111 0 1 1
001 110 1 1 0
010 101 0 0 0
011 100 1 0 −1
100 011 0 1 1
101 010 0 0 0
110 001 1 1 0
111 000 1 0 −1

To achieve δFi = 231 there are only 4 allowed values for these three input bits: 000, 011, 100,
111. So one can see that δFi = 231 if and only if Qi−1[31] = Qi−2[31]. This condition Qi−1[31] =
Qi−2[31] is thus both necessary and sufficient to obtain δFi = 231 and δQi+1 = 231 for i = 0, . . . , 15,
and only involves variables related to M and not to M ′.

For steps i = 16, . . . , 31, we have the following output cases:

Qi[31]‖Qi−1[31]‖Qi−2[31] Q′i[31]‖Q′i−1[31]‖Q′i−2[31] Fi[31] F ′i [31] ∆Fi[31]
000 111 0 1 1
001 110 0 1 1
010 101 1 1 0
011 100 0 0 0
100 011 0 0 0
101 010 1 1 0
110 001 1 0 −1
111 000 1 0 −1

To achieve δFi = 231 there are only 4 allowed values for these three input bits: 000, 001, 110, 111.
So one can see that δFi = 231 if and only if Qi[31] = Qi−1[31]. This condition Qi[31] = Qi−1[31] is
thus both necessary and sufficient to obtain δFi = 231 and δQi+1 = 231 for i = 16, . . . , 31.
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For steps i = 32, . . . , 47 there are no sufficient conditions as all output cases have δFi = 231:

Qi[31]‖Qi−1[31]‖Qi−2[31] Q′i[31]‖Q′i−1[31]‖Q′i−2[31] Fi[31] F ′i [31] ∆Fi[31]
000 111 0 1 1
001 110 1 0 −1
010 101 1 0 −1
011 100 0 1 1
100 011 1 0 −1
101 010 0 1 1
110 001 0 1 1
111 000 1 0 −1

For steps i = 48, . . . , 63, we have the following output cases:

Qi[31]‖Qi−1[31]‖Qi−2[31] Q′i[31]‖Q′i−1[31]‖Q′i−2[31] Fi[31] F ′i [31] ∆Fi[31]
000 111 1 0 −1
001 110 0 0 0
010 101 0 1 1
011 100 1 1 0
100 011 1 1 0
101 010 1 0 −1
110 001 0 0 0
111 000 0 1 1

To achieve δFi = 231 there are only 4 allowed values for these three input bits: 000, 010, 101, 111.
So one can see that δFi = 231 if and only if Qi[31] = Qi−2[31]. This condition Qi[31] = Qi−2[31] is
thus both necessary and sufficient to obtain δFi = 231 and δQi+1 = 231 for i = 48, . . . , 63.

Combining these conditions we find:

� Q14[31] = Q13[31] = · · · = Q−2[31];

� Q31[31] = Q30[31] = · · · = Q15[31];

� Q62[31] = Q60[31] = Q58[31] = · · · = Q46[31];

� Q63[31] = Q61[31] = Q59[31] = · · · = Q47[31];

Having found the set of sufficient conditions we have now reduced the problem of finding a pair
(CV ,W ), (CV ′,W ′) that follows the differential path to the problem of finding a (CV ,W that
satisfies the sufficient conditions. This provides significant advantages: Firstly, we don’t have to
keep track of the computation (CV ′,W ′) anymore, providing a factor 2 speed up. Secondly, we
notice sooner that a (CV ,W ) is not a solution, e.g., if step 13 fails with δQ14 6= 231 then this will
be noticed already in step 11 when Q12[31] 6= Q11[31].
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i Qi[31] · · · Qi[0]
-3 ........ ........ ........ ........
-2 ........ ........ ........ ........
-1 ^....... ........ ........ ........
0 ^....... ........ ........ ........
1 ^....... ........ ........ ........
2 ^....... ........ ........ ........
3 ^....... ........ ........ ........
4 ^....... ........ ........ ........
5 ^....... ........ ........ ........
6 ^....... ........ ........ ........
7 ^....... ........ ........ ........
8 ^....... ........ ........ ........
9 ^....... ........ ........ ........
10 ^....... ........ ........ ........
11 ^....... ........ ........ ........
12 ^....... ........ ........ ........
13 ^....... ........ ........ ........
14 ^....... ........ ........ ........
15 ........ ........ ........ ........
16 ^....... ........ ........ ........
17 ^....... ........ ........ ........
18 ^....... ........ ........ ........
19 ^....... ........ ........ ........
20 ^....... ........ ........ ........
21 ^....... ........ ........ ........
22 ^....... ........ ........ ........
23 ^....... ........ ........ ........
24 ^....... ........ ........ ........
25 ^....... ........ ........ ........
26 ^....... ........ ........ ........
27 ^....... ........ ........ ........
28 ^....... ........ ........ ........
29 ^....... ........ ........ ........
30 ^....... ........ ........ ........
31 ^....... ........ ........ ........
32 ........ ........ ........ ........
33 ........ ........ ........ ........
34 ........ ........ ........ ........
35 ........ ........ ........ ........
36 ........ ........ ........ ........
37 ........ ........ ........ ........
38 ........ ........ ........ ........
39 ........ ........ ........ ........
40 ........ ........ ........ ........
41 ........ ........ ........ ........
42 ........ ........ ........ ........
43 ........ ........ ........ ........
44 ........ ........ ........ ........
45 ........ ........ ........ ........
46 ........ ........ ........ ........
47 ........ ........ ........ ........
48 M....... ........ ........ ........
49 M....... ........ ........ ........
50 M....... ........ ........ ........
51 M....... ........ ........ ........
52 M....... ........ ........ ........
53 M....... ........ ........ ........
54 M....... ........ ........ ........
55 M....... ........ ........ ........
56 M....... ........ ........ ........
57 M....... ........ ........ ........
58 M....... ........ ........ ........
59 M....... ........ ........ ........
60 M....... ........ ........ ........
61 M....... ........ ........ ........
62 M....... ........ ........ ........
63 M....... ........ ........ ........
64 ........ ........ ........ ........

. Qi[b] ∈ {0, 1}
^ Qi[b] = Qi−1[b]
M Qi[b] = Qi−2[b]

Table 1: den Boer and Bosselaer conditions

9.6.3 Message modification

As mentioned before there is a bijective mapping between Wi and Qi+1. This implies that given
Qi−3, . . . , Qi+1 there is a unique value for Wi determined by:
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1. Ri = Qi+1 −Qi;

2. Ti = RL(Ri, 32− RC i);

3. Fi = BFi(Qi, Qi−1, Qi−2);

4. Wi = Ti −Qi−3 − Fi −AC i.

Hence one can trivially find a message block that satisfies the conditions up to Q16:

1. Choose Q−3, . . . , Q16 that satisfy the sufficient conditions;

2. Compute W0, . . . ,W15 via the above relation.

This only costs 16 steps or 1/4-th compression function.

A more careful consideration of the message word order over the second round (steps 16, . . . , 31)
allows us to easily fulfill sufficient conditions up to Q19:

� W16 = W1 can be changed by choosing different Q−3, . . . , Q2 satisfying conditions. This
will also change W0 and other words but those are used later on. Thus we can easily fulfill
conditions on Q17 by considering various solutions for Q−3, . . . , Q2.

� W17 = W6 can be changed by choosing different Q3, . . . , Q7 satisfying conditions. This will
also changeW2, . . . ,W10 that are used later on in round 2, but it does not changeQ−3, . . . , Q2

or Q8, . . . , Q17. Thus we can easily fulfill conditions on Q18 by considering various solutions
for Q3, . . . , Q7.

� W18 = W11 can be changed by choosing different Q8, . . . , Q12 satisfying conditions. This
will also change W7, . . . ,W15 that are used later on in round 2, but it does not change
Q−3, . . . , Q7 or Q13, . . . , Q18. Thus we can easily fulfill conditions on Q19 by considering
various solutions for Q8, . . . , Q12.

To find a dBB-collision requires on average 16 + 2 · 2 + 2 · 2 = 24 steps to satisfy conditions
up to Q18 (e.g., Q17 requires two attempts on average, each attempt costs 2 steps: compute
step 1 to find W1 and compute step 16 to find Q17.) There are 13 + 16 = 29 conditions on
Q19, . . . , Q63 remaining and we can expect on average 229 attempts for different (Q8, . . . , Q12)
satisfying conditions to find a solution (CV ,W ) that leads to a dBB-collision. With an average
cost of 229 · ((1/2) · 2 + (1/4) · 4 + (1/8) · 6 + . . .) ≈ 231 steps or 225 compressions.

9.6.4 Advanced message modification

Fortunately, we can do even better using advanced message modification that exploits additional
conditions to obtain easy modifications beyond Q19 without invalidating previously satisfied con-
ditions. As an example, let’s look at the best advanced message modification for MD5.

We’re going to change Q9 into Q̂9 that in turn affects steps 8,9,10,11 and 12: W8 is used in step
27, W9 in step 24, W10 in step 21, W11 in step 17 and W12 in step 31.

We’d like to change Q25 in step 24 but without invalidating previously satisfied conditions. How-
ever, if W10 and/or W11 is changed, then we change also Q18, . . . and thereby potentially invalidate
their conditions.

Let’s take a closer look how W10 and W11 are changed exactly:

W10 = RL(Q11 −Q10, 32− RC 10)−Q7 −BF10(Q10, Q̂9, Q8)−AC 10

W11 = RL(Q12 −Q11, 32− RC 11)−Q8 −BF11(Q11, Q10, Q̂9)−AC 11

Clearly W10 and W11 are only changed if the boolean function output changes. As BF10(b, c, d) =
BF11(b, c, d) = (b ∧ c) ∨ (b̄ ∧ d) selects for the i-th output bit the value c[i] if b[i] = 1 and d[i] if
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b[i] = 0. This implies that:

BF10(0, Q̂9[j], Q8[j]) = Q8[j] = BF10(0, Q9[j], Q8[j])

BF10(1, Q10[j], Q̂9[j]) = Q10[j] = BF11(1, Q10[j], Q9[j])

For every bit Q9[j] of Q9 that is entirely free (not involved in any sufficient conditions) such
that conditions Q10[j] = 0 and Q11[j] = 1 do not form a contradiction with the set of sufficient
conditions, we can do the following. We can add the conditions Q10[j] = 0 and Q11[j] = 1 to the
set of sufficient conditions and thereby use the following advanced message modification at step
24 when all sufficient conditions up to are satisfied:

Q̂9 = Q9 ⊕ (031−j‖1‖0j)
Ŵ9 = RL(Q10− Q̂9, 32− RC 9)−Q6 −BF9(Q̂9, Q8, Q7)−AC 9

T̂24 = Q21 +BF24(Q24, Q23, Q22) + Ŵ9 + AC 24

Q̂25 = Q24 + RL(T24,RC 24)

That means that if t bits fulfill the above requirements and given one solution for the sufficient
conditions up to Q24, we can generate 2t different solutions that satisfy the sufficient conditions
up to Q24.

If from the above requirements only Q10[j] = 0 cannot be fulfilled, one can instead use condition
Q10[j] = 1 which will force a change in W10 and therefore one can use such bits j for advanced
message modification at step 21 (as W21 = W10). To reduce time spent on steps before step 21,
one can optimize the number of bits to use for advanced message modification at step 21 even if
they could also be used on step 24.

This type of advanced message modification is also called a tunnel, and there are 6 different tunnels
that change a single bit in some Qi in the first round. Two can be used at step 20, two can be
used at step 21, the other two are used at step 23 and step 24. We’ve already seen one for step 24
and one for step 21 whose auxiliary conditions contradict each other, meaning that for each bit
position one cannot use all 6 tunnels. We leave it to the reader to find the other tunnels.

Now we can use message modification at steps 16, 17, 18, 20, 21, 23 and 24. To find a dBB-collision
now requires 16 + 2*2 + 2*2 + 4*4 + 2*2 + 4*4 + 2*2 = 64 steps (1 compression function) to find
a solution up to Q24 (up to step 23). We can then multiply solutions using the above tunnel to find
223 solutions up to Q24, which is enough to expect a dBB-collision. Note that using early-stop, i.e.,
stop as soon as a sufficient condition is not satisfied, we calculate on average about 4 steps from
step 24 over the attempts. In total, the expected complexity is thus on 1 + 223(4/64) = 219, which
is significantly better than the straightforward attack with 249 complexity. This really shows the
advantage that we have full knowledge over all intermediate computations instead of only knowing
the plaintext and ciphertext as with blockcipher cryptanalysis.

9.6.5 A full collision attack against MD5

To complete Ddn Boer and Bosselaers attack against MD5’s compression function to an attack
on MD5 itself, one needs to find a message block pair (B,B′) such that δCV = f(IV , B′) −
f(IV , B) = (231, 231, 231, 231) and such that CV satisfies the sufficient conditions of dBB’s attack
on Q0, . . . , Q−3.

With the techniques above we can find such a message block pair if we have an exact differential
path that starts with IV and ends with δQ61 = · · · = δQ64 = 231. Naturally, the differential path
should try to use the 231-type differential steps for as many steps as possible.
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A good message block difference for this can be found by reasoning from the last step towards the
beginning. So we start with δQ61 = · · · = δQ64 = 231 and go backwards.

Note that we know that in round 4: δFi = 231 with probability 1/2 and δFi = 0 otherwise. Since
δWi = 231 and δFi = 0 also result in δQi−3 = δTi− δFi− δWi = 231 (given that δRi = 0 and thus
δTi = 0), in round 4 the success probability for a 231-type differential step is 1/2 both for δWi = 0
and for δWi = 231. Hence, if we limit ourselves to δWi ∈ {0, 231}, then round 4 is the same as for
dBB’s attack.

In round 3 we are not so fortunate: any difference δWi 6= 0 implies δQi 6= 231. But we are still
free to choose where to put a difference, and at the beginning of round 3 is the best that we can
do. We could choose δW5 = 231, but instead δW8 = 231 in the end turns out to lead to a lower
complexity.

Working backwards it remains a very sparse path down to step 23. From the chaining value we
can work forwards and there are no differences up to step 8. To create a full differential path
that completes the partial paths over steps 0,...,8 and steps 23,...,63, we can use the tools from
Project HashClash that use a meet in the middle approach (see https://marc-stevens.nl/p/

hashclash/) (i.e., the tools generate many path from above and below and tries to connect them
in the middle over steps, say, 13,14,15,16.) Such a full differential path for δW8 = 231 is given in
Table 2.

The complexity of finding a message block pair (B1, B
′
1) using the advanced message modifications

can be estimated as:

� Steps 0-15: 16 steps;

� Step 16: has 10 conditions (8 conditions on Q17 and rotation probability ≈ 1/4) so we expect
210 trials, with each trail taking 2 steps (one to compute W16, another to compute Q17), so
expected cost is 211 steps;

� Step 17: has 8 conditions, so expected cost is about 29 steps;

� Step 18-19: has about 16 conditions on Q19 and Q20, so expected cost is 216 · 4 steps;

� Step 20: 4 conditions, thus cost is 25 steps;

� Step 21-22: 11 conditions, thus cost is 213 steps;

� Step 23: 3 conditions (2 on Q24 and rotation probability ≈ 1/2, thus cost is 24 steps;

� Step 24: 27 conditions left (25 conditions on Q25, . . . , Q64 and rotation probability ≈ 1/4),
on average we compute about 4 steps using early-stop, thus expected cost is 227 · 4;

Assuming we have enough advanced message modifications for step 24, which we have in this case,
the complexity is dominated by 227 · 4 steps ≈ 225 compression function calls.
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i Qi[31] · · · Qi[0] Pr[δRi | δTi]
-3 ........ ........ ........ ........
-2 ........ ........ ........ ........
-1 ........ ........ ........ ........
0 ........ ........ ........ ........ 1
1 ........ ........ ........ ........ 1
2 ........ ........ ........ ........ 1
3 ........ ........ ........ ........ 1
4 ........ ........ ........ ........ 1
5 ........ ........ ........ ........ 1
6 ........ ........ ........ ........ 1
7 ........ ........ ........ .1...... 1
8 ........ .....0.. ........ .00..... 1
9 ........ 1....0.. ........ 1+1..... 1
10 ...0...0 1....-.. .......0 0+...... 1
11 .100..01 +.1..-.. 1000.000 +-...... 1
12 .11-..1+ -00^^-01 0111^10- 0+0..1.^ 1
13 .--+..-0 +1-+++10 +---++++ +-1.10^+ 1
14 !0+10.0- ++1011+- ---100-- 0+-.1+-0 1
15 .1100.11 0011-001 1.100101 +010-000 0.885742
16 ..0.-..0 1+..0.01 1^0...01 .111.0-. 0.279297
17 ........ .-1.+.1. ........ ^.--^... 0.895508
18 ....^... .10...+. 0....10. ......^. 1
19 .....0.0 .1+.^... 0....11. ..^^.... 0.943359
20 .....1.1 ......^. -....++. ........ 0.993164
21 .....-.+ ..^..... ........ ....0... 0.987305
22 0.0..... ........ ^....^^. ....1... 1
23 1.1..^.^ ........ ........ ....+... 0.506836
24 -.-..... ........ ........ ........ 0.629883
25 ........ ......0. ........ ....^... 1
26 ^.^..... ......1. ........ ........ 1
27 ........ ......+. ........ ........ 0.868164
28 ........ ........ ........ ........ 1
29 0....... ......^. ........ ........ 1
30 ........ ........ ........ ........ 0.483398
31 -....... ........ ........ ........ 1
32 X....... ........ ........ ........ 1
33 X....... ........ ........ ........ 1
34 X....... ........ ........ ........ 1
35 X....... ........ ........ ........ 1
36 X....... ........ ........ ........ 1
37 X....... ........ ........ ........ 1
38 X....... ........ ........ ........ 1
39 X....... ........ ........ ........ 1
40 X....... ........ ........ ........ 1
41 X....... ........ ........ ........ 1
42 X....... ........ ........ ........ 1
43 X....... ........ ........ ........ 1
44 X....... ........ ........ ........ 1
45 X....... ........ ........ ........ 1
46 X....... ........ ........ ........ 1
47 X....... ........ ........ ........ 1
48 M....... ........ ........ ........ 1
49 M....... ........ ........ ........ 1
50 M....... ........ ........ ........ 1
51 M....... ........ ........ ........ 1
52 M....... ........ ........ ........ 1
53 M....... ........ ........ ........ 1
54 M....... ........ ........ ........ 1
55 M....... ........ ........ ........ 1
56 #....... ........ ........ ........ 1
57 M....... ........ ........ ........ 1
58 M....... ........ ........ ........ 1
59 M....... ........ ........ ........ 1
60 M....... ........ ........ ........ 1
61 M....... ........ ........ ........ 1
62 M....... ........ ........ ........ 1
63 M....... ........ ........ ........ 1
64 X....... ........ ........ ........

. Qi[b] ∈ {0, 1}, Q′i[b] = Qi[b]
X Qi[b] ∈ {0, 1}, Q′i[b] 6= Qi[b]
0 Qi[b] = 0, Q′i[b] = 0
1 Qi[b] = 1, Q′i[b] = 1
+ Qi[b] = 0, Q′i[b] = 1
- Qi[b] = 1, Q′i[b] = 0
^ Qi[b] = Qi−1[b] (Q′i[b] = Qi[b] for i < 31)
M Qi[b] = Qi−2[b] (Q′i[b] = Qi[b] for i < 31)

Table 2: Differential path to obtain δCV = 231 for dBB’s attack
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