Selected Areas in Cryptology
Cryptanalysis
Week 1

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/2021/

mailto:stevens@cwi.nl

Some preliminaries

Cost of algorithms

Time complexity
= runtime

= number of unit operations _ _
(unit: e.g. bit operation, cpu instruction, function call)

Memory complexity
= amount of unit storage (unit: e.g. bit, byte, block)

Asymptotic complexity functions
Parameter n (bitlength of the input / security parameter)
Definitions:
We write f(n) = O(ggng) if
|f(n)] < M g(n) foralln = n, (for some M, ng)

(also the called order of the function, .
only the asymptotically fastest growing term is relevant)

poly(n) := {f(n): R->R|f(n)= O(nd),d € N}
(set of all functions that are asymptotically bounded
by some polynomial)

f,g €Epoly(n) = f+g, f-9g fe°g€poly(n)

Probabilistic algorithms A(x)
Uses random coins, non-deterministic
For fixed input, output has probability distribution
PPT := Probabilistic Polynomial-Time

Notation

X < X randomly sample from X

assume uniform distribution if X is set
Pr|event| = probability event happens
E|X] =the expected value for random variable X

Cryptographic constructions must asymptotically be
efficient: construction is PPT
secure: attacks should not be PPT

then for any desired gap factor G (e.g. G =
there exists a ny such that for alln = n,
cost of attack = G X cost of construction

2128)

Success probability for attacks A
= probability algorithm outputs correct solution y € Sol(x)

péqucc(x) = Pr[y « A(x) Ay € Sol(x)]

Negligible success probability:
negl(n) = {f:R-> R|Vd € N: lim f(n) - n%= 0}
Nn—o>00

negligible functions go to 0 very quickly,
even when multiplied by any arbitrary polynomial function

E.g.: key guessing attack

e Simply try R random secret keys of n bits
* Finds correct key with probability R - 27"
* Should be negligible

* |n concrete sense:
so unlikely one can disregard this attack

* As in asymptotic sense:
R-27" € negl(n) if R € poly(n)

One-Time Pad

Symmetric Encryption Schemes
Send message secretly from sender to receiver
Using pre-shared secret key K (unknown to adversary)

Sender encrypts plaintext P to ciphertext C

Keyspace K, plaintext space P, ciphertext space C
Function Ex: P - CforKe KX
C = Ex(P)

Receiver uses corresponding decryption to obtain plaintext P

P = DK(C)
DK:C _)?
Goals:

Correctness: Dg (Ex(P)) = P forall K, P

Secrecy: without key K
“no information is learned from C about message | |
(formalization comes later)

One-Time Pad (OTP)

Forany !l € N:
iK‘l Z?l — C’l — {O,l}l =~ IFlz
E.(P)=PDK 0D0=1H1=0
Dr(C)=CDK 190=0H1=1
Addition in [F,

Requires K uniformly random selected
Key, and Plain- and ciphertext have equal length

Only encryption method providing perfect secrecy

no statistical correlation between cipher- and plaintext
if key is unknown

= no information can be learned
even with co computing power

PriC =P @ K] =Pr[K=P®C]=27"

Given C, every plaintext is equally likely
Given P, every ciphertext is equally likely

One-Time Pad issues
Perfect secrecy, but ...

Perfect secrecy is broken if
Key K is not kept secret
K was not selected uniformly at random from X

Key K is reused for two messages
attacker learns: C; @ C, = P, @ P,

Also malleable!

1. Sender encrypts P = “I owe you 105"
2. Attacker intercepts C = K @ P

Let D ="l owe you 10$" & "l owe you 5k$"
= 10" @ 5k *“

Attacker doesn’t even need to know the actual text,
only the position and value of the change

3. Attacker sends C' = C @ D to receiver

4. Receiver obtains C' and decrypts:
=K@ C' =P@D ="l owe you 5k$"

Stream Ciphers

Stream ciphers

Operates very similar to One-Time Pad:
simply XOR message with long key stream
C=PPK

Except: long key stream K is generated from
short pre-shared key K

Short key size: k bits, K = {0,1}*
Large internal state: s bits, S; € {0,1}°
Arbitrary long plain- and ciphertext: C = P = {0,1}*

1. Initialization:
Sy == Init(K)
2. Step update for bit i
(Si+1,0;) = Update(S;)
3. Encrypt bit i
Ci = Pi @ Oi
4.Repeat2-3fori=0,..|P|—1

Asynchronous version (to recover from missed ()
(Si+1,0;) == Update(S;, Ci_1, ..., Ci_1)

No perfect secrecy
Only 2% possible long key streams
For each plaintext, only 2% possible ciphertexts
For each ciphertext, only 2% possible plaintexts

For very long ciphertexts (with “‘meaningful’ plaintext)
It’s theoretical possible to try every key
2% — 1 attempts should lead to ‘garbage"
The right key should lead to a ‘'meaningful plaintext

Hence, security must be computational

Computational Security Properties for Stream Ciphers:

Key recovery hardness__ Attacks Property
Given long keystream K hard to recover key K
State recovery hardness))

Given long keystream K hard to recover a state S;

Indistinguishability))

Attacker cannot distinguish between
a random long keystream K and
a uniformly random bitstring of same length

Indistinguishability
Security parameter: key size k (and state size: [)
Attacker: distinguisher algorithm A
Gets access to O:
Either, stream cirpher oracle: O,
Selects K « {0,1}* uniformly at random
Outputs 0; on i-th query
Or, random oracle: O, .
Outputs random 0; < {0,1} on i-th query
Does not know which of the two it gets access to!

Returns either O or 1
think of the output as it’s guess: stream cipher or random

Stream cipheris (d(k), c(k), e(k))-indistinguishable
if: |Pr[A%c = 1] — Pr[A% = 1]| < e(k)
for all distinguishers A that:

read at most d (k) bits from oracle
perform at most c(k) operations

Concrete security Asymptotic security Information-theoretic security
d(k), c(k) := 2mink.D) d(k), c(k) == poly(k) Impossible: c(k) = o
e(k) = 27128 e(k) == negl(k)

Generic attacks

Generic Key recovery attack given target keystream T

1. Walk over the search space K € {0,1}F 3
2. Generate keystream K with same length as T

3. If K = T then return K
4. if nosuch K then return L

Time complexity: 0(2%)

Generic State recovery attack given target keystream T
1. Walk over the search space S, € {0,1}*
2. Generate keystream K with same length as T
3. If K = T then return S,
4. If nosuch S, thenreturn L

Time complexity: 0(2')

Generic distinguishing attack
From generic key recovery attack or state recovery attack:
Return O if recovery attack returns 1, and 1 otherwise

Time complexity: 0 (2mintel)y

Stream Cipher Malleability
Again Stream Ciphers only provide secrecy

As ciphertexts can be precisely modified:
1. Sender encrypts P = “I owe you 10S$”
2. Attacker intercepts C = K @ P
letD="____ io"& " 5k “

3. Attacker sends C' = C @ D to receiver

4. Receiver obtains C' and decrypts:
PP=K®C' =P®D ="1oweyou 5k$"

Key reuse

Key K must not be reused for two messages

otherwise attacker learns: C; @ C, = P, @ P,

Common trick:
Split k bit key into k, bits secret key and k, bits (public) nonce
Pre share single secret key K; € {0,1}%1

Reuse K; by choosing different (public) values K, € {0,1}*2
E.g.: maintain counter K, with k, > 32
Or choose random K,, then k, > 128

Block Ciphers

* Block ciphers work differently
from the one-time pad and stream ciphers
* Only encrypts fixed-size blocks as a whole (not per bit)
* Let security parameter n
Key space K (n) and block space M'(n) (e.g., {0,1}")
* Enc: K (n) X M'(n) - M (n) such that
o Encg:M(n) - M (n) is a permutation for all K € K (n)
« Decy = Ency'is efficiently computable

* Note: n is typically omitted: K, M

Generic attacks

Generic key recovery attack model
No relevant key stream to provide to attacker
Instead list of plaintext + ciphertext pairs: (P, C;), (P, C5), ...
Which pairs?
Known plaintext attack: random plaintexts
Chosen plaintext attack: attacker may choose P;

Generic key recovery attack
1. Query [pairs (P, C;), ..., (P}, C})
2. Walk over search space K € K
3. IfC; = Encg(P;) fori =1,...,lthenreturn K
4. Otherwise, if no such K, return L
Complexity: O(|X|)
Note: Even if there are [pairs to check in total

The first is very likely to fail and the key candidate ¢
so most times we only have to check 1 pair

Generic 1-out-of-L key recovery attack
Assume L users with different keys K3, ..., K}
Attacker succeeds if it finds 1 key

Generic attack
1. Chooses [plaintexts Py, ..., P;
2. Queries encryptions for each user:
Cij= EncKj(Pi) fori=1,..,landj=1,..,L
. Walks over search space K € K
Compute C; = Encg(P;)
For j such that Cy ; = C; do
If C; j = Encg(P;) fori = 2,...,l thenreturn K
. Otherwise, return L

N o U oA W

Every key guess has success probability L /| K|
Complexity: O(|%|/L)
Speed up by factor L!

Attacks with precomputation
There are attacks that cost O(|X|) or more in total
But < O(|K|) per problem instance

Two phases:
An offline part that performs at least O(|K|) operations
An online part that attacks each of the L keys independently

An extreme example, codebook dictionary:

Offline:

1. choose block B

2. create hash table with (Encg (B), K) entries
Complexity: Time O(|%]), Memory: O(|K|)

Online:

1. for each secret key K; to be attacked

2. QueryC = Encg.(B)

3. Find table entry (C, K;)

Complexity: Time 0(1), Memory: O(|K|)

Non-uniform attacks:
Another view on an attack with pre-computation
Make pre-computed data part of online attack algorithm
Online algorithm now only has total cost < O(|X|)
Such algorithms called non-uniform

Hellman’s Time-Memory trade off attack

An attack that uses more time, but less memory

ldea:
Use fixed block B and map ¢:C - K
Iterative function F: X' — K ‘walks’ through key space
F(K;) = Kiy1, where C = Encg,(B), Kiz1 = ¢(C)
Offline: store many long walks covering key space
Only store begin and endpoints (SP;, EP; = Ft(SPj))

Online: query Cy = Encyg(B), Ky = ¢(Cy)
Note that: F(K) = K, by definition

Walk from K, until say endpoint E'P; is found
Find secret K by walking from SP;

Hellman’s Time-Memory trade off attack

Setup Details:
F:K - K,whereF =¢oFE
E:K - M, E(K) :== Encg(B)
¢: M — K needs to be surjective

If |[M| = |K| then easy, otherwise impossible
When | M| < |K|
Use multiple blocks B4, B, ..., B; such that I]V[Il > | K|
E:X - M!, E(K):=(Enck(By), .., Encg(B)))
And surjective map ¢: Mt — K

Hellman’s Time-Memory trade off attack
Simplified version

Attack parameters
Number of walks: m
Length of each walk: t

Offline attack:
1. Choose SP;, ..., SP,, uniformly at random from K
2. Compute EP; = FY(SP) fori=1,..,m
3. Store (EP;, SP;) in hash table / sorted table

Online attack:
1. Given Cy = Encg(B) for some unknown key K
2. Let Py = ¢(Cyp)
3.Fori=0,..,t—1

4. It P; = EP;j for some j then

5. LetK :=Ft"1(sp)

6 If Encz(B) = C, then return K

7. Compute P; 4 == F(P;)

8. Otherwise, return L

Hellman’s Time-Memory trade off attack

Simplified version analysis
Ideally, use m - t = | K| and hope to cover entire space

SP, M EP, Ideal situation

However, F behaves as a random function

Many collisions F(x) = F(y) exist and merges walks
Substantial part of space is never reached

Creates false alarms:

K does not actually lie on walk from SP;,
but on walk from another SP with same E'P;

Expected situa £ -
random functi ===

Hellman’s Time-Memory trade off attack

Simplified version analysis

Collisions start to occur whenm - t =~ V|K|
Due to the birthday paradox (covered later)

The expected number of collisions grows roughly quadraticinm - t
False alarms analysis:

Walk from P, has t points

There are at most m - t points covered by the table

Each pair has probability 1/|K| to collide and cause false alarm
(i.e. without P, actually being on the walk)

Expected number of false alarms: E[Z] < m - t2/|XK|
Expected costs of false alarm: t - E[Z] < m - t3/|K|

Success only if target K is covered (part of a walk from a SP;)
Hellman: when m - t? = |X|, success probability is =~ 0.80mt/|K

Hellman’s Time-Memory trade off attack

Improved version
Use r independent tables with different ¢+, ..., ¢,

Even if the same key is covered in different tables
then different ¢; imply different walks instead of merging walks

Hellman proposed m = t = r = /| K|

Individual table: success probability = 0.80 / i/m
Total success probability = 0.8
Offline time complexity: O (mtr) = 0(|K]|)
Offline memory complexity: 0(rm) = 0(|X|?/3)
Online complexity:
O(rt + rmt3/|1K|) = O(|K |23 + |K|#/3) = 0(|772L0 0

