Selected Areas in Cryptology Cryptanalysis Week 1

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/2021/

Some preliminaries

Cost of algorithms

Time complexity

= runtime

= number of unit operations

(unit: e.g. bit operation, cpu instruction, function call)

Memory complexity

= amount of unit storage (unit: e.g. bit, <u>byte</u>, block)

Asymptotic complexity functions

Parameter n (bitlength of the input / <u>security parameter</u>) Definitions:

We write f(n) = O(g(n)) if $|f(n)| \le M g(n)$ for all $n \ge n_0$ (for some M, n_0) (also the called <u>order of the function</u>, only the asymptotically fastest growing term is relevant)

 $poly(n) \coloneqq \{f(n): \mathbb{R} \to \mathbb{R} \mid f(n) = O(n^d), d \in \mathbb{N}\}$ (set of all functions that are asymptotically bounded by some polynomial) $f, g \in poly(n) \Rightarrow f + g, f \cdot g, f \circ g \in poly(n)$

Probabilistic algorithms A(x)

Uses random coins, non-deterministic For fixed input, output has probability distribution PPT := Probabilistic Polynomial-Time

Notation

 $x \stackrel{r}{\leftarrow} \mathcal{X} \text{ randomly sample from } \mathcal{X} \\ \text{assume uniform distribution if } \mathcal{X} \text{ is set} \\ \Pr[event] = \text{probability event happens} \\ E[X] = \text{the expected value for random variable } X$

Cryptographic constructions must asymptotically be <u>efficient</u>: construction is PPT <u>secure</u>: attacks should <u>not</u> be PPT then for any desired gap factor *G* (e.g. $G = 2^{128}$) there exists a n_0 such that for all $n \ge n_0$ cost of attack $\ge G \times \text{cost}$ of construction

Success probability for attacks A

= probability algorithm outputs correct solution $y \in Sol(x)$ $p^{A}_{succ}(x) \coloneqq \Pr[y \leftarrow A(x) \land y \in Sol(x)]$

Negligible success probability:

 $negl(n) \coloneqq \{f : \mathbb{R} \to \mathbb{R} \mid \forall d \in \mathbb{N} : \lim_{n \to \infty} f(n) \cdot n^d = 0\}$ negligible functions go to 0 very quickly, even when multiplied by any arbitrary polynomial function

- E.g.: key guessing attack
- Simply try R random secret keys of n bits
- Finds correct key with probability $R \cdot 2^{-n}$
- Should be negligible
 - In concrete sense: so unlikely one can disregard this attack
 - As in asymptotic sense: $R \cdot 2^{-n} \in negl(n)$ if $R \in poly(n)$

One-Time Pad

Symmetric Encryption Schemes

Send message secretly from sender to receiver Using pre-shared secret key *K* (unknown to adversary)

Sender encrypts plaintext P to ciphertext CKeyspace \mathcal{K} , plaintext space \mathcal{P} , ciphertext space CFunction $E_K: \mathcal{P} \to C$ for $K \in \mathcal{K}$ $C = E_K(P)$

Receiver uses corresponding decryption to obtain plaintext P $P = D_K(C)$ $D_K: C \to P$

Goals:

Correctness: $D_K(E_K(P)) = P$ for all K, PSecrecy: without key K"no information is learned from C about message I(formalization comes later)

One-Time Pad (OTP) For any $l \in \mathbb{N}$: $\mathcal{K}_l = \mathcal{P}_l = \mathcal{C}_l = \{0,1\}^l \approx \mathbb{F}_2^l$ $E_K(P) \coloneqq P \bigoplus K$ $D_K(C) \coloneqq C \bigoplus K$

```
\begin{array}{l} 0 \bigoplus 0 = 1 \bigoplus 1 = 0 \\ 1 \bigoplus 0 = 0 \bigoplus 1 = 1 \\ \text{Addition in } \mathbb{F}_2 \end{array}
```

Requires *K* uniformly random selected

Key, and Plain- and ciphertext have equal length

Only encryption method providing perfect secrecy no statistical correlation between cipher- and plaintext if key is unknown

⇒ no information can be learned even with ∞ computing power $\Pr[C = P \bigoplus K] = \Pr[K = P \bigoplus C] = 2^{-l}$ Given *C*, every plaintext is equally likely Given *P*, every ciphertext is equally likely

One-Time Pad issues

Perfect secrecy, but ...

Perfect secrecy is broken if Key K is <u>not kept secret</u> K was <u>not selected uniformly at random</u> from \mathcal{K}_l Key K is reused for two messages attacker learns: $C_1 \bigoplus C_2 = P_1 \bigoplus P_2$

Also malleable!

- 1. Sender encrypts P ="I owe you 10\$"
- 2. Attacker intercepts $C = K \bigoplus P$

Let
$$D =$$
"I owe you 10\$" \oplus "I owe you 5k\$"
= "_____10_" \oplus "_____5k_"

Attacker doesn't even need to know the actual text, only the position and value of the change

- 3. Attacker sends $C' = C \bigoplus D$ to receiver
- 4. Receiver obtains C' and decrypts: $P' = K \bigoplus C' = P \bigoplus D =$ "I owe you 5k\$"

Stream Ciphers

Stream ciphers

Operates very similar to One-Time Pad: simply XOR message with long key stream $\mathcal{C} \coloneqq P \bigoplus \widetilde{K}$

Except: long key stream \widetilde{K} is generated from short pre-shared key K

Short key size: k bits, $\mathcal{K} = \{0,1\}^k$ Large internal state: s bits, $S_i \in \{0,1\}^s$ Arbitrary long plain- and ciphertext: $\mathcal{C} = \mathcal{P} = \{0,1\}^*$

1. Initialization: $S_0 \coloneqq Init(K)$ 2. Step update for bit i $(S_{i+1}, O_i) \coloneqq Update(S_i)$ 3. Encrypt bit i $C_i \coloneqq P_i \bigoplus O_i$ 4. Repeat 2-3 for i = 0, ... |P| - 1

Asynchronous version (to recover from missed C_j) $(S_{i+1}, O_i) \coloneqq Update(S_i, C_{i-1}, \dots, C_{i-l})$ No perfect secrecy

Only 2^k possible long key streams For each plaintext, only 2^k possible ciphertexts For each ciphertext, only 2^k possible plaintexts For very long ciphertexts (with `meaningful` plaintext) It's theoretical possible to try every key $2^k - 1$ attempts should lead to `garbage` The right key should lead to a `meaningful` plaintext Hence, security must be computational

Computational Security Properties for Stream Ciphers:

Key recovery hardness Given long keystream \widetilde{K} hard to recover key K

State recovery hardness

Given long keystream \widetilde{K} hard to recover a state S_i

Indistinguishability Attacker cannot distinguish between a random long keystream \widetilde{K} and a uniformly random bitstring of same length

Property

Attacks

Indistinguishability

Security parameter: key size k (and state size: l) Attacker: distinguisher algorithm A

Gets access to \mathcal{O} :

Either, stream cipher oracle: \mathcal{O}_{sc}

Selects $K \leftarrow \{0,1\}^k$ uniformly at random

Outputs O_i on *i*-th query

Or, random oracle: \mathcal{O}_{ur}

Outputs random $O_i \leftarrow \{0,1\}$ on *i*-th query Does not know which of the two it gets access to!

```
Returns either 0 or 1
```

think of the output as it's guess: stream cipher or random

Stream cipher is $(d(k), c(k), \epsilon(k))$ -indistinguishable if: $|\Pr[A^{\mathcal{O}_{SC}} = 1] - \Pr[A^{\mathcal{O}_{ur}} = 1]| \le \epsilon(k)$ for all distinguishers A that: read at most d(k) bits from oracle perform at most c(k) operations

Concrete security	Asymptotic security	Information-theoretic security
$d(k), c(k) \coloneqq 2^{\min(k,l)}$ $\epsilon(k) \coloneqq 2^{-128}$	$d(k), c(k) \coloneqq poly(k)$ $\epsilon(k) \coloneqq negl(k)$	Impossible: $c(k) \coloneqq \infty$

Generic attacks

Generic Key recovery attack given target keystream $ilde{T}$

- 1. Walk over the search space $K \in \{0,1\}^k$
- 2. Generate keystream \widetilde{K} with same length as \widetilde{T}

3. If
$$\widetilde{K} = \widetilde{T}$$
 then return K

4. if no such *K* then return
$$\perp$$

Time complexity: $O(2^k)$

Generic State recovery attack given target keystream $ilde{T}$

- 1. Walk over the search space $S_0 \in \{0,1\}^l$
- 2. Generate keystream \widetilde{K} with same length as \widetilde{T}
- 3. If $\widetilde{K} = \widetilde{T}$ then return S_0
- 4. If no such S_0 then return \perp

Time complexity: $O(2^l)$

Generic distinguishing attack

From generic key recovery attack or state recovery attack: Return 0 if recovery attack returns \bot , and 1 otherwise Time complexity: $O(2^{\min(k,l)})$

Stream Cipher Malleability

Again Stream Ciphers only provide secrecy As ciphertexts can be precisely modified:

- 1. Sender encrypts P ="I owe you 10\$"
- 2. Attacker intercepts $C = K \bigoplus P$

Let
$$D = "____10_" \oplus "____5k_"$$

- 3. Attacker sends $C' = C \bigoplus D$ to receiver
- 4. Receiver obtains C' and decrypts: $P' = K \bigoplus C' = P \bigoplus D =$ "I owe you 5k\$"

Key reuse

Key *K* must not be reused for two messages otherwise attacker learns: $C_1 \bigoplus C_2 = P_1 \bigoplus P_2$ Common trick:

Split k bit key into k_1 bits secret key and k_2 bits (public) nonce Pre share single secret key $K_1 \in \{0,1\}^{k_1}$

Reuse K_1 by choosing different (public) values $K_2 \in \{0,1\}^{k_2}$

E.g.: maintain counter K_2 with $k_2 \ge 32$

Or choose random K_2 , then $k_2 \ge 128$

Block Ciphers

- Block ciphers work differently from the one-time pad and stream ciphers
 - Only encrypts fixed-size blocks as a whole (not per bit)
 - Let security parameter *n*
 - Key space $\mathcal{K}(n)$ and block space $\mathcal{M}(n)$ (e.g., $\{0,1\}^n$)
 - $Enc: \mathcal{K}(n) \times \mathcal{M}(n) \to \mathcal{M}(n)$ such that
 - $Enc_K: \mathcal{M}(n) \to \mathcal{M}(n)$ is a permutation for all $K \in \mathcal{K}(n)$
 - $Dec_K \coloneqq Enc_K^{-1}$ is efficiently computable
 - Note: n is typically omitted: \mathcal{K} , \mathcal{M}

Generic attacks

Generic key recovery attack model

No relevant key stream to provide to attacker

Instead list of plaintext + ciphertext pairs: $(P_1, C_1), (P_2, C_2), ...$

Which pairs?

. . .

Known plaintext attack: random plaintexts

Chosen plaintext attack: attacker may choose P_i

Generic key recovery attack

- 1. Query *l* pairs $(P_1, C_1), ..., (P_l, C_l)$
- 2. Walk over search space $K \in \mathcal{K}$
- 3. If $C_i = Enc_K(P_i)$ for i = 1, ..., l then return K
- 4. Otherwise, if no such K, return \perp

Complexity: $O(|\mathcal{K}|)$

Note: Even if there are l pairs to check in total The first is very likely to fail and the key candidate qso most times we only have to check 1 pair

Generic 1-out-of-*L* key recovery attack

Assume *L* users with different keys K_1, \ldots, K_L Attacker succeeds if it finds 1 key

Generic attack

- 1. Chooses l plaintexts P_1, \ldots, P_l
- 2. Queries encryptions for each user:

 $C_{i,j} = Enc_{K_j}(P_i)$ for i = 1, ..., l and j = 1, ..., L

3. Walks over search space $K \in \mathcal{K}$

4. Compute
$$\tilde{C}_1 = Enc_K(P_1)$$

5. For *j* such that
$$C_{1,j} = \tilde{C}_1$$
 do

6. If
$$C_{i,j} = Enc_K(P_i)$$
 for $i = 2, ..., l$ then return K

7. Otherwise, return ⊥

Every key guess has success probability $L/|\mathcal{K}|$ Complexity: $O(|\mathcal{K}|/L)$ Speed up by factor L!

Attacks with precomputation

```
There are attacks that cost O(|\mathcal{K}|) or more in total
But < O(|K|) per problem instance
```

Two phases:

An offline part that performs at least $O(|\mathcal{K}|)$ operations

An online part that attacks each of the L keys independently

An extreme example, codebook dictionary:

Offline: 1. choose block *B* 2. create hash table with $(Enc_K(B), K)$ entries Complexity: Time $O(|\mathcal{K}|)$, Memory: $O(|\mathcal{K}|)$

Online: 1. for each secret key K_i to be attacked 2. Query $C = Enc_{K_i}(B)$ 3. Find table entry (C, K_i) Complexity: Time O(1), Memory: $O(|\mathcal{K}|)$

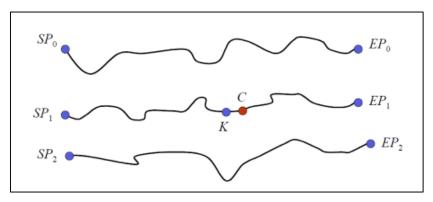
Non-uniform attacks:

Another view on an attack with pre-computation Make pre-computed data part of online attack algorithm Online algorithm now only has total cost $< O(|\mathcal{K}|)$ Such algorithms called non-uniform

An attack that uses more time, but less memory Idea:

Use fixed block *B* and map $\phi: \mathcal{C} \to \mathcal{K}$ Iterative function $F: \mathcal{K} \to \mathcal{K}$ 'walks' through key space $F(K_i) = K_{i+1}$, where $C = Enc_{K_i}(B)$, $K_{i+1} = \phi(C)$ Offline: store many long walks covering key space

Only store begin and endpoints $(SP_j, EP_j = F^t(SP_j))$



Online: query $C_0 = Enc_K(B)$, $K_0 = \phi(C_0)$ Note that: $F(K) = K_0$ by definition Walk from K_0 until say endpoint EP_1 is found Find secret K by walking from SP_1

Setup Details:

 $F: \mathcal{K} \to \mathcal{K}, \text{ where } F = \phi \circ E$ $E: \mathcal{K} \to \mathcal{M}, \qquad E(K) \coloneqq Enc_K(B)$ $\phi: \mathcal{M} \to \mathcal{K} \text{ needs to be surjective}$

If $|\mathcal{M}| \geq |\mathcal{K}|$ then easy, otherwise impossible When $|\mathcal{M}| < |\mathcal{K}|$ Use multiple blocks B_1, B_2, \dots, B_l such that $|\mathcal{M}|^l \geq |\mathcal{K}|$ $E: \mathcal{K} \to \mathcal{M}^l, \quad E(K) \coloneqq (Enc_K(B_1), \dots, Enc_K(B_l))$ And surjective map $\phi: \mathcal{M}^l \to \mathcal{K}$

Hellman's Time-Memory trade off attack Simplified version

Attack parameters

Number of walks: *m* Length of each walk: *t*

Offline attack:

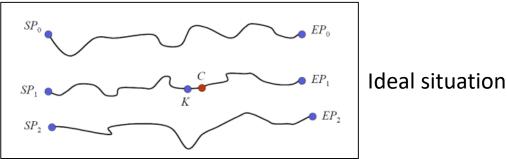
- 1. Choose SP_1, \ldots, SP_m uniformly at random from \mathcal{K}
- 2. Compute $EP_i = F^t(SP_i)$ for i = 1, ..., m
- 3. Store (EP_i, SP_i) in hash table / sorted table

Online attack:

1. Given $C_0 = Enc_K(B)$ for some unknown key K2. Let $P_0 = \phi(C_0)$ 3. For i = 0, ..., t - 14. If $P_i = EP_j$ for some j then 5. Let $\widetilde{K} \coloneqq F^{t-i-1}(SP_j)$ 6. If $Enc_{\widetilde{K}}(B) = C_0$ then return \widetilde{K} 7. Compute $P_{i+1} \coloneqq F(P_i)$ 8. Otherwise, return \bot

Simplified version analysis

Ideally, use $m \cdot t = |\mathcal{K}|$ and hope to cover entire space



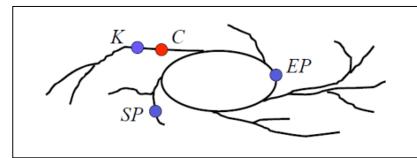
However, F behaves as a random function

Many collisions F(x) = F(y) exist and merges walks

Substantial part of space is never reached

Creates false alarms:

K does not actually lie on walk from SP_i , but on walk from another SP with same EP_i



Expected situa random function

Simplified version analysis

Collisions start to occur when $m \cdot t \approx \sqrt{|\mathcal{K}|}$

Due to the birthday paradox (covered later)

The expected number of collisions grows roughly quadratic in $m \cdot t$

False alarms analysis:

Walk from P_0 has t points

There are at most $m \cdot t$ points covered by the table

Each pair has probability $1/|\mathcal{K}|$ to collide and cause false alarm (i.e. without P_0 actually being on the walk)

Expected number of false alarms: $E[Z] \le m \cdot t^2 / |\mathcal{K}|$

Expected costs of false alarm: $t \cdot E[Z] \leq m \cdot t^3 / |\mathcal{K}|$

Success only if target K is covered (part of a walk from a SP_i) Hellman: when $m \cdot t^2 = |\mathcal{K}|$, success probability is $\approx 0.80mt/|\mathcal{K}|$

Improved version

Use r independent tables with different ϕ_1, \ldots, ϕ_r Even if the same key is covered in different tables then different ϕ_i imply different walks instead of merging walks

Hellman proposed $m = t = r = \sqrt[3]{|\mathcal{K}|}$

Individual table: success probability $\approx 0.80 / \sqrt[3]{|\mathcal{K}|}$ Total success probability ≈ 0.8 Offline time complexity: $O(mtr) = O(|\mathcal{K}|)$ Offline memory complexity: $O(rm) = O(|\mathcal{K}|^{2/3})$ Online complexity:

 $O(rt + rmt^{3}/|\mathcal{K}|) = O(|\mathcal{K}|^{2/3} + |\mathcal{K}|^{2/3}) = O(|\mathcal{I}|^{12/3})$

