
Selected Areas in Cryptology
Cryptanalysis

Week 1
Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/2021/

mailto:stevens@cwi.nl

Some preliminaries

Cost of algorithms
Time complexity

= runtime
= number of unit operations
(unit: e.g. bit operation, cpu instruction, function call)

Memory complexity
= amount of unit storage (unit: e.g. bit, byte, block)

Asymptotic complexity functions
Parameter 𝑛 (bitlength of the input / security parameter)
Definitions:

We write 𝑓 𝑛 = 𝑂(𝑔 𝑛) if
𝑓 𝑛 ≤ 𝑀 𝑔(𝑛) for all 𝑛 ≥ 𝑛0 (for some 𝑀, 𝑛0)

(also the called order of the function,
only the asymptotically fastest growing term is relevant)

𝑝𝑜𝑙𝑦 𝑛 ≔ 𝑓 𝑛 :ℝ → ℝ | 𝑓 𝑛 = 𝑂 𝑛𝑑 , 𝑑 ∈ ℕ
(set of all functions that are asymptotically bounded
by some polynomial)
𝑓, 𝑔 ∈ 𝑝𝑜𝑙𝑦 𝑛 ⇒ 𝑓 + 𝑔, 𝑓 ⋅ 𝑔, 𝑓 ∘ 𝑔 ∈ 𝑝𝑜𝑙𝑦(𝑛)

Probabilistic algorithms 𝐴 𝑥
Uses random coins, non-deterministic
For fixed input, output has probability distribution
PPT := Probabilistic Polynomial-Time

Notation

𝑥՚
𝑟
𝒳 randomly sample from 𝒳

assume uniform distribution if 𝒳 is set
Pr[𝑒𝑣𝑒𝑛𝑡] = probability event happens
𝐸[𝑋] = the expected value for random variable 𝑋

Cryptographic constructions must asymptotically be

efficient: construction is PPT

secure: attacks should not be PPT

then for any desired gap factor 𝐺 (e.g. G = 2128)
there exists a 𝑛0 such that for all 𝑛 ≥ 𝑛0
cost of attack ≥ 𝐺 × cost of construction

Success probability for attacks 𝐴
= probability algorithm outputs correct solution 𝑦 ∈ 𝑆𝑜𝑙(𝑥)
𝑝𝑠𝑢𝑐𝑐
𝐴 𝑥 ≔ Pr[𝑦 ՚ 𝐴 𝑥 ∧ 𝑦 ∈ 𝑆𝑜𝑙(𝑥)]

Negligible success probability:
𝑛𝑒𝑔𝑙 𝑛 ≔ 𝑓:ℝ → ℝ ∀𝑑 ∈ ℕ ∶ lim

𝑛→∞
𝑓 𝑛 ⋅ 𝑛𝑑= 0}

negligible functions go to 0 very quickly,
even when multiplied by any arbitrary polynomial function

E.g.: key guessing attack
• Simply try 𝑅 random secret keys of 𝑛 bits
• Finds correct key with probability 𝑅 ⋅ 2−𝑛

• Should be negligible
• In concrete sense:

so unlikely one can disregard this attack
• As in asymptotic sense:
𝑅 ⋅ 2−𝑛 ∈ 𝑛𝑒𝑔𝑙(𝑛) if 𝑅 ∈ 𝑝𝑜𝑙𝑦(𝑛)

One-Time Pad

Symmetric Encryption Schemes
Send message secretly from sender to receiver
Using pre-shared secret key 𝐾 (unknown to adversary)

Sender encrypts plaintext 𝑃 to ciphertext 𝐶
Keyspace 𝒦, plaintext space 𝒫, ciphertext space 𝒞
Function 𝐸𝐾: 𝒫 → 𝒞 for K ∈ 𝒦
𝐶 = 𝐸𝐾 𝑃

Receiver uses corresponding decryption to obtain plaintext 𝑃
𝑃 = 𝐷𝐾(𝐶)
𝐷𝐾: 𝒞 → 𝒫

Goals:
Correctness: 𝐷𝐾 𝐸𝐾(𝑃) = 𝑃 for all 𝐾, 𝑃
Secrecy: without key 𝐾
“no information is learned from 𝐶 about message 𝑃”
(formalization comes later)

One-Time Pad (OTP)
For any 𝑙 ∈ ℕ:

𝒦𝑙 = 𝒫𝑙 = 𝒞𝑙 = 0,1 𝑙 ≈ 𝔽2
𝑙

𝐸𝐾 𝑃 ≔ 𝑃⊕𝐾
𝐷𝐾 𝐶 ≔ 𝐶 ⊕𝐾

Requires 𝐾 uniformly random selected
Key, and Plain- and ciphertext have equal length

Only encryption method providing perfect secrecy
no statistical correlation between cipher- and plaintext
if key is unknown
⇒ no information can be learned

even with ∞ computing power
Pr
K
[𝐶 =𝑃 ⊕𝐾] = Pr

K
[𝐾 = 𝑃 ⊕ 𝐶] = 2−𝑙

Given 𝐶, every plaintext is equally likely
Given 𝑃, every ciphertext is equally likely

0⊕ 0 = 1⊕ 1 = 0
1⊕ 0 = 0⊕ 1 = 1

Addition in 𝔽2

One-Time Pad issues
Perfect secrecy, but …

Perfect secrecy is broken if
Key 𝐾 is not kept secret
𝐾 was not selected uniformly at random from 𝒦𝑙

Key 𝐾 is reused for two messages
attacker learns: 𝐶1 ⊕𝐶2 = 𝑃1 ⊕𝑃2

Also malleable!
1. Sender encrypts 𝑃 = “I owe you 10$”
2. Attacker intercepts 𝐶 = 𝐾⊕ 𝑃

Let 𝐷 = "I owe you 10$" ⊕ "I owe you 5k$"
= "__________10_" ⊕ "__________5k_“

Attacker doesn’t even need to know the actual text,
only the position and value of the change

3. Attacker sends 𝐶′ = 𝐶 ⊕𝐷 to receiver
4. Receiver obtains 𝐶′ and decrypts:

𝑃′ = 𝐾⊕ 𝐶′ = 𝑃⊕𝐷 = "I owe you 5k$"

Stream Ciphers

Stream ciphers
Operates very similar to One-Time Pad:

simply XOR message with long key stream
𝐶 ≔ 𝑃⊕ ෩𝐾

Except: long key stream ෩𝐾 is generated from
short pre-shared key 𝐾

Short key size: 𝑘 bits, 𝒦 = 0,1 𝑘

Large internal state: 𝑠 bits, 𝑆𝑖 ∈ 0,1 𝑠

Arbitrary long plain- and ciphertext: 𝒞 = 𝒫 = 0,1 ∗

1. Initialization:
𝑆0 ≔ 𝐼𝑛𝑖𝑡 𝐾

2. Step update for bit 𝑖
𝑆𝑖+1, 𝑂𝑖 ≔ 𝑈𝑝𝑑𝑎𝑡𝑒 𝑆𝑖

3. Encrypt bit 𝑖
𝐶𝑖 ≔ 𝑃𝑖 ⊕𝑂𝑖

4. Repeat 2-3 for 𝑖 = 0,… 𝑃 − 1

Asynchronous version (to recover from missed 𝐶𝑗)
𝑆𝑖+1, 𝑂𝑖 ≔ 𝑈𝑝𝑑𝑎𝑡𝑒 𝑆𝑖 , 𝐶𝑖−1, … , 𝐶𝑖−𝑙

No perfect secrecy
Only 2𝑘 possible long key streams
For each plaintext, only 2𝑘 possible ciphertexts
For each ciphertext, only 2𝑘 possible plaintexts
For very long ciphertexts (with `meaningful` plaintext)

It’s theoretical possible to try every key
2𝑘 − 1 attempts should lead to `garbage`
The right key should lead to a `meaningful` plaintext

Hence, security must be computational

Computational Security Properties for Stream Ciphers:
Key recovery hardness
Given long keystream ෩𝐾 hard to recover key 𝐾

State recovery hardness
Given long keystream ෩𝐾 hard to recover a state 𝑆𝑖

Indistinguishability
Attacker cannot distinguish between

a random long keystream ෩𝐾 and
a uniformly random bitstring of same length

Attacks Property

Indistinguishability
Security parameter: key size 𝑘 (and state size: 𝑙)
Attacker: distinguisher algorithm 𝐴

Gets access to 𝒪:
Either, stream cipher oracle: 𝒪𝑠𝑐

Selects 𝐾՚
𝑟

0,1 𝑘 uniformly at random
Outputs 𝑂𝑖 on 𝑖-th query

Or, random oracle: 𝒪𝑢𝑟
Outputs random 𝑂𝑖՚

𝑟
0,1 on 𝑖-th query

Does not know which of the two it gets access to!
Returns either 0 or 1
think of the output as it’s guess: stream cipher or random

Stream cipher is (𝑑 𝑘 , 𝑐 𝑘 , 𝜖 𝑘)-indistinguishable
if: Pr 𝐴𝒪𝑠𝑐 = 1 − Pr 𝐴𝑂𝑢𝑟 = 1 ≤ 𝜖(𝑘)
for all distinguishers 𝐴 that:

read at most 𝑑(𝑘) bits from oracle
perform at most 𝑐(𝑘) operations

Concrete security

𝑑 𝑘 , 𝑐 𝑘 ≔ 2min(𝑘,𝑙)

𝜖 𝑘 ≔ 2−128

Asymptotic security

𝑑 𝑘 , 𝑐 𝑘 ≔ 𝑝𝑜𝑙𝑦(𝑘)
𝜖 𝑘 ≔ 𝑛𝑒𝑔𝑙(𝑘)

Information-theoretic security

Impossible: 𝑐 𝑘 ≔ ∞

Generic attacks

Generic Key recovery attack given target keystream ෨𝑇
1. Walk over the search space 𝐾 ∈ 0,1 𝑘

2. Generate keystream ෩𝐾 with same length as ෨𝑇
3. If ෩𝐾 = ෨𝑇 then return 𝐾
4. if no such 𝐾 then return ⊥
Time complexity: 𝑂 2𝑘

Generic State recovery attack given target keystream ෨𝑇
1. Walk over the search space 𝑆0 ∈ 0,1 𝑙

2. Generate keystream ෩𝐾 with same length as ෨𝑇
3. If ෩𝐾 = ෨𝑇 then return 𝑆0
4. If no such 𝑆0 then return ⊥
Time complexity: 𝑂 2𝑙

Generic distinguishing attack
From generic key recovery attack or state recovery attack:

Return 0 if recovery attack returns ⊥, and 1 otherwise

Time complexity: 𝑂(2min 𝑘,𝑙)

Stream Cipher Malleability
Again Stream Ciphers only provide secrecy
As ciphertexts can be precisely modified:

1. Sender encrypts 𝑃 = “I owe you 10$”
2. Attacker intercepts 𝐶 = 𝐾⊕ 𝑃

Let 𝐷 = "__________10_" ⊕ "__________5k_“
3. Attacker sends 𝐶′ = 𝐶 ⊕𝐷 to receiver
4. Receiver obtains 𝐶′ and decrypts:

𝑃′ = 𝐾⊕ 𝐶′ = 𝑃⊕𝐷 = "I owe you 5k$"

Key reuse
Key 𝐾 must not be reused for two messages
otherwise attacker learns: 𝐶1 ⊕𝐶2 = 𝑃1 ⊕𝑃2
Common trick:

Split 𝑘 bit key into 𝑘1 bits secret key and 𝑘2 bits (public) nonce
Pre share single secret key 𝐾1 ∈ 0,1 𝑘1

Reuse 𝐾1 by choosing different (public) values 𝐾2 ∈ 0,1 𝑘2

E.g.: maintain counter 𝐾2 with 𝑘2 ≥ 32

Or choose random 𝐾2, then 𝑘2 ≥ 128

Block Ciphers

• Block ciphers work differently
from the one-time pad and stream ciphers
• Only encrypts fixed-size blocks as a whole (not per bit)

• Let security parameter 𝑛

• Key space 𝒦(𝑛) and block space ℳ(𝑛) (e.g., 0,1 𝑛)

• 𝐸𝑛𝑐:𝒦 𝑛 ×ℳ 𝑛 →ℳ(𝑛) such that
• 𝐸𝑛𝑐𝐾:ℳ 𝑛 → ℳ(𝑛) is a permutation for all 𝐾 ∈ 𝒦(𝑛)

• 𝐷𝑒𝑐𝐾 ≔ 𝐸𝑛𝑐𝐾
−1 is efficiently computable

• Note: 𝑛 is typically omitted: 𝒦,ℳ

Generic attacks
Generic key recovery attack model

No relevant key stream to provide to attacker

Instead list of plaintext + ciphertext pairs: 𝑃1, 𝐶1 , 𝑃2, 𝐶2 , …

Which pairs?
Known plaintext attack: random plaintexts

Chosen plaintext attack: attacker may choose 𝑃𝑖
…

Generic key recovery attack
1. Query 𝑙 pairs 𝑃1, 𝐶1 , … , (𝑃𝑙 , 𝐶𝑙)

2. Walk over search space 𝐾 ∈ 𝒦

3. If 𝐶𝑖 = 𝐸𝑛𝑐𝐾(𝑃𝑖) for 𝑖 = 1, … , 𝑙 then return 𝐾

4. Otherwise, if no such 𝐾, return ⊥

Complexity: 𝑂 𝒦
Note: Even if there are 𝑙 pairs to check in total
The first is very likely to fail and the key candidate dismissed,
so most times we only have to check 1 pair

Generic 1-out-of-𝐿 key recovery attack
Assume 𝐿 users with different keys 𝐾1, … , 𝐾𝐿
Attacker succeeds if it finds 1 key

Generic attack
1. Chooses 𝑙 plaintexts 𝑃1, … , 𝑃𝑙
2. Queries encryptions for each user:

𝐶𝑖,𝑗 = 𝐸𝑛𝑐𝐾𝑗(𝑃𝑖) for 𝑖 = 1,… , 𝑙 and 𝑗 = 1, … , 𝐿

3. Walks over search space 𝐾 ∈ 𝒦

4. Compute ሚ𝐶1 = 𝐸𝑛𝑐𝐾(𝑃1)

5. For 𝑗 such that 𝐶1,𝑗 = ሚ𝐶1 do

6. If 𝐶𝑖,𝑗 = 𝐸𝑛𝑐𝐾 𝑃𝑖 for 𝑖 = 2,… , 𝑙 then return 𝐾

7. Otherwise, return ⊥

Every key guess has success probability 𝐿/|𝒦|

Complexity: 𝑂(𝒦 /𝐿)

Speed up by factor 𝐿!

Attacks with precomputation
There are attacks that cost 𝑂(𝒦) or more in total
But < 𝑂(𝐾) per problem instance
Two phases:

An offline part that performs at least 𝑂 𝒦 operations
An online part that attacks each of the 𝐿 keys independently

An extreme example, codebook dictionary:
Offline:
1. choose block 𝐵
2. create hash table with 𝐸𝑛𝑐𝐾 𝐵 ,𝐾 entries
Complexity: Time O(𝒦), Memory: O 𝒦

Online:
1. for each secret key 𝐾𝑖 to be attacked
2. Query 𝐶 = 𝐸𝑛𝑐𝐾𝑖 𝐵
3. Find table entry 𝐶, 𝐾𝑖
Complexity: Time 𝑂 1 , Memory: 𝑂(𝒦)

Non-uniform attacks:
Another view on an attack with pre-computation

Make pre-computed data part of online attack algorithm

Online algorithm now only has total cost < 𝑂(𝒦)
Such algorithms called non-uniform

Hellman’s Time-Memory trade off attack
An attack that uses more time, but less memory
Idea:

Use fixed block 𝐵 and map 𝜙:𝒞 → 𝒦
Iterative function 𝐹:𝒦 → 𝒦 ‘walks’ through key space

𝐹 𝐾𝑖 = 𝐾𝑖+1, where 𝐶 = 𝐸𝑛𝑐𝐾𝑖 𝐵 , 𝐾𝑖+1 = 𝜙(𝐶)

Offline: store many long walks covering key space
Only store begin and endpoints (𝑆𝑃𝑗 , 𝐸𝑃𝑗 = 𝐹𝑡(𝑆𝑃𝑗))

Online: query 𝐶0 = 𝐸𝑛𝑐𝐾 𝐵 , 𝐾0 = 𝜙 𝐶0
Note that: 𝐹 𝐾 = 𝐾0 by definition
Walk from 𝐾0 until say endpoint 𝐸𝑃1 is found
Find secret 𝐾 by walking from 𝑆𝑃1

Hellman’s Time-Memory trade off attack

Setup Details:
𝐹:𝒦 → 𝒦, where 𝐹 = 𝜙 ∘ 𝐸

𝐸:𝒦 →ℳ, 𝐸 𝐾 ≔ 𝐸𝑛𝑐𝐾(𝐵)

𝜙:ℳ → 𝒦 needs to be surjective

If ℳ ≥ |𝒦| then easy, otherwise impossible

When ℳ < |𝒦|
Use multiple blocks 𝐵1, 𝐵2, … , 𝐵𝑙 such that ℳ 𝑙 ≥ |𝒦|

𝐸:𝒦 →ℳ𝑙, 𝐸 𝐾 ≔ 𝐸𝑛𝑐𝐾 𝐵1 , … , 𝐸𝑛𝑐𝐾 𝐵𝑙
And surjective map 𝜙:ℳ𝑙 → 𝒦

Hellman’s Time-Memory trade off attack
Simplified version

Attack parameters
Number of walks: 𝑚
Length of each walk: 𝑡

Offline attack:
1. Choose 𝑆𝑃1, … , 𝑆𝑃𝑚 uniformly at random from 𝒦
2. Compute 𝐸𝑃𝑖 = 𝐹𝑡(𝑆𝑃𝑖) for 𝑖 = 1,… ,𝑚
3. Store (𝐸𝑃𝑖 , 𝑆𝑃𝑖) in hash table / sorted table

Online attack:
1. Given 𝐶0 = 𝐸𝑛𝑐𝐾(𝐵) for some unknown key 𝐾
2. Let 𝑃0 = 𝜙(𝐶0)
3. For 𝑖 = 0,… , 𝑡 − 1
4. If 𝑃𝑖 = 𝐸𝑃𝑗 for some 𝑗 then
5. Let ෩𝐾 ≔ 𝐹𝑡−𝑖−1 𝑆𝑃𝑗
6. If 𝐸𝑛𝑐෩𝐾 𝐵 = 𝐶0 then return ෩𝐾
7. Compute 𝑃𝑖+1 ≔ 𝐹 𝑃𝑖
8. Otherwise, return ⊥

Hellman’s Time-Memory trade off attack

Simplified version analysis
Ideally, use 𝑚 ⋅ 𝑡 = |𝒦| and hope to cover entire space

However, 𝐹 behaves as a random function

Many collisions 𝐹 𝑥 = 𝐹(𝑦) exist and merges walks
Substantial part of space is never reached

Creates false alarms:

𝐾 does not actually lie on walk from 𝑆𝑃𝑖,
but on walk from another 𝑆𝑃 with same 𝐸𝑃𝑖

Ideal situation

Expected situation for
random functions

Hellman’s Time-Memory trade off attack

Simplified version analysis
Collisions start to occur when 𝑚 ⋅ 𝑡 ≈ √|𝒦|

Due to the birthday paradox (covered later)

The expected number of collisions grows roughly quadratic in 𝑚 ⋅ 𝑡

False alarms analysis:
Walk from 𝑃0 has 𝑡 points

There are at most 𝑚 ⋅ 𝑡 points covered by the table

Each pair has probability 1/|𝒦| to collide and cause false alarm
(i.e. without 𝑃0 actually being on the walk)

Expected number of false alarms: 𝐸 𝑍 ≤ 𝑚 ⋅ 𝑡2/|𝒦|

Expected costs of false alarm: 𝑡 ⋅ 𝐸 𝑍 ≤ 𝑚 ⋅ 𝑡3/|𝒦|

Success only if target 𝐾 is covered (part of a walk from a 𝑆𝑃𝑖)

Hellman: when 𝑚 ⋅ 𝑡2 = |𝒦|, success probability is ≈ 0.80𝑚𝑡/|𝒦|

Hellman’s Time-Memory trade off attack

Improved version
Use 𝑟 independent tables with different 𝜙1, … , 𝜙𝑟
Even if the same key is covered in different tables
then different 𝜙𝑖 imply different walks instead of merging walks

Hellman proposed 𝑚 = 𝑡 = 𝑟 = 3 |𝒦|

Individual table: success probability ≈ 0.80 / 3 |𝒦|

Total success probability ≈ 0.8

Offline time complexity: 𝑂 𝑚𝑡𝑟 = 𝑂(𝒦)

Offline memory complexity: 𝑂 𝑟𝑚 = 𝑂(|𝒦|2/3)

Online complexity:

𝑂 𝑟𝑡 + 𝑟𝑚𝑡3/ 𝒦 = 𝑂 𝒦 2/3 + 𝒦 2/3 = 𝑂(𝒦 2/3)

