Selected Areas in Cryptology Cryptanalysis Week 1

Marc Stevens
stevens@cwi.nl https://homepages.cwi.nl/~stevens/mastermath/2021/

Some preliminaries

Cost of algorithms

Time complexity
= runtime
= number of unit operations
(unit: e.g. bit operation, cpu instruction, function call)
Memory complexity
= amount of unit storage (unit: e.g. bit, byte, block)
Asymptotic complexity functions
Parameter n (bitlength of the input / security parameter) Definitions:

We write $f(n)=O(g(n))$ if
$|f(n)| \leq M g(n)$ for all $n \geq n_{0}$ (for some M, n_{0})
(also the called order of the function,
only the asymptotically fastest growing term is relevant)
$\operatorname{poly}(n):=\left\{f(n): \mathbb{R} \rightarrow \mathbb{R} \mid f(n)=O\left(n^{d}\right), d \in \mathbb{N}\right\}$
(set of all functions that are asymptotically bounded by some polynomial)
$f, g \in \operatorname{poly}(n) \Rightarrow f+g, f \cdot g, f \circ g \in \operatorname{poly}(n)$

Probabilistic algorithms $A(x)$
Uses random coins, non-deterministic
For fixed input, output has probability distribution
PPT := Probabilistic Polynomial-Time

Notation
$x \stackrel{r}{\leftarrow} \mathcal{X}$ randomly sample from \mathcal{X} assume uniform distribution if \mathcal{X} is set
$\operatorname{Pr}[$ event $]=$ probability event happens
$E[X]=$ the expected value for random variable X
Cryptographic constructions must asymptotically be efficient: construction is PPT
secure: attacks should not be PPT
then for any desired gap factor G (e.g. $G=2^{128}$) there exists a n_{0} such that for all $n \geq n_{0}$ cost of attack $\geq G \times$ cost of construction

Success probability for attacks A

$=$ probability algorithm outputs correct solution $y \in \operatorname{Sol}(x)$
$p_{\text {succ }}^{A}(x):=\operatorname{Pr}[y \leftarrow A(x) \wedge y \in \operatorname{Sol}(x)]$
Negligible success probability:
$\operatorname{negl}(n):=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid \forall d \in \mathbb{N}: \lim _{n \rightarrow \infty} f(n) \cdot n^{d}=0\right\}$
negligible functions go to 0 very quickly, even when multiplied by any arbitrary polynomial function
E.g.: key guessing attack

- Simply try R random secret keys of n bits
- Finds correct key with probability $R \cdot 2^{-n}$
- Should be negligible
- In concrete sense: so unlikely one can disregard this attack
- As in asymptotic sense:

$$
R \cdot 2^{-n} \in \operatorname{negl}(n) \text { if } R \in \operatorname{poly}(n)
$$

One-Time Pad

Symmetric Encryption Schemes

Send message secretly from sender to receiver
Using pre-shared secret key K (unknown to adversary)
Sender encrypts plaintext P to ciphertext C
Keyspace \mathcal{K}, plaintext space \mathcal{P}, ciphertext space \mathcal{C}
Function $E_{K}: \mathcal{P} \rightarrow \mathcal{C}$ for $\mathrm{K} \in \mathcal{K}$
$C=E_{K}(P)$
Receiver uses corresponding decryption to obtain plaintext P

$$
\begin{aligned}
& P=D_{K}(C) \\
& D_{K}: \mathcal{C} \rightarrow \mathcal{P}
\end{aligned}
$$

Goals:
Correctness: $D_{K}\left(E_{K}(P)\right)=P$ for all K, P
Secrecy: without key K
"no information is learned from C about message l (formalization comes later)

One-Time Pad (OTP)

For any $l \in \mathbb{N}$:

$$
\begin{gathered}
\mathcal{K}_{l}=\mathcal{P}_{l}=\mathcal{C}_{l}=\{0,1\}^{l} \approx \mathbb{F}_{2}^{l} \\
E_{K}(P):=P \oplus K \\
D_{K}(C):=C \oplus K
\end{gathered}
$$

$$
E_{K}(P):=P \oplus K \quad 0 \oplus 0=1 \oplus 1=0
$$

Requires K uniformly random selected
$1 \oplus 0=0 \oplus 1=1$
Addition in \mathbb{F}_{2}

Key, and Plain- and ciphertext have equal length

Only encryption method providing perfect secrecy no statistical correlation between cipher- and plaintext if key is unknown
\Rightarrow no information can be learned

$$
\text { even with } \infty \text { computing power }
$$

$$
\operatorname{Pr}_{\mathrm{K}}[C=P \oplus K]=\operatorname{Pr}_{\mathrm{K}}[K=P \oplus C]=2^{-l}
$$

Given C, every plaintext is equally likely Given P, every ciphertext is equally likely

One-Time Pad issues

Perfect secrecy, but ...

Perfect secrecy is broken if
Key K is not kept secret
K was not selected uniformly at random from \mathcal{K}_{l}
Key K is reused for two messages
attacker learns: $C_{1} \oplus C_{2}=P_{1} \oplus P_{2}$

Also malleable!

1. Sender encrypts $P=$ "I owe you 10\$"
2. Attacker intercepts $C=K \bigoplus P$
 Attacker doesn't even need to know the actual text,
only the position and value of the change
3. Attacker sends $C^{\prime}=C \bigoplus D$ to receiver
4. Receiver obtains C^{\prime} and decrypts:

$$
P^{\prime}=K \oplus C^{\prime}=P \oplus D=\text { "I owe you } 5 \mathrm{k} \$ "
$$

Stream Ciphers

Stream ciphers

Operates very similar to One-Time Pad:
simply XOR message with long key stream $C:=P \oplus \overparen{K}$

Except: long key stream \widetilde{K} is generated from short pre-shared key K

Short key size: k bits, $\mathcal{K}=\{0,1\}^{k}$
Large internal state: s bits, $S_{i} \in\{0,1\}^{s}$
Arbitrary long plain- and ciphertext: $\mathcal{C}=\mathcal{P}=\{0,1\}^{*}$

1. Initialization:

$$
S_{0}:=\operatorname{Init}(K)
$$

2. Step update for bit i

$$
\left(S_{i+1}, O_{i}\right):=\operatorname{Update}\left(S_{i}\right)
$$

3. Encrypt bit i

$$
C_{i}:=P_{i} \oplus O_{i}
$$

4. Repeat 2-3 for $i=0, \ldots|P|-1$

Asynchronous version (to recover from missed C_{j})

$$
\left(S_{i+1}, O_{i}\right):=\operatorname{Update}\left(S_{i}, C_{i-1}, \ldots, C_{i-l}\right)
$$

No perfect secrecy

Only 2^{k} possible long key streams
For each plaintext, only 2^{k} possible ciphertexts
For each ciphertext, only 2^{k} possible plaintexts
For very long ciphertexts (with `meaningful` plaintext)
It's theoretical possible to try every key
$2^{k}-1$ attempts should lead to `garbage`
The right key should lead to a 'meaningful' plaintext
Hence, security must be computational

Computational Security Properties for Stream Ciphers:
Key recovery hardness
Given long keystream \widetilde{K} hard to recover key K
State recovery hardness
Given long keystream \widetilde{K} hard to recover a state S_{i}
Indistinguishability
Attacker cannot distinguish between
a random long keystream \widetilde{K} and
a uniformly random bitstring of same length

Indistinguishability

Security parameter: key size k (and state size: l)
Attacker: distinguisher algorithm A
Gets access to \mathcal{O} :
Either, stream cipher oracle: $\mathcal{O}_{s c}$
Selects $K \stackrel{r}{\leftarrow}\{0,1\}^{k}$ uniformly at random
Outputs O_{i} on i-th query
Or, random oracle: $\mathcal{O}_{u r}$
Outputs random $O_{i} \stackrel{r}{\leftarrow}\{0,1\}$ on i-th query
Does not know which of the two it gets access to!

Returns either 0 or 1

think of the output as it's guess: stream cipher or random

Stream cipher is $(d(k), c(k), \epsilon(k))$-indistinguishable
if: $\left|\operatorname{Pr}\left[A^{O_{s c}}=1\right]-\operatorname{Pr}\left[A^{O_{u r}}=1\right]\right| \leq \epsilon(k)$
for all distinguishers A that:
read at most $d(k)$ bits from oracle perform at most $c(k)$ operations

Concrete security	Asymptotic security	Information-theoretic security
$d(k), c(k):=2^{\min (k, l)}$	$d(k), c(k):=\operatorname{poly}(k)$	Impossible: $c(k):=\infty$
$\epsilon(k):=2^{-128}$	$\epsilon(k):=\operatorname{negl}(k)$	

Generic attacks

Generic Key recovery attack given target keystream \tilde{T}

1. Walk over the search space $K \in\{0,1\}^{k}$
2. Generate keystream \widetilde{K} with same length as \widetilde{T}
3. If $\widetilde{K}=\widetilde{T}$ then return K
4. if no such K then return \perp

Time complexity: $O\left(2^{k}\right)$
Generic State recovery attack given target keystream \tilde{T}

1. Walk over the search space $S_{0} \in\{0,1\}^{l}$
2. Generate keystream \widetilde{K} with same length as \widetilde{T}
3. If $\widetilde{K}=\tilde{T}$ then return S_{0}
4. If no such S_{0} then return \perp

Time complexity: $O\left(2^{l}\right)$
Generic distinguishing attack
From generic key recovery attack or state recovery attack:
Return 0 if recovery attack returns \perp, and 1 otherwise
Time complexity: $O\left(2^{\min (k, l)}\right)$

Stream Cipher Malleability

Again Stream Ciphers only provide secrecy
As ciphertexts can be precisely modified:

1. Sender encrypts $P=$ "I owe you 10\$"
2. Attacker intercepts $C=K \oplus P$

Let $D=$ "___10_" \oplus "__ $5 \mathrm{k}_{-} "$
3. Attacker sends $C^{\prime}=C \oplus D$ to receiver
4. Receiver obtains C^{\prime} and decrypts:

$$
P^{\prime}=K \oplus C^{\prime}=P \oplus D=\text { "I owe you } 5 \mathrm{k} \$ "
$$

Key reuse

Key K must not be reused for two messages otherwise attacker learns: $C_{1} \oplus C_{2}=P_{1} \oplus P_{2}$
Common trick:
Split k bit key into k_{1} bits secret key and k_{2} bits (public) nonce Pre share single secret key $K_{1} \in\{0,1\}^{k_{1}}$
Reuse K_{1} by choosing different (public) values $K_{2} \in\{0,1\}^{k_{2}}$
E.g.: maintain counter K_{2} with $k_{2} \geq 32$

Or choose random K_{2}, then $k_{2} \geq 128$

Block Ciphers

- Block ciphers work differently from the one-time pad and stream ciphers
- Only encrypts fixed-size blocks as a whole (not per bit)
- Let security parameter n
- Key space $\mathcal{K}(n)$ and block space $\mathcal{M}(n)$ (e.g., $\{0,1\}^{n}$)
- Enc: $\mathcal{K}(n) \times \mathcal{M}(n) \rightarrow \mathcal{M}(n)$ such that
- $E n c_{K}: \mathcal{M}(n) \rightarrow \mathcal{M}(n)$ is a permutation for all $K \in \mathcal{K}(n)$
- $D e c_{K}:=E n c_{K}^{-1}$ is efficiently computable
- Note: n is typically omitted: \mathcal{K}, \mathcal{M}

Generic attacks

Generic key recovery attack model
No relevant key stream to provide to attacker
Instead list of plaintext + ciphertext pairs: $\left(P_{1}, C_{1}\right),\left(P_{2}, C_{2}\right), \ldots$
Which pairs?
Known plaintext attack: random plaintexts Chosen plaintext attack: attacker may choose P_{i}

Generic key recovery attack

1. Query l pairs $\left(P_{1}, C_{1}\right), \ldots,\left(P_{l}, C_{l}\right)$
2. Walk over search space $K \in \mathcal{K}$
3. If $C_{i}=E n c_{K}\left(P_{i}\right)$ for $i=1, \ldots, l$ then return K
4. Otherwise, if no such K, return \perp

Complexity: $O(|\mathcal{K}|)$
Note: Even if there are l pairs to check in total
The first is very likely to fail and the key candidate (
so most times we only have to check 1 pair

Generic 1-out-of-L key recovery attack

 Assume L users with different keys K_{1}, \ldots, K_{L} Attacker succeeds if it finds 1 keyGeneric attack

1. Chooses l plaintexts P_{1}, \ldots, P_{l}
2. Queries encryptions for each user:

$$
C_{i, j}=E n c_{K_{j}}\left(P_{i}\right) \text { for } i=1, \ldots, l \text { and } j=1, \ldots, L
$$

3. Walks over search space $K \in \mathcal{K}$
4. Compute $\tilde{C}_{1}=E n c_{K}\left(P_{1}\right)$
5. For j such that $C_{1, j}=\tilde{C}_{1}$ do
6. If $C_{i, j}=E n c_{K}\left(P_{i}\right)$ for $i=2, \ldots, l$ then return K
7. Otherwise, return \perp

Every key guess has success probability $L /|\mathcal{K}|$ Complexity: $O(|\mathcal{K}| / L)$

Attacks with precomputation

There are attacks that cost $O(|\mathcal{K}|)$ or more in total
But < $O(|K|)$ per problem instance
Two phases:
An offline part that performs at least $O(|\mathcal{K}|)$ operations
An online part that attacks each of the L keys independently
An extreme example, codebook dictionary:
Offline:

1. choose block B
2. create hash table with $\left(E n c_{K}(B), K\right)$ entries

Complexity: Time $\mathrm{O}(|\mathcal{K}|)$, Memory: $\mathrm{O}(|\mathcal{K}|)$

Online:

1. for each secret key K_{i} to be attacked
2. Query $C=E n c_{K_{i}}(B)$
3. Find table entry $\left(C, K_{i}\right)$

Complexity: Time $O(1)$, Memory: $O(|\mathcal{K}|)$

Non-uniform attacks:
Another view on an attack with pre-computation
Make pre-computed data part of online attack algorithm
Online algorithm now only has total cost $<O(|\mathcal{K}|)$
Such algorithms called non-uniform

Hellman's Time-Memory trade off attack

An attack that uses more time, but less memory Idea:

Use fixed block B and $\operatorname{map} \phi: \mathcal{C} \rightarrow \mathcal{K}$
Iterative function $F: \mathcal{K} \rightarrow \mathcal{K}$ 'walks' through key space

$$
F\left(K_{i}\right)=K_{i+1}, \text { where } C=E n c_{K_{i}}(B), \quad K_{i+1}=\phi(C)
$$

Offline: store many long walks covering key space
Only store begin and endpoints $\left(S P_{j}, E P_{j}=F^{t}\left(S P_{j}\right)\right)$

Online: query $C_{0}=E \operatorname{Enc}_{K}(B), K_{0}=\phi\left(C_{0}\right)$
Note that: $F(K)=K_{0}$ by definition
Walk from K_{0} until say endpoint $E P_{1}$ is found Find secret K by walking from $S P_{1}$

Hellman's Time-Memory trade off attack

Setup Details:

$F: \mathcal{K} \rightarrow \mathcal{K}$, where $F=\phi \circ E$

$$
E: \mathcal{K} \rightarrow \mathcal{M}, \quad E(K):=E n c_{K}(B)
$$

$\phi: \mathcal{M} \rightarrow \mathcal{K}$ needs to be surjective

If $|\mathcal{M}| \geq|\mathcal{K}|$ then easy, otherwise impossible
When $|\mathcal{M}|<|\mathcal{K}|$
Use multiple blocks $B_{1}, B_{2}, \ldots, B_{l}$ such that $|\mathcal{M}|^{l} \geq|\mathcal{K}|$
$E: \mathcal{K} \rightarrow \mathcal{M}^{l}, \quad E(K):=\left(E n c_{K}\left(B_{1}\right), \ldots, E n c_{K}\left(B_{l}\right)\right)$
And surjective map $\phi: \mathcal{M}^{l} \rightarrow \mathcal{K}$

Hellman's Time-Memory trade off attack

Simplified version
Attack parameters
Number of walks: m
Length of each walk: t
Offline attack:

1. Choose $S P_{1}, \ldots, S P_{m}$ uniformly at random from \mathcal{K}
2. Compute $E P_{i}=F^{t}\left(S P_{i}\right)$ for $i=1, \ldots, m$
3. Store $\left(E P_{i}, S P_{i}\right)$ in hash table / sorted table

Online attack:

1. Given $C_{0}=\operatorname{Enc}_{K}(B)$ for some unknown key K
2. Let $P_{0}=\phi\left(C_{0}\right)$
3. For $i=0, \ldots, t-1$
4. If $P_{i}=E P_{j}$ for some j then
5. Let $\widetilde{K}:=F^{t-i-1}\left(S P_{j}\right)$
6. If $E n c_{\widetilde{K}}(B)=C_{0}$ then return \widetilde{K}
7. Compute $P_{i+1}:=F\left(P_{i}\right)$
8. Otherwise, return \perp

Hellman's Time-Memory trade off attack

Simplified version analysis

Ideally, use $m \cdot t=|\mathcal{K}|$ and hope to cover entire space

Ideal situation

However, F behaves as a random function
Many collisions $F(x)=F(y)$ exist and merges walks
Substantial part of space is never reached
Creates false alarms:
K does not actually lie on walk from $S P_{i}$,
but on walk from another $S P$ with same $E P_{i}$

Expected situa random functir

Hellman's Time-Memory trade off attack

Simplified version analysis

Collisions start to occur when $m \cdot t \approx \sqrt{ }|\mathcal{K}|$
Due to the birthday paradox (covered later)
The expected number of collisions grows roughly quadratic in $m \cdot t$
False alarms analysis:
Walk from P_{0} has t points
There are at most $m \cdot t$ points covered by the table
Each pair has probability $1 /|\mathcal{K}|$ to collide and cause false alarm
(i.e. without P_{0} actually being on the walk)

Expected number of false alarms: $E[Z] \leq m \cdot t^{2} /|\mathcal{K}|$
Expected costs of false alarm: $t \cdot E[Z] \leq m \cdot t^{3} /|\mathcal{K}|$

Success only if target K is covered (part of a walk from a $S P_{i}$)
Hellman: when $m \cdot t^{2}=|\mathcal{K}|$, success probability is $\approx 0.80 \mathrm{mt} /|\mathcal{K}|$

Hellman's Time-Memory trade off attack

Improved version
Use r independent tables with different $\phi_{1}, \ldots, \phi_{r}$
Even if the same key is covered in different tables then different ϕ_{i} imply different walks instead of merging walks

Hellman proposed $m=t=r=\sqrt[3]{|\mathcal{K}|}$

Individual table: success probability $\approx 0.80 / \sqrt[3]{|\mathcal{K}|}$
Total success probability ≈ 0.8
Offline time complexity: $O(\mathrm{mtr})=O(|\mathcal{K}|)$
Offline memory complexity: $O(r m)=O\left(|\mathcal{K}|^{2 / 3}\right)$
Online complexity:

$$
O\left(r t+r m t^{3} /|\mathcal{K}|\right)=O\left(|\mathcal{K}|^{2 / 3}+|\mathcal{K}|^{2 / 3}\right)=O(|\mathcal{J}| 2 / 3)
$$

