Selected Areas in Cryptology Cryptanalysis Week 3

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/2021/

Block cipher structural attacks

Attacks against the internal structure of a blockcipher

$$
E_{K}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}, \quad K \in\{0,1\}^{k}
$$

Blockcipher consists of R rounds of a small keyed round function E_{K}^{r}

- Small: few operations
- Keyed: involves key material
- 'Confusion': complex operations \Rightarrow very complex final relations
- 'Diffusion': mix state \Rightarrow each in-/output bit depends on each out-/input bit

Focus on SPN: Substitution Permutation Network

- Substitution: complex permutation "S-BOX" on e.g. 8 bits applied on all 8-bit parts
- Permutation: mixing of entire state (F_{2} - linear)
- Keyed: add round key (F_{2} - linear) (derived from main key)

AES: state $n=128$ bits, key $k=128,192,256$ bits, S-box: 8 bits
ToyCipher: state $n=16$ bits, key $k=16(r+1)$ bits, S-box: 4 bits

Toy-Cipher

Toy-Cipher to demonstrate structural attack techniques

- State $n=16$ bits, 4 rounds
- 5 round keys K_{1}, \ldots, K_{5} of 16 bits
- Small enough to do attacks in practice (if you wanted)

Key-addition:

- XOR round key K_{i}
- Final key-addition at end with K_{5}

Substitution: 4-bit S-box

- $\pi_{S}:\{0,1\}^{4} \rightarrow\{0,1\}^{4}$ (see lecture notes)
- called 4 times per round to alter all 16 bits

Permutation of 16 bits:

- $\pi_{P}:\{1, \ldots, 16\} \rightarrow\{1, \ldots, 16\}$ (see lecture notes)
- Skipped in last round, as it can be removed anyway (swap Perm and AddKey with $K_{5}^{\prime}[i]=K_{5}\left[\pi_{P}(i)\right]$)

Structural attacks

1. Analyze individual rounds

2. Obtain a family of round attack building blocks

3. Combine to attack on full blockcipher
4. Approximate complexity by combining individual round costs

$$
C=c(r) \cdot 0.8 \cdot 1.0 \cdot 0.9 \cdot 0.7
$$

5. Find optimal attack

Linear Cryptanalysis

Linear approximate the cipher:

- $F_{2^{-}}$linear input-output relation
- $\sum_{i \in I} P[i] \quad \oplus \quad \sum_{j \in J} C[j] \quad \oplus \sum_{l \in \mathrm{~L}} K[l]=c$
- Involves a number of plaintext bits $P[i]$,
- .. cipher text bits $C[j]$,
- .. key bits $K[l]$, (from all the round keys)
- .. a constant C
- E.g.: $P[2] \oplus P[4] \oplus C[1] \oplus C[7] \oplus K_{1}[2] \oplus K_{1}[4] \cdots \oplus K_{5}[7]=1$
- F_{2} : Either the equation holds with $c=0$ or with $c=1$
- Probability equation holds:
- Ideal secure situation: $p=0.5$ exactly for any such relation
- \Rightarrow approximation doesn't give any information
- Actual case $p=0.5+\epsilon$, where $\epsilon \in[-.5,+.5]$ is the bias
- \Rightarrow larger bias means larger probability of correct prediction
- Search for relations with large (absolute) bias!
- First find relations on individual rounds, then combine them!

Linear Cryptanalysis

- A forward analysis
- Round input: $P[1], \ldots, P[16]$
- S-Box input: $X[1], \ldots, X[16]$

- S-Box output: $Y[1], \ldots, Y[16]$
- Round output: $C[1], \ldots, C[16]$
- Round key: $K[1], \ldots, K[16]$
- Choose input bits: $P[2], P[4]$
- Involves key bits $K[2], K[4]$
- Inactive S-Box: no input bits selected
- 1 active S-Box: S_{21}
- Inputs:
- $X[2]=P[2] \oplus K[2]$
- $X[4]=P[4] \oplus K[4]$
- Choose outputs: Y [1], $Y[4]$

- Resulting output bits: $C[1]=Y[1], C[13]=Y[4]$
- Relation: Rel: $P[2] \oplus P[4] \oplus C[1] \oplus C[13]=0 \oplus K[2] \oplus K[4]$
- Probability:
- $\operatorname{Pr}_{\mathrm{P}}[R e l]=\operatorname{Pr}_{X}\left[X[2] \oplus X[4] \oplus Y[1] \oplus Y[4]=0 \mid Y=\pi_{S}(X)\right]$

LAT: Linear Approximation Table

- Analyze all linear relations for S-Box π_{S} of the form:
- $\operatorname{Pr}_{X}\left[X[2] \oplus X[4] \oplus Y[1] \oplus Y[4]=0 \mid Y=\pi_{S}(X)\right]$

- S-Box is permutation on $\{0,1\}^{4}$
- 16 possible selections of sums $\sum_{i \in \mathrm{I}} X[i], I \subseteq\{1,2,3,4\}$
- 16 possible selections of sums $\sum_{j \in \mathrm{I}} Y[j], J \subseteq\{1,2,3,4\}$
- Represent I / J as 4 -bit mask / integer value:

$$
\{1\} \rightarrow 1000_{b}=8, \quad\{3,4\} \rightarrow 0011_{b}=3
$$

- Linear Approximation Table (LAT):
- 16×16 table
- Row $I \in\{0, \ldots, 15\}$, Column $J \in\{0, \ldots, 15\}$ contains:
- LAT $(I, J):=\#\left\{X \in\{0,1\}^{4}, Y=\pi_{S}(X) \mid \sum X[i] \oplus \sum Y[j]=0\right\}-8$
- Bias $\epsilon_{I, J}=\operatorname{Pr}\left[\sum X[i] \oplus \sum Y[j]=0\right]-0.5=\operatorname{LAT}(I, J) / 16$
- Important tool!
- Easily precomputed, independent of keys
- Convenient look-up for large biases to construct large bias relations

LAT: Linear Approximation Table

- Compute entry

1. Write all values for X with corresponding Y-values
2. Compute X-sum
3. Compute Y-sum
4. Count total matching values $(A \oplus B=0 \Leftrightarrow A=B)$
5. Subtract 8

- $X[2] \oplus X[3] \oplus Y[1] \oplus Y[3] \oplus Y[4]:$
- 12 matching
- $\operatorname{Pr}[\Sigma=0]=\frac{12}{16}, \epsilon=\frac{12}{16}-\frac{1}{2}=\frac{4}{16}$
- $x=0110_{b}=6$
- $y=1011_{b}=11$
- $\Rightarrow \operatorname{LAT}(6,11)=12-8=4$

$X_{1} X_{2} X_{3} X_{4}$	$Y_{1} Y_{2} Y_{3} Y_{4}$	$X_{2}+X_{3}$	$Y_{1}+Y_{3}+Y_{4}$
0000	1110	0	0
0001	0100	0	0
0010	1101	1	0
0011	0001	1 1	1
0100	0010	1	1
0101	1111	1	1
0110	1011	0	1
0111	1000	0	1
1000	0011	0	0
1001	1010	0	0
1010	0110	1	1
1011	1100	1	1
1100	0101	1	1
1101	1001	1	0
1110	0000	0	0
1111	0111	0	0

LAT: Linear Approximation Table

LAT for Toy-Cipher
LAT properties:

- $\operatorname{LAT}(0,0)=16-8=8, \operatorname{LAT}(x, 0)=8-8, \operatorname{LAT}(0, x)=8-8, x>0$

Also note:

Every entry
is even
Sum of every
row/column
= 8

		Output sum															
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	-2	-2	0	0	-2	6	2	2	0	0	2	2	0	0
	2	0	0	-2	-2	0	0	-2	-2	0	0	2	2	0	0	-6	2
	3	0	0	0	0	0	0	0	0	2	-6	-2	-2	2	2	-2	-2
	4	0	2	0	-2	-2	-4	-2	0	0	-2	0	2	2	-4	2	0
	5	0	-2	-2	0	-2	0	4	2	-2	0	-4	2	0	-2	-2	0
\#	6	0	2	-2	4	2	0	0	2	0	-2	2	4	-2	0	0	-2
$\stackrel{5}{2}$	7	0	-2	0	2	2	-4	2	0	-2	0	2	0	4	2	0	2
E	8	0	0	0	0	0	0	0	0	-2	2	2	-2	2	-2	-2	-6
ヨ	9	0	0	-2	-2	0	0	-2	-2	-4	0	-2	2	0	4	2	-2
	10	0	4	-2	2	-4	0	2	-2	2	2	0	0	2	2	0	0
	11	0	4	0	-4	4	0	4	0	0	0	0	0	0	0	0	0
	12	0	-2	4	-2	-2	0	2	0	2	0	2	4	0	2	0	-2
	13	0	2	2	0	-2	4	0	2	-4	-2	2	0	2	0	0	2
	14	0	2	2	0	-2	-4	0	2	-2	0	0	-2	-4	2	-2	0
	15	0	-2	-4	-2	-2	0	2	0	0	-2	4	-2	-2	0	2	0

Compute with sage (see lecture notes)

Piling-Up Lemma

How to combine two linear relations?

- Let X_{1}, X_{2} be two independent binary random variables (think of them as the output of the sum of $X \& Y$ bits)
- Let $p_{1}:=\operatorname{Pr}\left[X_{1}=0\right], p_{2}:=\operatorname{Pr}\left[X_{2}=0\right]$
- Then:

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{1} \oplus X_{2}=0\right] \\
& \left.=\operatorname{Pr} X_{1}=0 \wedge X_{2}=0\right]+\operatorname{Pr}\left[X_{1}=1 \wedge X_{2}=1\right] \\
& =p_{1} \cdot p_{2}+\left(1-p_{1}\right) \cdot\left(1-p_{2}\right)
\end{aligned}
$$

- Now consider the biases: $\epsilon_{1}:=p_{1}-0.5, \quad \epsilon_{2}:=p_{2}-0.5, \quad \epsilon_{1,2}:=\operatorname{Pr}\left[X_{1} \oplus X_{2}=0\right]-0.5$
- Then:

$$
\begin{aligned}
& \epsilon_{1,2}=\left(0.5+\epsilon_{1}\right)\left(0.5+\epsilon_{2}\right)+\left(0.5-\epsilon_{1}\right)\left(0.5-\epsilon_{2}\right)-0.5 \\
& =\left(0.25+0.5\left(\epsilon_{1}+\epsilon_{2}\right)+\epsilon_{1} \epsilon_{2}\right)+\left(0.25-0.5\left(\epsilon_{1}+\epsilon_{2}\right)+\epsilon_{1} \epsilon_{2}\right)-0.5 \\
& =2 \epsilon_{1} \epsilon_{2}
\end{aligned}
$$

Piling-Up Lemma:

For X_{1}, \ldots, X_{N} independent binary variables with biases ϵ_{i} :
Their sum $X_{1, \ldots, N}=X_{1} \oplus \cdots \oplus X_{N}$ has bias: $\epsilon_{1, \ldots, N}=2^{N-1} \prod_{i=1}^{N} \epsilon_{i}$

Bringing everything together

- LAT to find those high bias S-Box relations
- Inactive S-Boxes don't affect bias, as:

- $\operatorname{LAT}(0,0)=8 \Rightarrow \epsilon_{1}=\frac{8}{16}=\frac{1}{2}$
- Piling-Up Lemma: $\epsilon_{1,2}=2 \epsilon_{1} \epsilon_{2}=\epsilon_{2}$
- Only active S -Boxes matter \Rightarrow minimize active S -boxes
- Make use of π_{P} properties
- i-th output bit active of S-Box $S_{1 j}$ $\Rightarrow S$-Box $S_{2 i}$ active in next round
- It is its own inverse, so also vice-versa:
- i-th input bit active of S-Box $S_{2 j}$
\Rightarrow S-Box $S_{1 i}$ active in previous round

- If multiple active S -boxes in one round then try to have active input bits on same S-box bit position (and same for output bits)

Bringing everything together

Goal is to build a linear approximation over three rounds

- First find S-Box relation for middle round with high bias and minimal active wires
- The number of active wires equals the number of active S-Boxes in round 1 and 3 together
- E.g.: $\operatorname{LAT}\left(0100_{b}, 0101_{b}\right)=\operatorname{LAT}(4,5)=-4$
- If we use it at S-Box 2 (0100) then next round:
- Has 2 active S-Boxes $\left(0101_{b}\right.$: 2 active output wires)
- Both have active input wire $2 \Rightarrow 0100_{b}$
- So can use same high bias relation again
- \Rightarrow rounds 2 and 3 done
- Round 4 has 2 active S-Boxes
- First round:
- Active S-Box 2 with output mask 0100_{b}
- Find highest bias
- Input mask is not important: no S-Boxes before
- E.g. $\operatorname{LAT}\left(1011_{b}, 0100_{b}\right)=\operatorname{LAT}(11,4)=4$

Bringing everything together

First round:

- $X_{12,1} \oplus X_{12,3} \oplus X_{12,4}=P_{5} \oplus P_{7} \oplus P_{8} \oplus K_{1,5} \oplus K_{1,7} \oplus K_{1,8}$
- $X_{12,1} \oplus X_{12,3} \oplus X_{12,4} \oplus Y_{12,2}=0$ with bias $\epsilon_{12}=4 / 16$

Second round:

- $X_{22,2}=Y_{12,2} \oplus K_{2,6}$
- $X_{22,2} \oplus Y_{22,2} \oplus Y_{22,4}=0$ with bias $\epsilon_{22}=-4 / 16$

Third round:

- $X_{32,2}=Y_{22,2} \oplus K_{3,6}, \quad X_{34,2}=Y_{22,4} \oplus K_{3,14}$
- $X_{32,2} \oplus Y_{32,2} \oplus Y_{32,4}=0$ with bias $\epsilon_{32}=-4 / 16$
- $X_{34,2} \oplus Y_{34,2} \oplus Y_{34,4}=0$ with bias $\epsilon_{34}=-4 / 16$

Partial fourth round:

- $X_{42,2} \oplus X_{42,4}=Y_{32,2} \oplus Y_{34,2} \oplus K_{4,6} \oplus K_{4,8}$
- $X_{44,2} \oplus X_{44,4}=Y_{32,4} \oplus Y_{34,4} \oplus K_{4,14} \oplus K_{4,16}$

Sum all relations above (move only key bits on RSH):

- $P_{5} \oplus P_{7} \oplus P_{8} \oplus X_{42,2} \oplus X_{42,4} \oplus X_{44,2} \oplus X_{44,4}=$ $K_{1,5} \oplus K_{1,7} \oplus K_{1,8} \oplus K_{2,6} \oplus K_{3,6} \oplus K_{3,14} \oplus K_{4,6} \oplus K_{4,8} \oplus K_{4,14} \oplus K_{4,16}$
- Note how all internal variables occur exactly twice \& cancel
- Bias (Piling-Up Lemma): $2^{3}\left(\frac{1}{4}\right)\left(-\frac{1}{4}\right)^{3}=-\frac{1}{32}$

Key-recovery attack

$P_{5} \oplus P_{7} \oplus P_{8} \oplus X_{42,2} \oplus X_{42,4} \oplus X_{44,2} \oplus X_{44,4}=$
$K_{1,5} \oplus K_{1,7} \oplus K_{1,8} \oplus K_{2,6} \oplus K_{3,6} \oplus K_{3,14} \oplus K_{4,6} \oplus K_{4,8} \oplus K_{4,14} \oplus K_{4,16}$
With bias: $2^{3}\left(\frac{1}{4}\right)\left(-\frac{1}{4}\right)^{3}=-\frac{1}{32}$

Build distinguisher for 3 rounds (w/ 4 key additions)

- Over many plaintext-ciphertext pairs measure probability of relation
- Is $\approx \pm \frac{1}{32} \Rightarrow$ is blockcipher oracle with 3 rounds
- Is $\approx 0.5 \Rightarrow$ random oracle

Key-recovery attack idea:

1. Obtain many plaintext-ciphertext pairs
2. Guess last round key => decrypt last round

- Note how we only need to guess 8 key bits of K_{5}

3. Do distinguishing check

- Outputs blockcipher oracle
\Rightarrow right key guess, stop
- Outputs random oracle
\Rightarrow wrong key guess, try again with another guess

Key-recovery attack analysis

Count P-C pairs that match relation: C
Case correct key-guess:

- Binomial distribution with n samples and $p=0.5+\epsilon$
- $E[C]=n / 2+n \cdot \epsilon$

Case wrong key-guess:

- Binomial distribution with n samples and $p=0.5$
- $E[C]=n / 2$

However, there are $\approx 2^{8}$ wrong key-guesses

- Does the correct key-guess stand out among all of them?
- Approximate with Normal distribution N : mean $n / 2$ and $\operatorname{SD} \sqrt{n / 4}$
- Then $\operatorname{Pr}[\mid N-$ mean $\mid>x \cdot S D] \leq e^{-x^{2} / 2}$ (see lecture notes)
- For $x=4$, this probability is $<2^{-8} \Rightarrow$ expect all samples bounded by $4 \cdot S D$ How many samples do we need to have the correct key-guess stand out?
- $n \cdot \epsilon>4 \cdot \sqrt{n / 4} \Rightarrow n>4 \cdot \epsilon^{-2}$

Wrap-up

- Block-cipher design:
- Substitution: S-Box
- Permutation: linear
- Key-addition: linear
- Linear cryptanalysis
- Input/output- linear relations with probability bias
- LAT: Linear Approximation Table for S-Box
- Build linear relation for block cipher by combining internal linear relations with piling-up lemma
- Linear distinguisher
- Blockcipher oracle vs Random oracle
- Distinguish by measuring non-zero bias vs zero bias
- Key-recovery attack
- Use distinguisher on R-1 rounds
- Guess last key and distinguish: random oracle \Rightarrow wrong key guess
- Number of P-C pairs: $\mathrm{O}\left(\epsilon^{-2}\right)$

