Selected Areas in Cryptology Cryptanalysis Week 5

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/2021/

Differential Cryptanalysis

Consider two related encryptions

1. $C=E n c_{K}(P)$ (with internal variables X, Y, \ldots)

2. $C^{\prime}=E n c_{K}\left(P^{\prime}\right)$ (with internal variables $X^{\prime}, Y^{\prime}, \ldots$)

- Define difference $\Delta X=X \oplus X^{\prime}$
- Study relations between input difference ΔP and output difference ΔC :
- $p_{\Delta P, \Delta C}:=\operatorname{Pr}[\Delta C \mid \Delta P]=\operatorname{Pr}_{P}\left[E n c_{K}(P) \oplus E n c_{K}(P \oplus \Delta P)=\Delta C\right]$
- Ideal secure situation: for every ΔP every ΔC is equally likely: $p_{\Delta P, \Delta C} \approx 2^{-n}$
- Differences are not affected by:
- Key-addition:

$$
\begin{aligned}
& Y=X \oplus K, Y^{\prime}=X^{\prime} \oplus K \\
& \Rightarrow \Delta Y=X \oplus K \oplus X^{\prime} \oplus K=\Delta X
\end{aligned}
$$

- State permutation:

$$
\begin{aligned}
& Y[i]=X\left[\pi_{P}(i)\right], Y^{\prime}[i]=X^{\prime}\left[\pi_{P}(i)\right] \\
& \Rightarrow \Delta Y[i]=\Delta X\left[\pi_{P}(i)\right]
\end{aligned}
$$

Key-recovery attack

$$
\left(\Delta P, \Delta O_{3}\right)=([000010110000 \text { 0000], [0000 } 011001100000])
$$

Probability: $\mathrm{p}_{\mathrm{diff}} \geq \frac{1}{2}\left(\frac{3}{8}\right)^{3}=\frac{27}{1024} \approx 0.026$

Build distinguisher for 3 rounds ($\mathrm{w} / 4$ key additions)

- Over many $\left(P_{1}, P_{2}, C_{1}, C_{2}\right)$-tuples with $\mathrm{P}_{1} \oplus P_{2}=\Delta P$ measure probability of $C_{1} \oplus C_{2}=\Delta O_{3}$
- Is $\approx \frac{27}{1024} \approx 0.026 \Rightarrow$ is blockcipher oracle with 3 rounds
- Is $\approx 2^{-16} \approx 0.000015 \Rightarrow$ random oracle

Key-recovery attack idea:

1. Obtain many PPCC-tuples
2. Guess last round key => decrypt last round

- Note how we only need to guess 8 key bits of K_{5}

3. Do distinguishing check

- Outputs blockcipher oracle
\Rightarrow right key guess, stop
- Outputs random oracle
\Rightarrow wrong key guess, try again with another guess

Other differential attacks

Key-recovery: any efficient distinguisher works
So any high probability relation that is easily checkable works

Three variant attacks based on differential cryptanalysis

1. Truncated differential cryptanalysis

- Instead of one chosen difference for internal variables allow sets of differences
- Potentially higher probabilities

2. Impossible differential cryptanalysis

- Use a differential relation with probability 0
- Have to prove no trail exists

3. Boomerang distinguishers

- $2^{\text {nd }}$ order differential: $P_{a}, P_{a}^{\prime}, P_{b}, P_{b}^{\prime}$ with $\Delta P_{a}=\Delta P_{b}$
- Analyze difference $\Delta X_{a} \oplus \Delta X_{b}$ between differences ΔX_{a} and ΔX_{b}

Truncated differential cryptanalysis

- Main idea: difference sets relations
- E.g.: $\Delta X \in\{3,7,14\} \rightarrow \Delta Y \in\{2,4\}$

- This has probability $1 / 4$ since $D D T(3,2)=\cdots=D D T(14,4)=2$ and so

$$
\operatorname{Pr}[\Delta Y \in\{2,4\} \mid \Delta X \in\{3,7,14\}]=\frac{2}{16}+\frac{2}{16}=\frac{4}{16}
$$

- Or e.g.: $\Delta X \in\{1,2,3,4,5,6,7\} \rightarrow \Delta Y \in\{3,5,6,9,10,12,15\}$ with probability $3 / 4$
- Truncated differential cryptanalysis works best with permutation layers that are:
- 'slow': Round $i+1$ S-Box input depends on output few Round i S-Boxes
- 'word'-based: F_{s}-linear where S-Box has s-bits
- So, not for our ToyCipher, except when applied on last round which is equivalent to using multiple differential relations with same ΔP

Impossible differential cryptanalysis

- Idea: find differential relations with probability 0
- Since differential 'trails' probability add up for a relation,
 one needs to prove no differential trail exists with $\mathrm{p}>0$
- E.g.:

$$
\text { - }\left(\Delta P, \Delta O_{3}\right)=(10000 \ldots \ldots \ldots 0,10000
$$

- Note that $\Delta Y_{11} \& \Delta X_{31}$ are unknown so unknown which round $2 S$-Boxes are active
- However, any active round 2 S-Box must use

$$
D D T\left(1000_{b}, 1000_{b}\right)=D D T(8,8)=0
$$

- Hence, no $p>0$ differential trail exists
- Similar for any $\Delta P=(* * * * 000000000000)$
- Similar for any ΔO_{3} based on $\Delta \mathrm{Y}_{31}=(* * * *)$ and $\Delta Y_{32}=\Delta Y_{33}=\Delta Y_{34}=0$

Impossible differential cryptanalysis

- Set of $\left(\Delta P, \Delta O_{3}\right)$:
- $\Delta P=(1000000000000000)$
- $\Delta O_{3} \in \mathcal{O}:=\{(a 000$ b000c000d000) $\}$
- Distinguisher:
- Set of $n P P C C$-tuples with given ΔP
- For each possible guess K_{5} :
- Decrypt last round of C, C^{\prime} of each tuple
- If any $\Delta O_{3} \in \mathcal{O}$ is observed \Rightarrow wrong key guess
- Analysis:
- Correct key guess: $\Delta O_{3} \in \mathcal{O}$ never occurs
- Wrong key guess:

Assume each $\Delta O_{3} \in \mathcal{O}$ occurs with $p \approx n \cdot 2^{-16}$ Observing any $\Delta O_{3} \in \mathcal{O}$ occurs with $p \approx n \cdot 2^{-12}$
$\Rightarrow n=O\left(2^{12}\right)$ needed to filter wrong guesses

- Improve using many $\Delta P \in(e f g h 000000000000)$
$\Rightarrow n=O\left(2^{8}\right)$ needed

Boomerang distinguishers

- Boomerang distinguishers are based on $2^{\text {nd }}$ order differential cryptanalysis
- Involves 4 PC-pairs: $\left(P_{1}, C_{1}\right),\left(P_{2}, C_{2}\right),\left(P_{3}, C_{3}\right),\left(P_{4}, C_{4}\right)$
- These are studied in 2 combinations:
- $\left(P_{1}, C_{1}\right) \&\left(P_{2}, C_{2}\right)$ and $\left(P_{3}, C_{3}\right) \&\left(P_{4}, C_{4}\right)$ with $P_{1} \oplus P_{2}=\Delta P$ and $P_{3} \oplus P_{4}=\Delta P$ for rounds $1 \& 2$
- $\left(P_{1}, C_{1}\right) \&\left(P_{3}, C_{3}\right)$ and $\left(P_{2}, C_{2}\right) \&\left(P_{4}, C_{4}\right)$ with $C_{1} \oplus C_{3}=\Delta C$ and $C_{2} \oplus C_{4}=\Delta C$ for rounds 3 \& 4
- Note how $\Delta \mathrm{C}$ is used orthogonal to ΔP

Boomerang distinguishers

- Find two high probability differential relations
- Rounds 1\&2: $\Delta P \rightarrow \Delta O_{2}$ with probability $p_{1}:=p_{\left(\Delta P, \Delta O_{2}\right)}$
- Rounds 3\&4: $\Delta I_{3} \rightarrow \Delta C$ with probability $p_{2}:=p_{\left(\Delta I_{3}, \Delta C\right)}$
- $\left(X, O_{2}, I_{3}\right.$ describe the same variable, but different names are used to keep the 2 relations apart)
- Two combinations:
- $\left(P_{1}, C_{1}\right) \&\left(P_{2}, C_{2}\right)$ and $\left(P_{3}, C_{3}\right) \&\left(P_{4}, C_{4}\right)$
- with $P_{1} \oplus P_{2}=\Delta P$ and $P_{3} \oplus P_{4}=\Delta P$
- then $X_{1} \oplus X_{2}=\Delta O_{2}$ with probability p_{1}
- and $X_{3} \oplus X_{4}=\Delta O_{2}$ with probability p_{1}
- $\left(P_{1}, C_{1}\right) \&\left(P_{3}, C_{3}\right)$ and $\left(P_{2}, C_{2}\right) \&\left(P_{4}, C_{4}\right)$

- with $C_{1} \oplus C_{3}=\Delta C$ and $C_{2} \oplus C_{4}=\Delta C$ LL_†
- then $X_{1} \oplus X_{3}=\Delta I_{3}$ with probability p_{2}
- and $X_{2} \oplus X_{4}=\Delta I_{3}$ with probability p_{2}

Boomerang distinguishers

- Constructing a boomerang tuple

1. Pick $P_{1} \leftarrow\{0,1\}^{16}$, set $P_{2}:=P_{1} \oplus \Delta P$
2. Ask to encrypt $C_{1}:=\operatorname{Enc}\left(P_{1}\right), C_{2}:=\operatorname{Enc}\left(P_{2}\right)$
3. Set $C_{3}:=C_{1} \oplus \Delta C, C_{4}:=C_{2} \oplus \Delta C$
4. Ask to decrypt $P_{3}:=\operatorname{Dec}\left(C_{3}\right), P_{4}:=\operatorname{Dec}\left(C_{4}\right)$
5. Repeat until $P_{3} \oplus P_{4}=\Delta P$

- Success probability (first approximation):
- $X_{1} \oplus X_{2}=\Delta O_{2}$ with probability p_{1}
- $X_{1} \oplus X_{3}=\Delta I_{3}$ with probability p_{2}
- $X_{2} \oplus X_{4}=\Delta I_{3}$ with probability p_{2}
- $\Rightarrow X_{3} \oplus X_{4}=\Delta O_{2}$ with probability 1
- $\Rightarrow P_{3} \oplus P_{4}=\Delta P$ with probability p_{1}
- Total probability $p_{1}^{2} \cdot p_{2}^{2}$
- Similarly any other choice for $\Delta O_{2} \& \Delta I_{3}$
- These are all disjoint events \Rightarrow probabilities add up:

- $p_{\text {success }}=\sum_{\Delta O_{2}} \sum_{\Delta I_{3}} p_{\left(\Delta P, \Delta O_{2}\right)}^{2} \cdot p_{\left(\Delta I_{3}, \Delta C\right)}^{2}$
- Success probability random oracle:
- $P_{3} \bigoplus P_{4}$ is random
- $\operatorname{Pr}\left[P_{3} \oplus P_{4}=\Delta P\right]=2^{-N}$

Example Boomerang

- Use the same 2-round differential
- For round 1\&2
- For round 3\&4 (but round 4 does not use π_{P})
- 2-round differential:
- $\Delta I_{1}, \Delta I_{3}=(0000000010110000)$
- S-Box S_{13}, S_{33} active:
$\operatorname{DDT}\left(1011_{b}, 0010_{b}\right)=\operatorname{DDT}(11,2)=8$
\Rightarrow probability $1 / 2$
- $\Delta I_{2}, \Delta I_{4}=(0000000000100000)$
- S-Box S_{23}, S_{43} active:

$$
D D T\left(0010_{b}, 0101_{b}\right)=D D T(2,5)=6
$$

\Rightarrow probability $3 / 8$

- $\Delta O_{2}=(0000001000000010)$ for rounds $1 \& 2$ or $\Delta C=(0000000001010000)$ for rounds $3 \& 4$
- Probability: 3/16
- Boomerang prob $\geq(3 / 16)^{4} \approx 0.001236 \approx 1 / 809$
- Measured boomerang prob: ≈ 0.01

- Differential cryptanalysis variants
- Any efficient distinguisher is an attack
- So any easily checkable relation with high probability works
- Truncated differential cryptanalysis
- Use sets of differences instead of a chosen difference
- Larger differential probabilities: add probabilities of several output differences
- Impossible differential cryptanalysis
- Use relations that have proven probability 0
- Distinguisher:
- When relation is observed \Rightarrow random oracle / wrong key guess
- Boomerang distinguishers
- $2^{\text {nd }}$ order differential cryptanalysis: 4 encryptions
- Find tuple satisfying ΔP for 1-2 \& 3-4 and ΔC for 1-3 \& 2-4
- Short \& open-ended trails: lots \& lots of trails
- \Rightarrow very high probability

