Selected Areas in Cryptology Cryptanalysis Week 5

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/2021/

Differential Cryptanalysis

Consider two related encryptions

- 1. $C = Enc_K(P)$ (with internal variables X, Y, ...)
- 2. $C' = Enc_K(P')$ (with internal variables X', Y', ...)
- Define difference $\Delta X = X \bigoplus X'$
- Study relations between input difference ΔP and output difference ΔC :
 - $p_{\Delta P,\Delta C} \coloneqq \Pr[\Delta C \mid \Delta P] = \Pr_{P}[Enc_{K}(P) \oplus Enc_{K}(P \oplus \Delta P) = \Delta C]$
 - Ideal secure situation: for every ΔP every ΔC is equally likely: $p_{\Delta P,\Delta C} \approx 2^{-n}$
- Differences are not affected by:
 - Key-addition:

$$Y = X \bigoplus K, \ Y' = X' \bigoplus K$$

$$\Rightarrow \Delta Y = X \bigoplus K \bigoplus X' \bigoplus K = \Delta X$$

• State permutation: $Y[i] = X[\pi_P(i)], \ Y'[i] = X'[\pi_P(i)]$ $\Rightarrow \Delta Y[i] = \Delta X[\pi_P(i)]$

Key-recovery attack

 $(\Delta P, \Delta O_3) = ([0000\ 1011\ 0000\ 0000], [0000\ 0110\ 0110\ 0000])$ Probability: $p_{diff} \ge \frac{1}{2} \left(\frac{3}{8}\right)^3 = \frac{27}{1024} \approx 0.026$

Build distinguisher for 3 rounds (w/ 4 key additions)

- Over many (P_1, P_2, C_1, C_2) -tuples with $P_1 \bigoplus P_2 = \Delta P$ measure probability of $C_1 \bigoplus C_2 = \Delta O_3$
- Is $\approx \frac{27}{1024} \approx 0.026 \Rightarrow$ is blockcipher oracle with 3 rounds
- Is $\approx 2^{-16} \approx 0.000015 \Rightarrow$ random oracle

Key-recovery attack idea:

- 1. Obtain many PPCC-tuples
- 2. Guess last round key => decrypt last round
 - Note how we only need to guess 8 key bits of K_5
- 3. Do distinguishing check
 - Outputs blockcipher oracle
 ⇒ right key guess, stop
 - Outputs random oracle
 ⇒ wrong key guess, try again with another guess

3

Other differential attacks

Key-recovery: any efficient distinguisher works So any high probability relation that is easily checkable works

Three variant attacks based on differential cryptanalysis

- 1. Truncated differential cryptanalysis
 - Instead of one chosen difference for internal variables allow sets of differences
 - Potentially higher probabilities
- 2. Impossible differential cryptanalysis
 - Use a differential relation with probability 0
 - Have to prove no trail exists
- 3. Boomerang distinguishers
 - 2nd order differential: P_a , P'_a , P_b , P'_b with $\Delta P_a = \Delta P_b$
 - Analyze difference $\Delta X_a \bigoplus \Delta X_b$ between differences ΔX_a and ΔX_b

Truncated differential cryptanalysis

- Main idea: <u>difference sets</u> relations
- E.g.: $\Delta X \in \{3,7,14\} \rightarrow \Delta Y \in \{2,4\}$
- This has probability ¹/₄ since $DDT(3,2) = \dots = DDT(14,4) = 2$ and so $Pr[\Delta Y \in \{2,4\} | \Delta X \in \{3,7,14\}] = \frac{2}{16} + \frac{2}{16} = \frac{4}{16}$
- Or e.g.: $\Delta X \in \{1,2,3,4,5,6,7\} \rightarrow \Delta Y \in \{3,5,6,9,10,12,15\}$ with probability $^{3}\!\!/_{4}$
- Truncated differential cryptanalysis works best with permutation layers that are:
 - 'slow': Round i + 1 S-Box input depends on output *few* Round *i* S-Boxes
 - 'word'-based: F_s -linear where S-Box has s-bits
- So, not for our ToyCipher, except when applied on last round which is equivalent to using multiple differential relations with same ΔP

Impossible differential cryptanalysis

- Idea: find differential relations with probability 0
- Since differential 'trails' probability add up for a relation, one needs to prove no differential trail exists with p>0
- E.g.:
 - $(\Delta P, \Delta O_3) = (1000 \ 0 \dots \dots 0, 1000 \ 0 \dots \dots 0)$
 - Note that $\Delta Y_{11} \& \Delta X_{31}$ are unknown so unknown which round 2 S-Boxes are active
 - However, any active round 2 S-Box must use $DDT(1000_b, 1000_b) = DDT(8,8) = 0$
 - Hence, no p > 0 differential trail exists
- Similar for any $\Delta P = (****0000\ 0000\ 0000)$
- Similar for any ΔO_3 based on $\Delta Y_{31} = (****)$ and $\Delta Y_{32} = \Delta Y_{33} = \Delta Y_{34} = 0$

Impossible differential cryptanalysis

- Set of $(\Delta P, \Delta O_3)$:
 - $\Delta P = (1000\ 0000\ 0000\ 0000)$
 - $\Delta O_3 \in \mathcal{O} \coloneqq \{(a000 \ b000 \ c000 \ d000)\}$
- Distinguisher:
 - Set of *n PPCC*-tuples with given ΔP
 - For each possible guess K_5 :
 - Decrypt last round of C, C' of each tuple
 - If any $\Delta O_3 \in \mathcal{O}$ is observed \Rightarrow wrong key guess
- Analysis:
 - Correct key guess: $\Delta O_3 \in \mathcal{O}$ never occurs
 - Wrong key guess:

Assume each $\Delta O_3 \in \mathcal{O}$ occurs with $p \approx n \cdot 2^{-16}$ Observing any $\Delta O_3 \in \mathcal{O}$ occurs with $p \approx n \cdot 2^{-12}$ $\Rightarrow n = O(2^{12})$ needed to filter wrong guesses

• Improve using many $\Delta P \in (efgh\ 0000\ 0000\ 0000)$ $\Rightarrow n = O(2^8)$ needed

Boomerang distinguishers

- Boomerang distinguishers are based on 2nd order differential cryptanalysis
- Involves 4 PC-pairs: $(P_1, C_1), (P_2, C_2), (P_3, C_3), (P_4, C_4)$
- These are studied in 2 combinations:
 - $(P_1, C_1) \& (P_2, C_2)$ and $(P_3, C_3) \& (P_4, C_4)$ with $P_1 \bigoplus P_2 = \Delta P$ and $P_3 \bigoplus P_4 = \Delta P$ for rounds 1 & 2
 - $(P_1, C_1) \& (P_3, C_3)$ and $(P_2, C_2) \& (P_4, C_4)$ with $C_1 \bigoplus C_3 = \Delta C$ and $C_2 \bigoplus C_4 = \Delta C$ for rounds 3 & 4
 - Note how ΔC is used orthogonal to ΔP

Boomerang distinguishers

- Find two high probability differential relations
 - Rounds 1&2: $\Delta P \rightarrow \Delta O_2$ with probability $p_1 \coloneqq p_{(\Delta P, \Delta O_2)}$
 - Rounds 3&4: $\Delta I_3 \rightarrow \Delta C$ with probability $p_2 \coloneqq p_{(\Delta I_3, \Delta C)}$
 - $(X, O_2, I_3$ describe the same variable, but different names are used to keep the 2 relations apart)
- Two combinations:
 - $(P_1, C_1) \& (P_2, C_2)$ and $(P_3, C_3) \& (P_4, C_4)$
 - with $P_1 \bigoplus P_2 = \Delta P$ and $P_3 \bigoplus P_4 = \Delta P$
 - then $X_1 \bigoplus X_2 = \Delta O_2$ with probability p_1
 - and $X_3 \bigoplus X_4 = \Delta O_2$ with probability p_1
 - $(P_1, C_1) \& (P_3, C_3)$ and $(P_2, C_2) \& (P_4, C_4)$
 - with $C_1 \oplus C_3 = \Delta C$ and $C_2 \oplus C_4 = \Delta C$
 - then $X_1 \bigoplus X_3 = \Delta I_3$ with probability p_2
 - and $X_2 \bigoplus X_4 = \Delta I_3$ with probability p_2

Boomerang distinguishers

- Constructing a boomerang tuple
 - 1. Pick $P_1 \leftarrow \{0,1\}^{16}$, set $P_2 \coloneqq P_1 \bigoplus \Delta P$
 - 2. Ask to encrypt $C_1 \coloneqq Enc(P_1), C_2 \coloneqq Enc(P_2)$
 - 3. Set $C_3 \coloneqq C_1 \bigoplus \Delta C$, $C_4 \coloneqq C_2 \bigoplus \Delta C$
 - 4. Ask to decrypt $P_3 \coloneqq Dec(C_3), P_4 \coloneqq Dec(C_4)$
 - 5. Repeat until $P_3 \bigoplus P_4 = \Delta P$
- Success probability (first approximation):
 - $X_1 \bigoplus X_2 = \Delta O_2$ with probability p_1
 - $X_1 \bigoplus X_3 = \Delta I_3$ with probability p_2
 - $X_2 \bigoplus X_4 = \Delta I_3$ with probability p_2
 - $\Rightarrow X_3 \bigoplus X_4 = \Delta O_2$ with probability 1
 - $\Rightarrow P_3 \bigoplus P_4 = \Delta P$ with probability p_1
 - Total probability $p_1^2 \cdot p_2^2$
- Similarly any other choice for $\Delta O_2 \& \Delta I_3$
 - These are all disjoint events \Rightarrow probabilities add up:
 - $p_{success} = \sum_{\Delta O_2} \sum_{\Delta I_3} p^2_{(\Delta P, \Delta O_2)} \cdot p^2_{(\Delta I_3, \Delta C)}$
- Success probability random oracle:
 - $P_3 \bigoplus P_4$ is random
 - $\Pr[P_3 \bigoplus P_4 = \Delta P] = 2^{-N}$

Example Boomerang

- Use the same 2-round differential
 - For round 1&2
 - For round 3&4 (but round 4 does not use π_P)
- 2-round differential:
 - $\Delta I_1, \Delta I_3 = (0000\ 0000\ 1011\ 0000)$
 - S-Box S_{13} , S_{33} active: $DDT(1011_b, 0010_b) = DDT(11,2) = 8$ \Rightarrow probability 1/2
 - $\Delta I_2, \Delta I_4 = (0000\ 0000\ 0010\ 0000)$
 - S-Box S_{23} , S_{43} active: $DDT(0010_b, 0101_b) = DDT(2,5) = 6$ \Rightarrow probability 3/8
 - $\Delta O_2 = (0000\ 0010\ 0000\ 0010)$ for rounds 1&2 or $\Delta C = (0000\ 0000\ 0101\ 0000)$ for rounds 3&4
 - Probability: 3/16
- Boomerang prob $\geq (3/16)^4 \approx 0.001236 \approx 1/809$
- Measured boomerang prob: ≈ 0.01

Wrap-up

- Differential cryptanalysis variants
 - Any efficient distinguisher is an attack
 - So any easily checkable relation with high probability works
- Truncated differential cryptanalysis
 - Use sets of differences instead of a chosen difference
 - Larger differential probabilities: add probabilities of several output differences
- Impossible differential cryptanalysis
 - Use relations that have proven probability 0
 - Distinguisher:
 - When relation is observed \Rightarrow random oracle / wrong key guess
- Boomerang distinguishers
 - 2nd order differential cryptanalysis: 4 encryptions
 - Find tuple satisfying ΔP for 1-2 & 3-4 and ΔC for 1-3 & 2-4
 - Short & open-ended trails: lots & lots of trails
 - \Rightarrow very high probability

