Selected Areas in Cryptology Cryptanalysis Week 6

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/2021/

Theoretical Cryptology:

Hash function family with the same range \mathcal{H} (e.g. $\{0,1\}^{256}$)

 $\mathcal{F} = \{f \colon \{0,1\}^* \to \mathcal{H}\}$

Security games for any PPT adversary A

• Pre: pre-image resistance:

 $f \leftarrow \mathcal{F}, h \leftarrow \mathcal{H}$, wins if $M \leftarrow A(f, h)$ and f(M) = h

- ePre: everywhere Pre: $h \leftarrow A$, $f \leftarrow \mathcal{F}$ instead
- aPre: always Pre: $f \leftarrow A, h \leftarrow \mathcal{H}$ instead
- Sec: second preimage resistance:

 $f \leftarrow \mathcal{F}, M \leftarrow \{0,1\}^{\leq n}$, win if $M' \leftarrow A(f, M), f(M) = f(M')$ and $M \neq M'$

- eSec: everywhere Sec: $M \leftarrow A, f \leftarrow \mathcal{F}$ instead
- a Sec: always Sec: $f \leftarrow A, M \leftarrow \{0,1\}^{\leq n}$ instead
- Coll: collision resistance

 $f \leftarrow \mathcal{F}$ win if $M, M' \leftarrow A(f)$ and f(M) = f(M') and $M \neq M'$

2

Hash function standards $H: \{0,1\}^* \rightarrow \{0,1\}^n$:

• MD5:

- 128-bits hash function published in 1992
- Widely used till ~~2010
- Broken in 2004: first collision found [WY05], real world attacks in 2009: rogue certificate authority [<u>S</u>SA+09] & 2012: windows update forged certificate [F<u>S</u>15]
- SHA-1:
 - 160-bit hash function published in 1995
 - Widely used even today (TLS1.2, Git, ...)
 - 'Broken' in 2005: first theoretical collision attack [WYY05] practical attack in 2017: first collision [SBKAM17]
- SHA-2 family:
 - 224/256/384/512-bit hash functions published in 2001
- SHA-3 family:
 - 224/256/384/512-bit hash functions published in 2015

Cryptographic hash functions

Fixed *n*-bit hash functions: $f: \{0,1\}^* \rightarrow \{0,1\}^n$

- Pre, ePre, Sec, eSec, Coll security notions ill-defined
- aPre: always pre-image resistance:
 - Given random $h \leftarrow \{0,1\}^n$ find M s/t f(M) = h
- aSec: always second pre-image resistance:
 - Given random $M \leftarrow \{0,1\}^{\leq n}$ find $M' \neq M$ s/t f(M) = f(M')
- Secure if there is no attack faster than a generic attack
 - aPre/aSec brute-force search:

While true

 $M' \leftarrow \{0,1\}^{\leq n}, \, h' = f(M')$

If h' = h then return M'

• Cost $O(2^n)$ Geometric distribution with $p = 2^{-n} \Rightarrow$ mean success cost $1/p = 2^n$

Collision conundrum

How to define collision resistance for fixed hash functions?

Mathematical existential security definitions?:

"There should exist no attack that is feasible/faster than generic attack/PPT that finds a collision with non-negligible probability"

Conundrum:

Pigeon-hole principle \Rightarrow collisions exist

Any collision f(M) = f(M') with $M \neq M'$ leads to a trivial attack:

Algorithm $A_{M,M'}$: simply outputs the pair M, M'

Such algorithms exist and break security definitions

However, we can't actually write down such algorithms unless we first compute a collision... (i.e., its non-uniform)

Foundations of Hashing Dilemma:

No formal definition of collision resistance exists

Informal definition relies on human ignorance:

"There exists no *known* attack that ..."

• Generic collision attack

For
$$i = 1, ...$$

Sample $M_i \leftarrow \{0,1\}^{\leq n}$, $h_i = f(M_i)$
If $\exists j < i: h_j = h_i$ then return (M_j, M_i)

- Cost analysis:
 - let *X* be the number of samples needed before a collision is found
 - $E[X] = \sum_{k=1}^{\infty} k \cdot \Pr[X = k] = \sum_{k=1}^{\infty} k \cdot (\Pr[X > k 1] \Pr[X > k])$ = $\sum_{k=0}^{\infty} (k+1) \cdot \Pr[X > k] - \sum_{k=1}^{\infty} k \cdot \Pr[X > k]$ = $\sum_{k=0}^{\infty} \Pr[X > k]$
 - Week 2: $\Pr[X > k] \approx e^{-k^2 2^{-n-1}}$ ("no collision after k samples")
 - Estimate: $E[X] \approx \sum_{k=0}^{\infty} e^{-k^2 2^{-n-1}} \approx \int_0^{\infty} e^{-k^2 2^{-n-1}} = \sqrt{\pi/2} \cdot 2^{n/2}$ time cost
 - Memory cost: $O(2^{n/2})$

- Memory cost improvements
 - Idea: compute trails and only store begin/end-points like Hellman's time-memory trade-off attack
 - Define search space: $\mathcal{H} \coloneqq \{0,1\}^n$
 - Choose injective embedding $\phi: \mathcal{H} \to \{0,1\}^*$
 - Let $g \coloneqq f \circ \phi \colon \mathcal{H} \to \mathcal{H}$
 - Hence a collision of $H \neq H'$ of g (i.e., g(H) = g'(H)), is a collision $\phi(H) \neq \phi(H')$ of f
 - Choose set of 'distinguished points' $S \subset \mathcal{H}$:
 - Easily distinguishable: e.g. last *l*-bits are zero
 - Compute trails:
 - Choose random starting point P_0
 - Iterate $P_i = g(P_{i-1})$ until a distinguishable point $P_i \in S$ is encountered
 - Then only store begin/end-point & length (P_0, P_i, i)

- Compute trails:
 - Choose random starting point P_0
 - Iterate $g: P_i = g(P_{i-1})$ until a distinguishable point $P_i \in S$ is encountered
 - Then only store begin/end-point & length (P_0, P_i, i)
- What happens when a collision occurs:
 - $P_i \neq P_j$ and $g(P_i) = g(P_j)$
 - Since *g* is deterministic, the two trails merge:
 - $g^k(P_i) = g^k(P_j)$
 - End at the same distinguished point: $g^k(P_i) = g^k(P_j) \in S$
- Resolving a collision:
 - Consider two trails $(P_0, P_k, k), (P'_0, P'_{k'}, k')$ with $P_k = P'_{k'} \in S \pmod{k \ge k'}$
 - Assume collision occurs l iterations before end
 - First synchronize: iterate longest trail k k' iterations
 - Exceptional case: $P_{k-k'} = P'_0 \Rightarrow$ 'robin-hood' failure
 - Iterate for i = k' 1, ..., 0:
 - If $P_{k-i} = P'_{k'-i}$ then return $\phi(P_{k-i-1}), \phi(P'_{k'-i-1})$

Memory cost

- Expected total evaluations before collision occurs: $E[X] = \sqrt{\pi/2} \cdot 2^{n/2}$
- Expected trail length $t \coloneqq |\mathcal{H}|/|S|$ (geometric distribution with $p = |S|/|\mathcal{H}|$)
- We expect $\approx \sqrt{\pi/2} \cdot 2^{n/2}/t$ trails to store
 - If S consists of points with last *l*-bits zero then $t = 2^n/2^{n-l} = 2^l$ and $O(2^{n/2-l})$ memory cost
- Additional costs:
 - Once a collision occurs, need to finish the trail: *t* evaluations (expected trail length is memoryless)
 - To compute the actual collision point:
 2.5 *t* evaluations (analysis see link in lecture notes)
 - Total $O(3.5t) = O(3.5 \cdot 2^l)$ time cost
- Suggested choice l = n/2 20
 - Memory cost \approx 1M trails
 - Expected additional time cost: $O(2^{n/2}/2^{20}) \ll O(2^{n/2})$

- See lecture notes for full collision attack algorithm
- Unlikely problematic case:
 - A trail enters a cycle without ever reaching a distinguished point
 - \Rightarrow collision attack would loop forever
- Solution:
 - Discard trail if **20** *t* iterations is reached
 - Discard case 1: no cycle reached

• Probability
$$\left(1 - \frac{1}{t}\right)^{20 t} \approx \left(e^{-\frac{1}{t}}\right)^{20t} = e^{-20} \approx 2^{-29}$$

- Discard case 2: cycle reached: internal collision
 - Probability: $1 e^{-(20t)^2 2^{-n-1}}$
 - Need $(20t)^2 \ll 2^n$ for this probability to be small enough
- Both negligible losses

Wrap-up

- Cryptographic hash functions
 - Theoretical cryptography: hash function families
 - Practice: fixed hash function standards
- Foundations of Hashing Dilemma:
 - No security definition possible for collision resistance for fixed hash functions
 - Informal definition: "no known attack"
- Generic collision attack:
 - Birthday paradox
 - Use trails and distinguished points to reduce memory cost

