
Selected Areas in Cryptology Mastermath Spring 2025

1. This question is about password recovery (16 points).
Let h : {0, 1}∗ → {0, 1}256 be a fixed 256-bit hash function. A website stores for
each user a username string u and a 256-bit hash a = h(p) of the user’s password
string p.

(a) Let P be the set of all alphabetic (i.e., ‘a...z,A...Z’) passwords of length 11.
Compute the size of the set P . 2 points
Answer. Each of the 11 characters can be one of 52 choices (26 in lower alphabet +
26 in upper alphabet), thus |P| = 5211.

(b) Explain how one can construct an efficient map f : {0, 1}256 → P from the
hash space to the password space. It has to be approximately balanced, i.e.,
preimage sizes have to be approximately equal: | f−1(p1)| ≈ | f−1(p2)| for
all p1, p2 ∈ P . 5 points
Answer. f (x): reinterpret x ∈ {0, 1}256 as x ∈ N with 0 ≤ x < 2256. The key
idea is to use mod52 operation to obtain individual characters while ensuring the
preimage space is balanced.
For full points: give a complete description of the map; map is indeed correct from
{0, 1}256 to P ; map is polytime computable; shown that preimage spaces are bal-
anced.
A full solution is e.g.: reinterpret the input x ∈ {0, 1}256 as an integer and write it
as x = ∑i ci52i with 0 ≤ ci < 52, and reinterpret c0, . . . , c10 as the 11 characters.
Note that for the partial sum (∑0≤i<11 ci52i) = (x mod 5211), thus each partial
sum has ≈ 2256/5211 preimages. Hence, the map is approximately balanced.

(c) Explain how to apply Hellman’s time-memory trade-off attack to h to re-
cover passwords from the given password space P with success probability
about 0.8. 5 points
Answer. For full points: describe the setup of Hellman’s attack: use f ◦ h : P → P
as iteration function, use multiple fi for multiple distinct tables, explain and specify
parameters: e.g. r = m = t = |P|1/3, show that desired success probability holds,
explain the application of offline and online work: offline work: compute r distinct
tables of m chains, each of length t; online work: take a password hash x, for each
table evaluate the chain starting from fi(x) and search each point in the table. On a
match rewalk the chain from the start and try to find the desired password preimage
to x.
Example full solution: Hellman’s attack uses chains using an iteration function
g = f ◦ h : P → P . Hellman’s attack precomputes look-up tables with m chains,
each of length t, starting from randomly selected starting points. It precomputes r
tables like that, each with a different f similar to 1b (e.g. fi(x) = f (x ⊕ i)). Let
N = |P| = 5211, then use Hellman’s parameters m = t = r = N1/3 which
results in a success probability of ≈ 0.8. (For different parameters, apply the rule
that when mt2 = N the success probability of each table is about 0.80mt/N, i.e.,
ensure mt2 = N and r0.80mt/N = 0.8). Now given a password hash x = h(p),
for each table Hellman’s attack evaluates a chain starting from fi(x) of length at
most t − 1 and searches each point in the table. On a match it rewalks the chain
from the start point and tries to find the desired password preimage p to x.

(d) Assume an attacker has computing resources to compute 238 evaluations
of f ◦ h per second. Estimate the offline and online runtime complexity in

1

Selected Areas in Cryptology Mastermath Spring 2025

wall clock time (days, hours, seconds) for this attacker as well as the storage
requirements. 4 points

Answer. Let N = |P| = 5211. Offline complexity: rmt/238 = N/238 ≈ 2.7 · 107

seconds ≈ 316.5 days.
Online complexity: rt + rt = 2N2/3 ≈ 27.92 seconds, or without considering
false positives it is half: 13.96 seconds.
Memory cost: rm = N2/3 ≈ 3.8 · 1012 pairs, not bits or bytes. (Not necessary:
⌈log2(5211)⌉ = 63, so each pair costs 126 bits to store. In total ≈ 8 TB.)

3. This question is about hash-based signatures (16 points).

(a) Explain in your own words how the the Winternitz one-time-signature
scheme works. 6 points
Answer: For full points: describe chains of length 2w; split message into radix w;
use checksum, also split into radix w; explain key generation, signing and verifica-
tion.
Example full solution: WOTS uses a n-bit hash function f and hash chains of
length w: pk = f w−1(sk). A k-bit message is first split into l1 = ⌈logw(2

k)⌉
coefficients m1, . . . , ml1 . To prevent trivial forgeries, it also signs a checksum
c = l1(w− 1)− ∑i mi split into l2 = ⌈logw(l1(w− 1))⌉ coefficients c1, . . . , cl2 .
Each message and checksum coefficient is signed using its own hashchain. Thus in
total it uses l1 + l2 chains. Key generation: select l1 + l2 random secret key elements
ski ∈ {0, 1}n, compute public key elements pki = f w−1(ski). Signing: compute
message and checksum coefficients as above, each coefficient xi has signature ele-
ment σi = f xi(ski). Verification: compute message and checksum coefficients as
above, for each coefficient xi and σi verify that f w−1−xi(σi) =?pki.

(b) Consider Winternitz using a 256-bit hash function and using w = 26, com-
pute the size of the public key, private key and signature. 4 points

Answer: Using k = 256, we compute l1 = ⌈logw(2
k)⌉ = ⌈k log(2)/ log(w)⌉ =

⌈k/ log2(w)⌉ = ⌈256/ log2(2
6)⌉ = ⌈256/6⌉ = 43. And l2 = ⌈logw(l1(w −

1))⌉ = ⌈log2(43 · 63)/ log2(2
6)⌉ = 2. In total we have l1 + l2 = 43 + 2 = 45

coefficients of 256-bits for the secret key, the public key as well as the signature.
Thus each has size 45 · 256 = 11520 bits or 1440 bytes. (Instead of 1440 bytes, the
secret key can also be just 256 bits used to derive all ski.)

(c) A user accidentally uses his Winternitz signature key twice. Explain how
an attacker can use these signatures to create a new signature. 6 points
Answer: For full points: explain procedure, show (plausibel) existence, show check-
sum will be correct, show all signature coefficients can be computed.
Example full solution: Consider two messages m, m′ with signatures σ, σ′. Let
the l1 + l2 coefficients for m, m′, σ, σ′ be denoted as xi, x′i, σi, σ′i , respectively.
The attacker can compute valid signature elements for any x′′i = min(xi, x′i) + ai

with ai ≥ 0 as either f ai(σi) or f ai(σ′i). Thus any such sequence (x′′i)
l1+l2
i=1 that

also satisfies the checksum relation is a valid signature. The two messages are valid
solutions, and any other solution leads to a signature forgery. Show there are plau-
sible cases for more than 2 solutions, e.g.: Let c and c′ be the checksums for m

2

Selected Areas in Cryptology Mastermath Spring 2025

and m′. For wlog c < c′, then using c′′ = c and m′′i = m′i + ai with ai ≥ 0
and ∑ ai = c′ − c > 0 gives many forgeries, as there are many valid choices or
(ai)i. For c = c′ then using c′′ = c and m′′i = min(mi, m′i) + ai with ai ≥ 0
and ∑i ai = (∑i |m′i −mi|)/2 > 0 gives many forgeries, as there are many valid
choices or (ai)i.

5. This question is about differential cryptanalysis (18 points).
Consider the same Toy Cipher from the lectures. Given a key (k1, k2, k3, k4, k5) ∈
{0, 1}5×16 and a plaintext P = P1|| . . . ||P16 ∈ {0, 1}16, it encrypts P with K as
follows:
Let S be the current state, we start with S = P.
Rounds i = 1, 2, 3, 4 perform (1) first key mixing

S← S⊕ ki,

then (2) substitution using a Sbox (defined below)

S← Sbox(S1 . . . S4)|| . . . ||Sbox(S12 . . . S16),

and then (3) applies the permutation πP (Table 1) on the state bits:

S← SπP(1)|| . . . ||SπP(16) = S1||S5||S9|| . . . ||S12||S16.

Directly after Round 4, another key mixing with round key k5 is applied. After
this, the cipher outputs the current state S as the ciphertext C.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
πP(i) 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Table 1: State bit permutation

In contrast to the lecture notes, we use the following SBox:

in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
out 4 2 14 8 10 12 7 1 15 5 0 11 9 3 6 13

Note: most significant bit is left most bit, so 12 represents ‘1100’ in binary.

Table 2: Sbox

This SBox has the following Difference Distribution Table (Table 3).

3

Selected Areas in Cryptology Mastermath Spring 2025

∆out
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 8 0 0 0 4 4 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 4 0 0 4 4 4
3 0 0 0 0 4 4 0 0 0 0 0 4 4 0 0 0
4 0 0 0 0 0 0 8 0 0 4 0 0 0 0 4 0
5 0 0 0 0 0 0 0 0 4 0 0 0 4 4 0 4
6 0 0 0 4 4 0 0 0 4 4 0 0 0 0 0 0
7 0 0 8 4 0 4 0 0 0 0 0 0 0 0 0 0

∆in 8 0 2 0 4 0 0 0 2 0 0 0 2 2 0 2 2
9 0 2 0 0 0 4 0 2 2 2 2 0 0 2 0 0

10 0 4 2 0 2 0 0 0 0 2 0 0 2 2 2 0
11 0 0 2 0 2 0 0 4 2 0 2 2 0 0 0 2
12 0 2 0 0 0 4 0 2 2 2 2 0 0 2 0 0
13 0 2 0 4 0 0 0 2 0 0 0 2 2 0 2 2
14 0 0 2 0 2 0 0 4 2 0 2 2 0 0 0 2
15 0 4 2 0 2 0 0 0 0 2 0 0 2 2 2 0

Table 3: Sbox difference distribution table

(a) Construct a differential trail for this cipher over the first three rounds with
only one active SBox in the second round and compute its estimated proba-
bility. 6 points
Answer: For full points: specify 3-round trail by at least describing which sboxes
are active and which DDT entries they use; compute success probability correctly;
everything must correctly align: first round sbox output difference must match
third round sbox input difference and must also match which sboxes are active in
the second round. The active sboxes in round 1 must match the sbox input differ-
ence in round 2, the active sboxes in round 3 must match the sbox output difference
in round 2.
Example full solution: First consider the high probability DDT entries: prob 1/2:
(1,6), (4,6), (7,2). Note the first 2 options have the fewest bits set: 3 in total, thus
3 active sboxes in round 1 and 3. Let’s work out using (1,6) for the second round,
using (4,6) goes analogously.
Since 1 = 0001 is the input difference of the second round, we’ll exactly have sbox
S14 active in the first round. Since 6 = 0110 is the output difference of the second
round, we’ll exactly have sboxes S32 and S33 active in the third round. We can also
use (1,6) for the third round, which implies that round 1 must use output difference
1, and that round 2 must have active sboxes matching mask 1 = 0001, i.e., only
S24 active.
In summary: S14 active with output difference 1; S24 active with DDT(1,6)
with prob 1/2; S32 and S33 active with DDT(1,6) with prob 1/2. What
remains is to pick S14 DDT entry, e.g. DDT(10,1) with prob 1/4. We
have ∆P = (0000 0000 0000 1010) and third round sbox outputs ∆Y3 =
(0000 0110 0110 0000), with combined success probability p = (1/2)3(1/4) =
1/32.

(b) Explain in your own words how to build a partial key recovery attack on

4

Selected Areas in Cryptology Mastermath Spring 2025

k5 from your differential trail and how many plaintext/ciphertext pairs it
needs. 6 points
Answer: For full points: use correct round 4 sboxes (don’t forget to apply πP af-
ter 3rd round sboxes), describe procedure (sample pairs, invert round 4, count, use
highest count as key guess), show how many pairs are sufficient with good/bad key
analysis.
Example full solution: We have third round sbox outputs ∆Y3 =
(0000 0110 0110 0000), and thus third round output difference ∆O3 =
πP(∆Y3) = (0000 0110 0110 0000). This means that exactly S42 and S43 will be
active in round 4.
An attacker can query say N pairs of plaintext-ciphertext with the given input dif-
ference ∆P. For each possible guess for the 8 bits of K5 corresponding to the active
sboxes S42 and S43 (i.e., bits 5-12), he can partially invert the K5 key addition
and invert S42 and S43 for every ciphertext. Then he counts how often the input
difference for S42 and S43 matches with ∆O3 for each key guess. The correct key
guess should have a count of about Np, while bad key guesses should have a count
of about N2−8. We want the correct key guess count to be clearly higher than all
bad key guess counts with high probability, so we recover the correct key guess by
looking at the highest count. This holds if Np > N2−8 + 4

√
N2−8, which is true

for say N = 6/p = 6/(1/32) = 192 samples.

(c) Consider the boomerang with input plaintext difference

∆P = (0000 0000 0000 0100)

and output ciphertext difference

∆C = (0000 0000 0010 0000),

then a quartet (P(1), P(2), P(3), P(4)) satisfies this boomerang if

P(1) ⊕ P(2) = ∆P, P(3) ⊕ P(4) = ∆P, and

C(1) ⊕ C(3) = ∆C, C(2) ⊕ C(4) = ∆C.

Compute the total success probability of finding such quartets over all
round 1 & 2 differentials with the given ∆P and all round 3 & 4 differen-
tials with the given ∆C, i.e., compute

p =

 ∑
(∆P,∆O1,∆O2)

Pr[(∆P, ∆O1, ∆O2)]
2

 ·
 ∑

(∆O2,∆O3,∆C)
Pr[(∆O2, ∆O3, ∆C)]2


6 points

(Hint: use the fact that in round 2 each Sbox has either input differ-
ence 0 or 1 (0001), so every active round 2 Sbox contributes a term

∑
(∆In=4,∆Out∈{0,...,15})

Pr[(∆In, ∆Out)]2 = 2× (4/16)2 + 1× (8/16)2.

5

Selected Areas in Cryptology Mastermath Spring 2025

Likewise, in round 3 each active Sbox has output difference 2 (0010).)
Answer: First, each trail ∆P, ∆O1, ∆O2 contributes the probability corresponding
that both pairs (P(1), P(2)) and (P(3), P(4)) satisfy it: Pr[(∆P, ∆O1, ∆O2)]

2.
If we just look at the (∆O1, ∆O2) part, then as hinted, each active sbox in round
2 has input difference 1. Note that for each active sbox in round 2, we need both
pairs (P(1), P(2)) and (P(3), P(4)) to have the identical round 2 output difference
∆O2 part, which has probability A = 2× (4/16)2 + 1× (8/16)2 = 3/8. If k
sboxes are active in round 2 then the probability that ∆O2 is the same for both pairs
is (3/8)k.
Now we can look at the first round: only S14 is active with input difference 4 =
0100. Its DDT entries are: (4, 6) = 8, (4, 9) = (4, 14) = 4. Since 6 and 9 imply
2 active sboxes in round 2 and 14 imply 3 active sboxes, the round 1-2 boomerang
probability has 3 terms corresponding to these DDT entries and results in:

∑
(∆P,∆O1,∆O2)

Pr[(∆P, ∆O1, ∆O2)]
2

= ∑
∆O1

(
Pr[(∆P, ∆O1)]

2 · ∑
∆O2

Pr[∆O2|∆O1]
2

)

=

(
8
16

)2

A2 +

(
4

16

)2

A2 +

(
4

16

)2

A3 =
387

8192
.

The analysis of round 3 goes analogously. Note that for each active sbox in round 3,
we need both pairs (C(1), C(3)) and (C(2), C(4)) to have the identical round 3 input
difference ∆I3 part, which has probability B = 4 × (2/16)2 + 1 × (8/16)2 =
5/16.
Now we can look at the fourth round: only S44 is active with output difference 2 =
0010. Its DDT entries are: (7, 2) = 8, (10, 2) = (11, 2) = (14, 2) = (15, 2) = 2.
Note that 10 implies 2 active sboxes in round 3, while 7, 11 and 14 imply 3 active
sboxes and 15 implies 4 active sboxes. Thus the round 3-4 boomerang probability
has 5 terms corresponding to these DDT entries and results in:

∑
(∆O2,∆O3,∆C)

Pr[(∆O2, ∆O3, ∆C)]2

= ∑
∆O3

(
Pr[(∆O3, ∆C)]2 · ∑

∆O2

Pr[∆O2|∆O3]
2

)

=

(
8
16

)2

B3 +

(
2
16

)2

B2 + 2×
(

2
16

)2

B3 +

(
2

16

)2

B4 =
43025

4194304
.

The boomerang success probability is thus 387
8192 ·

43025
4194304 ≈ 0.0004846.

6

