Selected Areas in Cryptology Cryptanalysis Week 1

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/

About myself

Permanent Researcher
 Cryptology Group
 Centrum Wiskunde & Informatica
 The National Research Center for Mathematics & Computer Science

- Research Interests:
 - Cryptanalysis in general:
 - Hash functions: e.g. breaking MD5 and SHA-1
 - PQC: Lattice, multivariate, codes
- Post-quantum outreach
 - Co-author "The PQC Migration Handbook"
 - Co-organizer of the "PQC Migration Symposium Series"

https://tinyurl.com/PQCHandbook2

https://post-quantum.nl

My Part of Selected Areas in Cryptology

- Details of lectures & exercises:
 - https://homepages.cwi.nl/~stevens/mastermath/

- Contact:
 - marc@marc-stevens.nl subject "[MM]"
 - MasterMath ELO system

- Exercises are optional, but very recommended
- Some Challenges
 - Cryptanalysis in practice for fun
 - But may need some programming
 - Lots of comparable challenges on https://cryptohack.org/

This lecture

- Recap
 - The field of cryptology
 - Preliminaries
 - The RSA encryption scheme & Shor
 - Post-quantum cryptology

- Symmetric Encryption
 - One-Time Pad
 - Block Ciphers
 - Hellman's Time-Memory-Tradeoff Attack

Cryptology

Cryptology Building schemes & Testing security

Cryptography:

• Provably-secure designs: convert attacker against construction to attacker against problem assumption: problem is intractable

- Ad-hoc designs:
 Mainly for symmetric primitives
 Very fast specialized designs
 assumption: design is secure
- Real-world implementations

Cryptanalysis:

- Study proofs:
 Flaw in proofs?
 Flaw in security model?
- Study assumptions:
 Asymptotic cost => insecure?
 Concrete cost => which key sizes?
- Study structural weaknesses in design
 Check many attack techniques
 E.g. Linear/Differential cryptanalysis
 ...
- Study real-world systems: side-channels leaking (key) information

Cryptanalysis

- Cryptanalysis studies the security of cryptographic constructions
 - Just 'secure' is ambiguous: means one or more *security properties*:
 - Secrecy: no private information is learned by others
 - Integrity: information has not been modified by others
 - Authenticity/Non-repudiation: origin cannot be disputed
 - 3 main models
 - *Information-theoretical security* (or perfect security): Attacker has infinite computing resources
 - Asymptotic computational security:
 Attacker is limited to polynomial-sized computing resources
 against hard problems requiring super-polynomial computing resources
 - Real world security / concrete security:
 Attacker is limited to real-world computing resources
 against hard problems requiring beyond feasible computing resources

Generic attacks

- Generic attacks
 - Works against every construction of the same type
 - Do not rely on internal structure
 - Security level upper-bounded by generic attacks
- Primitive called secure if the best attacks are generic attacks
 - Just means there is no structural weakness
 - But still need sufficiently high security-level in practice:
 No RSA-512!

Security-level

- What resources are needed for an attack to break a security property?
- Expressed in bits: 128-bit security = an attack requiring 2^{128} 'operations'
- 128-bit security sounds astronomically large, but better to be safe
 - Once 56-bit security was enough: DES by IBM 1975
 Practical brute-force attacks in 1998: EFF's DES cracker
 - 80-bit security was long thought to be sufficient: SHA-1 & 1024-bit RSA
 - But nowadays: Bitcoin network performs 2⁹² hash operations per year

Some preliminaries

Algorithmic cost

Time complexity

- = runtime
- = number of unit operations (unit: e.g. bit operation, cpu instruction, <u>function call</u>)

Memory complexity

= amount of unit storage (unit: e.g. bit, byte, block)

Asymptotic complexity functions

Parameter n (bitlength of the input / security parameter)

We write f(n) = O(g(n)) if $|f(n)| \le M g(n)$ for all $n \ge n_0$ (for some M, n_0) (also the called <u>order of the function</u>, only fastest growing term is relevant)

$$poly(n) \coloneqq \{f(n) \colon \mathbb{R} \to \mathbb{R} \mid f(n) = O(n^d), d \in \mathbb{N}\}$$

(set of all functions that are asymptotically bounded by some polynomial) $f, g \in poly(n) \Rightarrow f + g, f \cdot g, f \circ g \in poly(n)$

Probabilistic & Polynomial Time

Probabilistic algorithms A(x)

Uses random coins, non-deterministic
For fixed input, output has probability distribution

PPT := Probabilistic Polynomial-Time

Notation: $x \stackrel{r}{\leftarrow} X$ (uniformly) randomly sample from X $\Pr[event] = \text{probability event happens}$ E[X] = the expected value for random variable X

Cryptographic scheme must asymptotically be

efficient: scheme is PPT

secure: attacks should not be PPT

then for any desired gap factor G (e.g. $G = 2^{128}$)

there exists a n_0 such that for all security parameters $n \ge n_0$:

runtime of attack $\geq G \times$ runtime of scheme

Attack success probability

Success probability for attacks A

= probability algorithm outputs correct solution $y \in Sol(x)$

$$p_{succ}^A(x) \coloneqq \Pr[y \leftarrow A(x) \land y \in Sol(x)]$$

Negligible success probability:

$$negl(n) := \{ f : \mathbb{R} \to \mathbb{R} \mid \forall d \in \mathbb{N} : \lim_{n \to \infty} f(n) \cdot n^d = 0 \}$$

negligible functions vanish to 0, even when multiplied by a polynomial function

E.g.: key guessing attack

- Simply try R random secret keys of n bits
- Finds correct key with probability $R \cdot 2^{-n}$
- Should be negligible
 - In concrete sense: so unlikely that one can disregard this attack
 - As in asymptotic sense: $R \cdot 2^{-n} \in negl(n)$ if $R \in poly(n)$

RSA & Shor

About Alice & Bob

- Alice and Bob want to communicate securely
- Using an insecure channel with a possible adversary

- Securely meaning:
 - Privacy: the adversary cannot learn what messages Alice and Bob are sending
 - Integrity: the adversary cannot change messages between Alice and Bob
 - Authenticity: Bob can verify that it was Alice who send a message

Encryption

- Encryption scheme:
 - Encryption algorithm E uses key K_A
 - Decryption algorithm D uses key K_B
 - For invalid/modified ciphertexts C' decryption D returns \bot
- Symmetric/secret-key encryption:
 - Shared secret key: $K_A = K_B$
- Asymmetric/public-key encryption:
 - K_A Bob's public key so anyone can encrypt messages to Bob
 - *K_B* Bob's private key so only Bob can decrypt messages

RSA Encryption Scheme

- RSA Key generation:
 - Choose p, q large primes at random, let $n = p \cdot q$
 - Then $|\mathbb{Z}_n^*| = \phi(n) = (p-1)(q-1)$
 - Choose e, d such that: $e \cdot d \equiv 1 \mod \phi(n)$
 - Private key: (*n*, *d*)
 - Public key: (*n*, *e*)
- Encryption:
 - $C \leftarrow M^e \mod n$
- Decryption:
 - $M \leftarrow C^d \mod n$
 - Note $C^d = (M^e)^d \equiv M^{e \cdot d} \equiv M^{e \cdot d \mod \phi(n)} \equiv M^1 \mod n$

RSA Security

- Security depends on the following problems to be hard:
 - 1. Computing M given n, C
 - 2. Computing d given n, e
 - 3. Computing $\phi(n)$ given n
 - 4. Computing p, q given n (i.e. factoring)
- The RSA assumption assumes problem 1 is hard: No PPT algorithm solving it exists
- Problems 2 & 3 are equivalent to the Factoring problem 4
- Best classical algorithm breaking Factoring:
 - Number Field Sieve (NFS) with cost $O(e^{c \cdot (\log n)^{\frac{1}{3}} \cdot (\log \log n)^{\frac{2}{3}}})$
 - Current record: RSA-250 digits ≈ 829 bits
- Best quantum algorithm breaking Factoring:
 - Shor's algorithm is quantum polynomial-time

• Quantum Fourier Transform is used to find the secret period $\phi(n)$

Post-quantum cryptography

Important Quantum attacks

- Shor's algorithm / hidden order finding algorithm
 - Quantum polynomial-time
 - Breaks RSA
 - Breaks Discrete Log: ECC, DSA
- Grover's algorithm / unstructured search algorithm
 - Quantum exponential time \sqrt{N} for search domain size N
 - Quadratic speed-up over classical search in theory
 - Search parallelizes embarrassingly by splitting search domain
 - But quantum search using K quantum computers costs $K\sqrt{N/K}=\sqrt{N\,K}$ in total

• And a few others: Simon's algorithm, Kuperberg's algorithm

Impact Future Quantum Computer

- Impact
 - Symmetric cryptography mostly safe
 - 'Small' blockciphers need to be avoided due to Grover's algorithm
 - Still some debate whether 128-bit keyspace is sufficiently large
 - Some modes need to be avoided due to Simon's algorithm
 - Classical attacks may be transformed in Quantum attacks, but typically at most a quadratic speed-up
 - RSA & ECC will be insecure once a sufficiently large quantum computer exists
 - Latest estimate BSI: "likely to be available within 16 years"
 - New post-quantum cryptography needed

Impact Future Quantum Computer

- Post-quantum public-key frameworks & assumed hard problems
 - Lattices: SVP, LWE, SIS, ...
 - Codes: syndrome-decoding, low-weight codeword finding, ...
 - Hash functions: preimage finding, second preimage finding, collision finding
 - Isogenies: isogeny (path) finding
 - Multi-variate: solving multi-variate systems
 - MPC-in-the-head: depends on the choice "inside": can be symmetric crypto
- New/upcoming PQC Standards
 - NIST: ML-KEM: "Kyber", primary standard for encryption, lattice-based
 - NIST: ML-DSA: "Dilithium", primary standard for signatures, lattice-based
 - NIST: FN-DSA: "Falcon", standard for signatures, lattice-based
 - NIST: SLH-DSA: "SPHINCS+", standard for signatures, hash-based
 - EU/ISO: Frodo: scheme for encryption, lattice-based
 - EU/ISO: McEliece: scheme for encryption, code-based

Symmetric Encryption

One-Time Pad

Symmetric Encryption Schemes

Send message secretly from sender to receiver Using pre-shared secret key K (unknown to adversary)

Sender encrypts plaintext P to ciphertext CKeyspace \mathcal{K} , plaintext space \mathcal{P} , ciphertext space \mathcal{C} Function $E_K \colon \mathcal{P} \to \mathcal{C}$ for $K \in \mathcal{K}$ $C = E_K(P)$

Receiver uses corresponding decryption to obtain plaintext P

$$P = D_K(C)$$
$$D_K: C \to \mathcal{P}$$

Goals:

```
Correctness: D_K(E_K(P)) = P for all K, P
Secrecy: without key K
"no information is learned from C about message P" (formalization comes later)
```

One-Time Pad

One-Time Pad (OTP)

For any $l \in \mathbb{N}$:

$$\mathcal{K}_{l} = \mathcal{P}_{l} = \mathcal{C}_{l} = \{0,1\}^{l} \approx \mathbb{F}_{2}^{l}$$

$$E_{K}(P) \coloneqq P \oplus K$$

$$D_{K}(C) \coloneqq C \oplus K$$

 $0 \oplus 0 = 1 \oplus 1 = 0$ $1 \oplus 0 = 0 \oplus 1 = 1$ Addition in \mathbb{F}_2

Requires *K* uniformly random selected Key, and Plain- and ciphertext have equal length

Only encryption method providing perfect secrecy

no statistical correlation between cipher- and plaintext if key is unknown

⇒ no information can be learned even with ∞ computing power

$$\Pr_{K}[C = P \oplus K] = \Pr_{K}[K = P \oplus C] = 2^{-l}$$

Given C, every plaintext is equally likely

Given P, every ciphertext is equally likely

OTP Issues

Perfect secrecy, but broken if

- 1. Key *K* is not kept secret
- 2. Key K was not selected uniformly at random from \mathcal{K}_l
- 3. Key K is reused for two messages attacker learns: $C_1 \oplus C_2 = P_1 \oplus P_2$

Also malleable!

- 1. Sender encrypts P = "I owe you 10\$"
- 2. Attacker intercepts $C = K \oplus P$

Let
$$D = "I$$
 owe you $10\$" \oplus "I$ owe you $5k\$"$
= "_____5k_"

Attacker doesn't even need to know the actual text, only the position and value of the change

- 3. Attacker sends $C' = C \oplus D$ to receiver
- 4. Receiver obtains C' and decrypts:

$$P' = K \oplus C' = P \oplus D =$$
"I owe you 5k\$"

Symmetric Encryption

Block Ciphers

Block Cipher

- Block ciphers work differently from the one-time pad
 - Only encrypts fixed-size blocks as a whole (not per bit)
 - Let security parameter *n*
 - Key space $\mathcal{K}(n)$ and block space $\mathcal{M}(n)$ (e.g., $\{0,1\}^n$)
 - $Enc: \mathcal{K}(n) \times \mathcal{M}(n) \to \mathcal{M}(n)$ such that
 - $Enc_K: \mathcal{M}(n) \to \mathcal{M}(n)$ is a permutation for all $K \in \mathcal{K}(n)$
 - $Dec_K := Enc_K^{-1}$ is efficiently computable
 - Note: n is typically omitted: \mathcal{K} , \mathcal{M}

Generic attacks

Generic key recovery attack model

```
List of plaintext + ciphertext pairs: (P_1, C_1), (P_2, C_2), \dots
How are these pairs chosen?
Known plaintext attack: random plaintexts
Chosen plaintext attack: attacker may choose P_i
...
```

Generic key recovery attack

- 1. Query l pairs $(P_1, C_1), ..., (P_l, C_l)$
- 2. Walk over search space $K \in \mathcal{K}$
- 3. If $C_i = Enc_K(P_i)$ for i = 1, ..., l then return K
- 4. Otherwise, if no such K, return \bot

Complexity: $O(|\mathcal{K}|)$

Note: Even if there are l pairs to check in total The first is very likely to fail and the key candidate dismissed, so most times we only have to check 1 pair

Generic 1-out-of-*L* key recovery attack

Assume L users with different keys K_1, \dots, K_L Attacker succeeds if it finds 1 key

Generic attack

- 1. Chooses l plaintexts P_1, \dots, P_l
- 2. Queries encryptions for each user:

$$C_{i,j} = Enc_{K_i}(P_i)$$
 for $i = 1, ..., l$ and $j = 1, ..., L$

- 3. Walks over search space $K \in \mathcal{K}$
- 4. Compute $\tilde{C}_1 = Enc_K(P_1)$
- 5. For j such that $C_{1,j} = \tilde{C}_1$ do
- 6. If $C_{i,j} = Enc_K(P_i)$ for i = 2, ..., l then return K
- 7. Otherwise, return ⊥

Every key guess has success probability $L/|\mathcal{K}|$ Complexity: $O(|\mathcal{K}|/L)$ Speed up by factor L!

Attacks with precomputation

There are attacks that cost $O(|\mathcal{K}|)$ or more in total, but < O(|K|) per problem instance Two phases:

An offline part that performs at least $O(|\mathcal{K}|)$ operations An online part that attacks each of the L keys independently

An extreme example, codebook dictionary:

Offline: 1. Choose block *B*

2. Create hash table with $(Enc_K(B), K)$ entries

Time: $O(|\mathcal{K}|)$, Memory: $O(|\mathcal{K}|)$

Online: 1. For each secret key K_i to be attacked

2. Query $C = Enc_{K_i}(B)$

3. Find table entry (C, K_i)

Time: O(1), Memory: $O(|\mathcal{K}|)$

Non-uniform attacks:

Make pre-computed data part of online attack algorithm Online algorithm now only has total cost $< O(|\mathcal{K}|)$

An attack that uses more time, but less memory Idea:

Use fixed block B and map $\phi: \mathcal{C} \to \mathcal{K}$

Iterative function $F: \mathcal{K} \to \mathcal{K}$ 'walks' through key space

$$F(K_i) = K_{i+1}$$
, where $C = Enc_{K_i}(B)$, $K_{i+1} = \phi(C)$

Offline: Store many long walks covering key space

Only store begin and endpoints $(SP_j, EP_j = F^t(SP_j))$

Online: Query $C_0 = Enc_K(B)$, compute $K_0 = \phi(C_0)$ (Hence by definition: $F(K) = K_0$) Compute walk from K_0 until say endpoint EP_1 is found Find secret K by walking from SP_1

Setup Details:

```
F\colon \mathcal{K} \to \mathcal{K}, where F = \phi \circ E
E\colon \mathcal{K} \to \mathcal{M}, E(K) \coloneqq Enc_K(B)
\phi\colon \mathcal{M} \to \mathcal{K} needs to be surjective

If |\mathcal{M}| \geq |\mathcal{K}| then easy, otherwise impossible

When |\mathcal{M}| < |\mathcal{K}|
Use multiple blocks B_1, B_2, \dots, B_l such that |\mathcal{M}|^l \geq |\mathcal{K}|
E\colon \mathcal{K} \to \mathcal{M}^l, E(K) \coloneqq \left(Enc_K(B_1), \dots, Enc_K(B_l)\right)
And surjective map \phi\colon \mathcal{M}^l \to \mathcal{K}
```

Simplified version

Attack parameters: Number of walks: *m*

Length of each walk: t

Offline attack:

- 1. Choose SP_1, \dots, SP_m uniformly at random from \mathcal{K}
- 2. Compute $EP_i = F^t(SP_i)$ for i = 1, ..., m
- 3. Store (EP_i, SP_i) in hash table / sorted table

Online attack:

- 1. Given $C_0 = Enc_K(B)$ for some unknown key K
- 2. Let $P_0 = \phi(C_0)$
- 3. For i = 0, ..., t 1
- 4. If $P_i = EP_j$ for some j then
- 5. Let $\widetilde{K} := F^{t-i-1}(SP_j)$
- 6. If $Enc_{\widetilde{K}}(B) = C_0$ then return \widetilde{K}
- 7. Compute $P_{i+1} := F(P_i)$
- 8. Otherwise, return ⊥

Simplified version analysis

Ideally, use $m \cdot t = |\mathcal{K}|$ and hope to cover entire space

However, F behaves as a random function

Ideal situation

Thus many collisions F(x) = F(y) exist and merges walks

Substantial part of space is never reached Creates false alarms:

K does not actually lie on walk from SP_i , but on walk from another SP with same EP_i

Expected situation for random functions

Simplified version analysis

Collisions start to occur when $m \cdot t \approx \sqrt{|\mathcal{K}|}$

Due to the birthday paradox (covered later)

The expected number of collisions grows roughly quadratic in $m \cdot t$

False alarms analysis:

Walk from P_0 has t points

There are at most $m \cdot t$ points covered by the table

Each pair has probability $1/|\mathcal{K}|$ to collide and cause false alarm (i.e. without P_0 actually being on the walk)

Expected number of false alarms: $E[Z] \leq m \cdot t^2/|\mathcal{K}|$

Expected costs of false alarm: $t \cdot E[Z] \leq m \cdot t^3/|\mathcal{K}|$

Success only if target K is covered (part of a walk from a SP_i)

Hellman: when $m \cdot t^2 = |\mathcal{K}|$, success probability is $\approx 0.80mt/|\mathcal{K}|$

Improved version

Use r independent tables with different ϕ_1, \dots, ϕ_r

Even if the same key is covered in different tables then different ϕ_i imply different walks instead of merging walks

Hellman proposed
$$m=t=r=\sqrt[3]{|\mathcal{K}|}$$

Individual table: success probability $\approx 0.80 / \sqrt[3]{|\mathcal{K}|}$

Total success probability ≈ 0.8

Offline time complexity: $O(mtr) = O(|\mathcal{K}|)$

Offline memory complexity: $O(rm) = O(|\mathcal{K}|^{2/3})$

Online complexity:

$$O(rt + rmt^3/|\mathcal{K}|) = O(|\mathcal{K}|^{2/3} + |\mathcal{K}|^{2/3}) = O(|\mathcal{K}|^{2/3})$$