
Selected Areas in Cryptology
Cryptanalysis

Week 1

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/

mailto:stevens@cwi.nl

About myself
• Permanent Researcher

Cryptology Group
Centrum Wiskunde & Informatica
The National Research Center for Mathematics & Computer Science

• Research Interests:

• Cryptanalysis in general:

• Hash functions: e.g. breaking MD5 and SHA-1

• PQC: Lattice, multivariate, codes

• Post-quantum outreach

• Co-author “The PQC Migration Handbook” https://tinyurl.com/PQCHandbook2

• Co-organizer of the “PQC Migration Symposium Series” https://post-quantum.nl

My Part of Selected Areas in Cryptology
• Details of lectures & exercises:

• https://homepages.cwi.nl/~stevens/mastermath/

• Contact:
• marc@marc-stevens.nl subject “[MM]”

• MasterMath ELO system

• Exercises are optional, but very recommended

• Some Challenges
• Cryptanalysis in practice for fun

• But may need some programming

• Lots of comparable challenges on https://cryptohack.org/

https://homepages.cwi.nl/~stevens/mastermath/
mailto:marc@marc-stevens.nl

This lecture
• Recap

• The field of cryptology

• Preliminaries

• The RSA encryption scheme & Shor

• Post-quantum cryptology

• Symmetric Encryption
• One-Time Pad

• Block Ciphers

• Hellman’s Time-Memory-Tradeoff Attack

Cryptology

Cryptology
Building schemes & Testing security

Cryptography:

• Provably-secure designs:
convert attacker against construction
to attacker against problem
assumption: problem is intractable

• Ad-hoc designs:
Mainly for symmetric primitives
Very fast specialized designs
assumption: design is secure

• Real-world implementations

Cryptanalysis:

• Study proofs:
Flaw in proofs?
Flaw in security model?

• Study assumptions:
Asymptotic cost => insecure?
Concrete cost => which key sizes?

• Study structural weaknesses in design
Check many attack techniques
E.g. Linear/Differential cryptanalysis
…

• Study real-world systems:
side-channels leaking (key) information

Cryptanalysis
• Cryptanalysis studies the security of cryptographic constructions

• Just ‘secure’ is ambiguous: means one or more security properties:
• Secrecy: no private information is learned by others

• Integrity: information has not been modified by others

• Authenticity/Non-repudiation: origin cannot be disputed

• 3 main models
• Information-theoretical security (or perfect security):

Attacker has infinite computing resources

• Asymptotic computational security:
Attacker is limited to polynomial-sized computing resources
against hard problems requiring super-polynomial computing resources

• Real world security / concrete security:
Attacker is limited to real-world computing resources
against hard problems requiring beyond feasible computing resources

Generic attacks
• Generic attacks

• Works against every construction of the same type

• Do not rely on internal structure

• Security level upper-bounded by generic attacks

• Primitive called secure if the best attacks are generic attacks

• Just means there is no structural weakness

• But still need sufficiently high security-level in practice:
No RSA-512 !

Security-level
• What resources are needed for an attack to break a security property?

• Expressed in bits: 128-bit security = an attack requiring 2128 ‘operations’

• 128-bit security sounds astronomically large, but better to be safe

• Once 56-bit security was enough: DES by IBM 1975
Practical brute-force attacks in 1998: EFF’s DES cracker

• 80-bit security was long thought to be sufficient: SHA-1 & 1024-bit RSA

• But nowadays: Bitcoin network performs 292 hash operations per year

Some preliminaries

Algorithmic cost
Time complexity

= runtime

= number of unit operations
(unit: e.g. bit operation, cpu instruction, function call)

Memory complexity
= amount of unit storage (unit: e.g. bit, byte, block)

Asymptotic complexity functions
Parameter 𝑛 (bitlength of the input / security parameter)

We write 𝑓 𝑛 = 𝑂(𝑔 𝑛) if 𝑓 𝑛 ≤ 𝑀 𝑔(𝑛) for all 𝑛 ≥ 𝑛0 (for some 𝑀, 𝑛0)

(also the called order of the function, only fastest growing term is relevant)

𝑝𝑜𝑙𝑦 𝑛 ≔ 𝑓 𝑛 :ℝ → ℝ | 𝑓 𝑛 = 𝑂 𝑛𝑑 , 𝑑 ∈ ℕ

(set of all functions that are asymptotically bounded by some polynomial)

𝑓, 𝑔 ∈ 𝑝𝑜𝑙𝑦 𝑛 ⇒ 𝑓 + 𝑔, 𝑓 ⋅ 𝑔, 𝑓 ∘ 𝑔 ∈ 𝑝𝑜𝑙𝑦(𝑛)

Probabilistic & Polynomial Time
Probabilistic algorithms 𝐴 𝑥

Uses random coins, non-deterministic
For fixed input, output has probability distribution
PPT := Probabilistic Polynomial-Time

Notation: 𝑥՚
𝑟
𝒳 (uniformly) randomly sample from 𝒳

Pr[𝑒𝑣𝑒𝑛𝑡] = probability event happens
𝐸[𝑋] = the expected value for random variable 𝑋

Cryptographic scheme must asymptotically be

efficient: scheme is PPT

secure: attacks should not be PPT

then for any desired gap factor 𝐺 (e.g. G = 2128)

there exists a 𝑛0 such that for all security parameters 𝑛 ≥ 𝑛0:

runtime of attack ≥ 𝐺 × runtime of scheme

Attack success probability
Success probability for attacks 𝐴

= probability algorithm outputs correct solution 𝑦 ∈ 𝑆𝑜𝑙(𝑥)

𝑝𝑠𝑢𝑐𝑐
𝐴 𝑥 ≔ Pr[𝑦 ՚ 𝐴 𝑥 ∧ 𝑦 ∈ 𝑆𝑜𝑙(𝑥)]

Negligible success probability:

𝑛𝑒𝑔𝑙 𝑛 ≔ 𝑓:ℝ → ℝ ∀𝑑 ∈ ℕ ∶ lim
𝑛→∞

𝑓 𝑛 ⋅ 𝑛𝑑= 0}

negligible functions vanish to 0, even when multiplied by a polynomial function

E.g.: key guessing attack

• Simply try 𝑅 random secret keys of 𝑛 bits

• Finds correct key with probability 𝑅 ⋅ 2−𝑛

• Should be negligible

• In concrete sense: so unlikely that one can disregard this attack

• As in asymptotic sense: 𝑅 ⋅ 2−𝑛 ∈ 𝑛𝑒𝑔𝑙(𝑛) if 𝑅 ∈ 𝑝𝑜𝑙𝑦(𝑛)

RSA & Shor

About Alice & Bob
• Alice and Bob want to communicate securely

• Using an insecure channel with a possible adversary

• Securely meaning:

• Privacy: the adversary cannot learn what messages Alice and Bob are sending

• Integrity: the adversary cannot change messages between Alice and Bob

• Authenticity: Bob can verify that it was Alice who send a message

Alice Bob

Adversary

Encryption

• Encryption scheme:
• Encryption algorithm E uses key 𝐾𝐴
• Decryption algorithm D uses key 𝐾𝐵
• For invalid/modified ciphertexts 𝐶′ decryption D returns ⊥

• Symmetric/secret-key encryption:
• Shared secret key: 𝐾𝐴 = 𝐾𝐵

• Asymmetric/public-key encryption:
• 𝐾𝐴 Bob’s public key so anyone can encrypt messages to Bob

• 𝐾𝐵 Bob’s private key so only Bob can decrypt messages

Adversary

𝑀

Alice
𝐾𝐴

E 𝐶

Bob
𝐾𝐵

𝐶 D 𝑀/⊥

RSA Encryption Scheme
• RSA Key generation:

• Choose 𝑝, 𝑞 large primes at random, let 𝑛 = 𝑝 ⋅ 𝑞

• Then ℤ𝑛
∗ = 𝜙 𝑛 = 𝑝 − 1 (𝑞 − 1)

• Choose 𝑒, 𝑑 such that: 𝑒 ⋅ 𝑑 ≡ 1 mod 𝜙(𝑛)

• Private key: (𝑛, 𝑑)

• Public key: (𝑛, 𝑒)

• Encryption:
• 𝐶 ՚ 𝑀𝑒 mod 𝑛

• Decryption:
• 𝑀 ՚ 𝐶𝑑 mod 𝑛

• Note 𝐶𝑑 = 𝑀𝑒 𝑑 ≡ 𝑀𝑒⋅𝑑 ≡ 𝑀𝑒⋅𝑑 mod 𝜙 𝑛 ≡ 𝑀1 mod 𝑛

RSA Security
• Security depends on the following problems to be hard:

1. Computing 𝑀 given 𝑛, 𝐶
2. Computing 𝑑 given 𝑛, 𝑒
3. Computing 𝜙 𝑛 given 𝑛
4. Computing 𝑝, 𝑞 given 𝑛 (i.e. factoring)

• The RSA assumption assumes problem 1 is hard: No PPT algorithm solving it exists

• Problems 2 & 3 are equivalent to the Factoring problem 4

• Best classical algorithm breaking Factoring:

• Number Field Sieve (NFS) with cost 𝑂(𝑒𝑐 ⋅ (log 𝑛)
1
3 ⋅ log log 𝑛

2
3)

• Current record: RSA-250 digits ≈ 829 bits

• Best quantum algorithm breaking Factoring:
• Shor’s algorithm is quantum polynomial-time
• Quantum Fourier Transform is used to find the secret period 𝜙(𝑛)

Post-quantum cryptography

Important Quantum attacks
• Shor’s algorithm / hidden order finding algorithm

• Quantum polynomial-time

• Breaks RSA

• Breaks Discrete Log: ECC, DSA

• Grover’s algorithm / unstructured search algorithm
• Quantum exponential time √𝑁 for search domain size 𝑁

• Quadratic speed-up over classical search in theory

• Search parallelizes embarrassingly by splitting search domain

• But quantum search using 𝐾 quantum computers costs 𝐾 𝑁/𝐾 = 𝑁 𝐾 in total

• And a few others: Simon’s algorithm, Kuperberg’s algorithm

Impact Future Quantum Computer
• Impact

• Symmetric cryptography mostly safe
• ‘Small’ blockciphers need to be avoided due to Grover’s algorithm

• Still some debate whether 128-bit keyspace is sufficiently large

• Some modes need to be avoided due to Simon’s algorithm

• Classical attacks may be transformed in Quantum attacks,
but typically at most a quadratic speed-up

• RSA & ECC will be insecure once a sufficiently large quantum computer exists
• Latest estimate BSI: “likely to be available within 16 years”

• New post-quantum cryptography needed

Impact Future Quantum Computer
• Post-quantum public-key frameworks & assumed hard problems

• Lattices: SVP, LWE, SIS, …

• Codes: syndrome-decoding, low-weight codeword finding, …

• Hash functions: preimage finding, second preimage finding, collision finding

• Isogenies: isogeny (path) finding

• Multi-variate: solving multi-variate systems

• MPC-in-the-head: depends on the choice “inside”: can be symmetric crypto

• New/upcoming PQC Standards
• NIST: ML-KEM: “Kyber”, primary standard for encryption, lattice-based

• NIST: ML-DSA: “Dilithium”, primary standard for signatures, lattice-based

• NIST: FN-DSA: “Falcon”, standard for signatures, lattice-based

• NIST: SLH-DSA: “SPHINCS+”, standard for signatures, hash-based

• EU/ISO: Frodo: scheme for encryption, lattice-based

• EU/ISO: McEliece: scheme for encryption, code-based

Symmetric Encryption

One-Time Pad

Symmetric Encryption Schemes
Send message secretly from sender to receiver
Using pre-shared secret key 𝐾 (unknown to adversary)

Sender encrypts plaintext 𝑃 to ciphertext 𝐶
Keyspace 𝒦, plaintext space 𝒫, ciphertext space 𝒞
Function 𝐸𝐾: 𝒫 → 𝒞 for K ∈ 𝒦
𝐶 = 𝐸𝐾 𝑃

Receiver uses corresponding decryption to obtain plaintext 𝑃
𝑃 = 𝐷𝐾(𝐶)
𝐷𝐾: 𝒞 → 𝒫

Goals:
Correctness: 𝐷𝐾 𝐸𝐾(𝑃) = 𝑃 for all 𝐾, 𝑃
Secrecy: without key 𝐾
“no information is learned from 𝐶 about message 𝑃”
(formalization comes later)

One-Time Pad
One-Time Pad (OTP)

For any 𝑙 ∈ ℕ:
𝒦𝑙 = 𝒫𝑙 = 𝒞𝑙 = 0,1 𝑙 ≈ 𝔽2

𝑙

𝐸𝐾 𝑃 ≔ 𝑃⊕𝐾
𝐷𝐾 𝐶 ≔ 𝐶 ⊕𝐾

Requires 𝐾 uniformly random selected
Key, and Plain- and ciphertext have equal length

Only encryption method providing perfect secrecy
no statistical correlation between cipher- and plaintext if key is unknown
⇒ no information can be learned even with ∞ computing power

Pr
K
[𝐶 =𝑃 ⊕𝐾] = Pr

K
[𝐾 = 𝑃 ⊕ 𝐶] = 2−𝑙

Given 𝐶, every plaintext is equally likely
Given 𝑃, every ciphertext is equally likely

0⊕ 0 = 1⊕ 1 = 0
1⊕ 0 = 0⊕ 1 = 1
Addition in 𝔽2

OTP Issues
Perfect secrecy, but broken if

1. Key 𝐾 is not kept secret
2. Key 𝐾 was not selected uniformly at random from 𝒦𝑙

3. Key 𝐾 is reused for two messages
attacker learns: 𝐶1 ⊕𝐶2 = 𝑃1 ⊕𝑃2

Also malleable!
1. Sender encrypts 𝑃 = “I owe you 10$”
2. Attacker intercepts 𝐶 = 𝐾 ⊕ 𝑃

Let 𝐷 = "I owe you 10$" ⊕ "I owe you 5k$"
= "__________10_" ⊕ "__________5k_"

Attacker doesn’t even need to know the actual text,
only the position and value of the change

3. Attacker sends 𝐶′ = 𝐶 ⊕𝐷 to receiver
4. Receiver obtains 𝐶′ and decrypts:

𝑃′ = 𝐾⊕𝐶′ = 𝑃⊕𝐷 = "I owe you 5k$"

Symmetric Encryption

Block Ciphers

Block Cipher
• Block ciphers work differently

from the one-time pad
• Only encrypts fixed-size blocks as a whole (not per bit)

• Let security parameter 𝑛

• Key space 𝒦(𝑛) and block space ℳ(𝑛) (e.g., 0,1 𝑛)

• 𝐸𝑛𝑐:𝒦 𝑛 ×ℳ 𝑛 →ℳ(𝑛) such that
• 𝐸𝑛𝑐𝐾:ℳ 𝑛 → ℳ(𝑛) is a permutation for all 𝐾 ∈ 𝒦(𝑛)

• 𝐷𝑒𝑐𝐾 ≔ 𝐸𝑛𝑐𝐾
−1 is efficiently computable

• Note: 𝑛 is typically omitted: 𝒦,ℳ

Generic attacks
Generic key recovery attack model

List of plaintext + ciphertext pairs: 𝑃1, 𝐶1 , 𝑃2, 𝐶2 , …

How are these pairs chosen?
Known plaintext attack: random plaintexts

Chosen plaintext attack: attacker may choose 𝑃𝑖
…

Generic key recovery attack
1. Query 𝑙 pairs 𝑃1, 𝐶1 , … , (𝑃𝑙 , 𝐶𝑙)

2. Walk over search space 𝐾 ∈ 𝒦

3. If 𝐶𝑖 = 𝐸𝑛𝑐𝐾(𝑃𝑖) for 𝑖 = 1, … , 𝑙 then return 𝐾

4. Otherwise, if no such 𝐾, return ⊥

Complexity: 𝑂 𝒦
Note: Even if there are 𝑙 pairs to check in total
The first is very likely to fail and the key candidate dismissed,
so most times we only have to check 1 pair

Generic 1-out-of-𝐿 key recovery attack
Assume 𝐿 users with different keys 𝐾1, … , 𝐾𝐿
Attacker succeeds if it finds 1 key

Generic attack
1. Chooses 𝑙 plaintexts 𝑃1, … , 𝑃𝑙
2. Queries encryptions for each user:

𝐶𝑖,𝑗 = 𝐸𝑛𝑐𝐾𝑗(𝑃𝑖) for 𝑖 = 1,… , 𝑙 and 𝑗 = 1,… , 𝐿

3. Walks over search space 𝐾 ∈ 𝒦

4. Compute ሚ𝐶1 = 𝐸𝑛𝑐𝐾(𝑃1)

5. For 𝑗 such that 𝐶1,𝑗 = ሚ𝐶1 do

6. If 𝐶𝑖,𝑗 = 𝐸𝑛𝑐𝐾 𝑃𝑖 for 𝑖 = 2,… , 𝑙 then return 𝐾

7. Otherwise, return ⊥

Every key guess has success probability 𝐿/|𝒦|

Complexity: 𝑂(𝒦 /𝐿)

Speed up by factor 𝐿!

Attacks with precomputation
There are attacks that cost 𝑂(𝒦) or more in total, but < 𝑂(𝐾) per problem instance

Two phases:

An offline part that performs at least 𝑂 𝒦 operations

An online part that attacks each of the 𝐿 keys independently

An extreme example, codebook dictionary:

Offline: 1. Choose block 𝐵
2. Create hash table with 𝐸𝑛𝑐𝐾 𝐵 ,𝐾 entries

Time: O(𝒦), Memory: O 𝒦

Online: 1. For each secret key 𝐾𝑖 to be attacked
2. Query 𝐶 = 𝐸𝑛𝑐𝐾𝑖 𝐵
3. Find table entry 𝐶, 𝐾𝑖

Time: 𝑂 1 , Memory: 𝑂(𝒦)

Non-uniform attacks:

Make pre-computed data part of online attack algorithm

Online algorithm now only has total cost < 𝑂(𝒦)

Hellman’s
Time-Memory trade off attack

Hellman’s Time-Memory trade off attack
An attack that uses more time, but less memory

Idea:
Use fixed block 𝐵 and map 𝜙:𝒞 → 𝒦

Iterative function 𝐹:𝒦 → 𝒦 ‘walks’ through key space

𝐹 𝐾𝑖 = 𝐾𝑖+1, where 𝐶 = 𝐸𝑛𝑐𝐾𝑖 𝐵 , 𝐾𝑖+1 = 𝜙(𝐶)

Offline: Store many long walks covering key space

Only store begin and endpoints (𝑆𝑃𝑗 , 𝐸𝑃𝑗 = 𝐹𝑡(𝑆𝑃𝑗))

Online: Query 𝐶0 = 𝐸𝑛𝑐𝐾 𝐵 , compute 𝐾0 = 𝜙 𝐶0 (Hence by definition: 𝐹 𝐾 = 𝐾0)

Compute walk from 𝐾0 until say endpoint 𝐸𝑃1 is found

Find secret 𝐾 by walking from 𝑆𝑃1

Hellman’s Time-Memory trade off attack
Setup Details:

𝐹:𝒦 → 𝒦, where 𝐹 = 𝜙 ∘ 𝐸
𝐸:𝒦 →ℳ, 𝐸 𝐾 ≔ 𝐸𝑛𝑐𝐾(𝐵)

𝜙:ℳ → 𝒦 needs to be surjective

If ℳ ≥ |𝒦| then easy, otherwise impossible

When ℳ < |𝒦|
Use multiple blocks 𝐵1, 𝐵2, … , 𝐵𝑙 such that ℳ 𝑙 ≥ |𝒦|

𝐸:𝒦 →ℳ𝑙, 𝐸 𝐾 ≔ 𝐸𝑛𝑐𝐾 𝐵1 , … , 𝐸𝑛𝑐𝐾 𝐵𝑙
And surjective map 𝜙:ℳ𝑙 → 𝒦

Hellman’s Time-Memory trade off attack
Simplified version

Attack parameters: Number of walks: 𝑚
Length of each walk: 𝑡

Offline attack: 1. Choose 𝑆𝑃1, … , 𝑆𝑃𝑚 uniformly at random from 𝒦
2. Compute 𝐸𝑃𝑖 = 𝐹𝑡(𝑆𝑃𝑖) for 𝑖 = 1,… ,𝑚
3. Store (𝐸𝑃𝑖 , 𝑆𝑃𝑖) in hash table / sorted table

Online attack: 1. Given 𝐶0 = 𝐸𝑛𝑐𝐾(𝐵) for some unknown key 𝐾
2. Let 𝑃0 = 𝜙(𝐶0)
3. For 𝑖 = 0,… , 𝑡 − 1
4. If 𝑃𝑖 = 𝐸𝑃𝑗 for some 𝑗 then

5. Let ෩𝐾 ≔ 𝐹𝑡−𝑖−1 𝑆𝑃𝑗
6. If 𝐸𝑛𝑐෩𝐾 𝐵 = 𝐶0 then return ෩𝐾
7. Compute 𝑃𝑖+1 ≔ 𝐹 𝑃𝑖
8. Otherwise, return ⊥

Hellman’s Time-Memory trade off attack
Simplified version analysis

Ideally, use 𝑚 ⋅ 𝑡 = |𝒦| and
hope to cover entire space

However, 𝐹 behaves as a random function

Thus many collisions 𝐹 𝑥 = 𝐹(𝑦) exist and merges walks
Substantial part of space is never reached

Creates false alarms:

𝐾 does not actually lie on walk from 𝑆𝑃𝑖,
but on walk from another 𝑆𝑃 with same 𝐸𝑃𝑖

Ideal situation

Expected situation for random functions

Hellman’s Time-Memory trade off attack
Simplified version analysis

Collisions start to occur when 𝑚 ⋅ 𝑡 ≈ √|𝒦|

Due to the birthday paradox (covered later)

The expected number of collisions grows roughly quadratic in 𝑚 ⋅ 𝑡

False alarms analysis:

Walk from 𝑃0 has 𝑡 points

There are at most 𝑚 ⋅ 𝑡 points covered by the table

Each pair has probability 1/|𝒦| to collide and cause false alarm
(i.e. without 𝑃0 actually being on the walk)

Expected number of false alarms: 𝐸 𝑍 ≤ 𝑚 ⋅ 𝑡2/|𝒦|

Expected costs of false alarm: 𝑡 ⋅ 𝐸 𝑍 ≤ 𝑚 ⋅ 𝑡3/|𝒦|

Success only if target 𝐾 is covered (part of a walk from a 𝑆𝑃𝑖)

Hellman: when 𝑚 ⋅ 𝑡2 = |𝒦|, success probability is ≈ 0.80𝑚𝑡/|𝒦|

Hellman’s Time-Memory trade off attack
Improved version

Use 𝑟 independent tables with different 𝜙1, … , 𝜙𝑟
Even if the same key is covered in different tables
then different 𝜙𝑖 imply different walks instead of merging walks

Hellman proposed 𝑚 = 𝑡 = 𝑟 = 3 |𝒦|

Individual table: success probability ≈ 0.80 / 3 |𝒦|

Total success probability ≈ 0.8

Offline time complexity: 𝑂 𝑚𝑡𝑟 = 𝑂(𝒦)

Offline memory complexity: 𝑂 𝑟𝑚 = 𝑂(|𝒦|2/3)

Online complexity:

𝑂 𝑟𝑡 + 𝑟𝑚𝑡3/ 𝒦 = 𝑂 𝒦 2/3 + 𝒦 2/3 = 𝑂(𝒦 2/3)

