Selected Areas in Cryptology Cryptanalysis Week 2

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/

Block cipher design

Attacks against the internal structure of a blockcipher

$$E_K: \{0,1\}^n \to \{0,1\}^n, K \in \{0,1\}^k$$

Blockcipher consists of R rounds of a small keyed round function E_K^r

- Small: few operations
- Keyed: involves key material
- 'Confusion': complex operations ⇒ very complex final relations
- 'Diffusion': mix state ⇒ each in-/output bit depends on each out-/input bit

Block cipher design: SPN framework

Focus on SPN: Substitution Permutation Network

- <u>Substitution</u>: complex permutation "S-BOX" on e.g. 8 bits applied on all 8-bit parts
- Permutation: mixing of entire state (\mathbb{F}_2 linear)
- <u>Keyed</u>: add round key (\mathbb{F}_2 linear) (derived from main key)

AES: state n = 128 bits, key k = 128,192,256 bits, S-box: 8 bits

Toy-Cipher to demonstrate structural attack techniques

- State n = 16 bits, 4 rounds
- 5 round keys K_1, \dots, K_5 of 16 bits
- Small enough to do attacks in practice (if you wanted)

Toy-Cipher

Key-addition:

- XOR round key K_i
- Final key-addition at end with K_5

Substitution: 4-bit S-box

- $\pi_S: \{0,1\}^4 \to \{0,1\}^4$ (see lecture notes)
- called 4 times per round to alter all 16 bits

Permutation of 16 bits:

- π_P : {1, ..., 16} \rightarrow {1, ..., 16} (see lecture notes)
- Skipped in last round, as it can be removed anyway (swap Perm and AddKey with $K_5'[i] = K_5[\pi_P(i)]$)

Structural attacks: linear & differential cryptanalysis

- 1. Analyze individual rounds with probabilistic input/output-relation
- 2. Obtain a family of round attack building blocks

- 3. Combine to attack on full blockcipher
- Approximate complexity by combining individual round costs

$$C = c(r) \cdot 0.8 \cdot 1.0 \cdot 0.9 \cdot 0.7$$

5. Find optimal attack

Linear Cryptanalysis

<u>Linear approximate</u> each round:

• probabilistic \mathbb{F}_2 - linear input-output relation for $C = E_K^r(P)$

$$\sum_{i \in I} P[i] \quad \bigoplus \quad \sum_{j \in I} C[j] \quad \bigoplus \sum_{l \in L} K[l] = c$$

- Involves selected input bits P[i], output bits C[j], key bits K[l], and a constant c
- E.g.: $P[2] \oplus P[4] \oplus C[1] \oplus C[7] \oplus K_1[2] \oplus K_1[4] \cdots \oplus K_5[7] = 1$
- \mathbb{F}_2 : constant either c=0 or c=1
- Probabilistic: P, K, C are seen as random variables where $C = E_K^r(P)$:
 - Ideal secure situation: p = 0.5 exactly for any such relation
 - \Rightarrow approximation doesn't give any information on key bits given P, C
 - Actual case $p=0.5+\epsilon$, where $\epsilon\in[-.5,+.5]$ is the bias
 - ⇒ larger bias means larger probability of correct prediction
- Search for round relations with large (absolute) bias!

Linear Cryptanalysis

Notation round variables:

- Round input: *P*[1], ..., *P*[16]
- Round key: *K*[1], ..., *K*[16]
- S-Box input: *X*[1], ..., *X*[16]
- S-Box output: *Y*[1], ..., *Y*[16]
- Round output: *C*[1], ..., *C*[16]
- Choose input bits: P[2], P[4]
- Key addition: involves key bits K[2], K[4]
- Substitution:
 - S_{22} , S_{23} , S_{24} : Inactive S-Boxes: no input bits selected
 - 1 active S-Box: S_{21}
 - Inputs: $X[2] = P[2] \oplus K[2]$ and $X[4] = P[4] \oplus K[4]$
 - Choose outputs: *Y*[1], *Y*[4]
- Permutation: C[1] = Y[1], C[13] = Y[4]

Note:

Only <u>Substitution</u> is NOT \mathbb{F}_2 -linear and has <u>probabilistic</u> relation! S-Box in/out also defines round in/out!

- Relation: $Rel: P[2] \oplus P[4] \oplus C[1] \oplus C[13] = 0 \oplus K[2] \oplus K[4]$
- Probability: $\Pr_{\mathbf{Y}}[Rel] = \Pr_{\mathbf{Y}}[X[2] \oplus X[4] \oplus Y[1] \oplus Y[4] = 0 \mid Y = \pi_{S}(X)]$

LAT: Linear Approximation Table

- S-Box relation directly defines round relation and probability!
- Thus analyze all linear relations for S-Box π_S of the form:

•
$$\Pr_{X}[X[2] \oplus X[4] \oplus Y[1] \oplus Y[4] = 0 \mid Y = \pi_{S}(X)]$$

- S-Box is permutation on $\{0,1\}^4$
 - 16 possible selections of sums $\sum_{i \in I} X[i]$, $I \subseteq \{1,2,3,4\}$
 - 16 possible selections of sums $\sum_{j \in I} Y[j]$, $J \subseteq \{1,2,3,4\}$
 - Represent I/J as 4-bit mask / integer value: $\{1\} \rightarrow 1000_h = 8$, $\{3,4\} \rightarrow 0011_h = 3$

- Linear Approximation Table (LAT):
 - 16 x 16 table
 - Row $I \in \{0, ..., 15\}$, Column $J \in \{0, ..., 15\}$ contains:
 - $LAT(I,J) := \#\{X \in \{0,1\}^4, Y = \pi_S(X) \mid \sum X[i] \oplus \sum Y[j] = 0\} 8$
 - Bias $\epsilon_{I,J} = \Pr[\sum X[i] \oplus \sum Y[j] = 0] 0.5 = LAT(I,J)/16$
 - Important tool!
 - Easily precomputed, independent of keys
 - Convenient look-up for large biases to construct large bias relations

LAT: Linear Approximation Table

- Compute entry
 - 1. Write all values for X with corresponding Y-values
 - 2. Compute *X*-sum
 - 3. Compute *Y*-sum
 - 4. Count total matching values $(A \oplus B = 0 \iff A = B)$
 - 5. Subtract 8
- $X[2] \oplus X[3] \oplus Y[1] \oplus Y[3] \oplus Y[4]$
 - 12 matching

•
$$\Pr[\Sigma = 0] = \frac{12}{16}$$
, $\epsilon = \frac{12}{16} - \frac{1}{2} = \frac{12 - 8}{16} = \frac{4}{16}$

•
$$x = 0110_b = 6$$

•
$$y = 1011_b = 11$$

•
$$\Rightarrow LAT(6,11) = 12 - 8 = 4$$

= 16ϵ

$X_1 X_2 X_3 X_4$	$Y_1Y_2Y_3Y_4$	$X_2 + X_3$	$Y_1 + Y_3 + Y_4$
0000	1110	0	0
0001	0100	0	0
0010	1101	1	0
0011	0001	1	1
0100	0010	1	1
0101	1111	1	1
0110	1011	0	1
0111	1000	0	1
1000	0011	0	0
1001	1010	0	0
1010	0110	1	1
1011	1100	1	1
1100	0101	1	1
1101	1001	1	0
1110	0000	0	0
1111	0111	0	0
		'	

LAT: Linear Approximation Table

LAT properties:

- Compute with sage (see lecture notes)
- LAT(0,0) = 16 8 = 8
- LAT(x,0) = LAT(0,x) = 8 8 = 0, x > 0

Toy-Cipher LAT

- Every entry is even
- Sum of every row/column = ± 8

		Output sum															
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	-2	-2	0	0	-2	6	2	2	0	0	2	2	0	0
	2	0	0	-2	-2	0	0	-2	-2	0	0	2	2	0	0	-6	2
	3	0	0	0	0	0	0	0	0	2	-6	-2	-2	2	2	-2	-2
	4	0	2	0	-2	-2	-4	-2	0	0	-2	0	2	2	-4	2	0
	5	0	-2	-2	0	-2	0	4	2	-2	0	-4	2	0	-2	-2	0
sum	6	0	2	-2	4	2	0	0	2	0	-2	2	4	-2	0	0	-2
	7	0	-2	0	2	2	-4	2	0	-2	0	2	0	4	2	0	2
Input	8	0	0	0	0	0	0	0	0	-2	2	2	-2	2	-2	-2	-6
In	9	0	0	-2	-2	0	0	-2	-2	-4	0	-2	2	0	4	2	-2
	10	0	4	-2	2	-4	0	2	-2	2	2	0	0	2	2	0	0
	11	0	4	0	-4	4	0	4	0	0	0	0	0	0	0	0	0
	12	0	-2	4	-2	-2	0	2	0	2	0	2	4	0	2	0	-2
	13	0	2	2	0	-2	4	0	2	-4	-2	2	0	2	0	0	2
	14	0	2	2	0	-2	-4	0	2	-2	0	0	-2	-4	2	-2	0
	15	0	-2	-4	-2	-2	0	2	0	0	-2	4	-2	-2	0	2	0

Piling-Up Lemma

How to combine two linear relations?

- Let X_1, X_2 be two independent binary random variables (think of them as the output of the sum of X & Y bits)
- Let $p_1 := \Pr[X_1 = 0]$, $p_2 := \Pr[X_2 = 0]$
- Then: $\Pr[X_1 \oplus X_2 = 0] = \Pr[X_1 = 0 \land X_2 = 0] + \Pr[X_1 = 1 \land X_2 = 1]$ = $p_1 \cdot p_2 + (1 - p_1) \cdot (1 - p_2)$
- Now consider the biases:

$$\epsilon_1 \coloneqq p_1 - 0.5$$
, $\epsilon_2 \coloneqq p_2 - 0.5$, $\epsilon_{1,2} \coloneqq \Pr[X_1 \oplus X_2 = 0] - 0.5$

• Then:
$$\begin{aligned} \epsilon_{1,2}&=(0.5+\epsilon_1)(0.5+\epsilon_2)+(0.5-\epsilon_1)(0.5-\epsilon_2)-0.5\\ &=(0.25+0.5(\epsilon_1+\epsilon_2)+\epsilon_1\epsilon_2)+(0.25-0.5(\epsilon_1+\epsilon_2)+\epsilon_1\epsilon_2)-0.5\\ &=2\epsilon_1\epsilon_2 \end{aligned}$$

Piling-Up Lemma:

For $X_1, ..., X_N$ independent binary variables with biases ϵ_i :

Their sum
$$X_{1,\dots,N} = X_1 \oplus \dots \oplus X_N$$
 has bias: $\epsilon_{1,\dots,N} = 2^{N-1} \prod_{i=1}^N \epsilon_i$

Bringing everything together

- LAT to find those high bias S-Box relations
- Inactive S-Boxes don't affect bias, as:
 - $LAT(0,0) = 8 \Rightarrow \epsilon_1 = \frac{8}{16} = \frac{1}{2}$
 - Piling-Up Lemma: $\epsilon_{1,2}=2\epsilon_1\epsilon_2=\epsilon_2$
- Only active S-Boxes matter ⇒ minimize active S-boxes
- Make use of π_P properties
 - *i*-th output bit active of S-Box S_{1j} \Rightarrow S-Box S_{2i} active in <u>next</u> round
 - It is its own inverse, so also vice-versa:
 - *i*-th input bit active of S-Box S_{2j} \Rightarrow S-Box S_{1i} active in <u>previous</u> round
- If multiple active S-boxes in one round then try to have active input bits on same S-box bit position (and same for output bits)

Bringing everything together

Goal is to build a linear approximation over three rounds

- First find S-Box relation for <u>middle round</u> with <u>high bias</u> and <u>minimal active wires</u>
 - The number of active wires equals the number of active S-Boxes in round 1 and 3 together
- E.g.: $LAT(0100_b, 0101_b) = LAT(4,5) = -4$
- If we use it at S-Box 2 (0100) then next round:
 - Has 2 active S-Boxes (0101_b : 2 active output wires)
 - Both have active input wire 2 \Rightarrow 0100_b
- So can use same high bias relation again
 - \Rightarrow rounds 2 and 3 done
 - Round 4 has 2 active S-Boxes
- First round:
 - Active S-Box 2 with output mask 0100_b
 - Find highest bias
 - Input mask is not important: no S-Boxes before
 - E.g. $LAT(1011_b, 0100_b) = LAT(11.4) = 4$

Bringing everything together

First round:

- $X_{12,1} \oplus X_{12,3} \oplus X_{12,4} = P_5 \oplus P_7 \oplus P_8 \oplus K_{1,5} \oplus K_{1,7} \oplus K_{1,8}$
- $X_{12.1} \oplus X_{12.3} \oplus X_{12.4} \oplus Y_{12.2} = 0$ with bias $\epsilon_{12} = 4/16$

Second round:

- $X_{22,2} = Y_{12,2} \oplus K_{2,6}$
- $X_{22,2} \oplus Y_{22,2} \oplus Y_{22,4} = 0$ with bias $\epsilon_{22} = -4/16$

Third round:

- $X_{32,2} = Y_{22,2} \oplus K_{3,6}$, $X_{34,2} = Y_{22,4} \oplus K_{3,14}$
- $X_{32.2} \oplus Y_{32.2} \oplus Y_{32.4} = 0$ with bias $\epsilon_{32} = -4/16$
- $X_{34.2} \oplus Y_{34.2} \oplus Y_{34.4} = 0$ with bias $\epsilon_{34} = -4/16$

Partial fourth round:

- $X_{42,2} \oplus X_{42,4} = Y_{32,2} \oplus Y_{34,2} \oplus K_{4,6} \oplus K_{4,8}$
- $X_{44.2} \oplus X_{44.4} = Y_{32.4} \oplus Y_{34.4} \oplus K_{4.14} \oplus K_{4.16}$

Sum all relations above (move only key bits on RSH):

- $P_5 \oplus P_7 \oplus P_8 \oplus X_{42,2} \oplus X_{42,4} \oplus X_{44,2} \oplus X_{44,4} = K_{1,5} \oplus K_{1,7} \oplus K_{1,8} \oplus K_{2,6} \oplus K_{3,6} \oplus K_{3,14} \oplus K_{4,6} \oplus K_{4,8} \oplus K_{4,1}$
- Note how all internal variables occur exactly twice & cancel
- Bias (Piling-Up Lemma): $2^3 \left(\frac{1}{4}\right) \left(-\frac{1}{4}\right)^3 = -\frac{1}{32}$

Key-recovery attack

$$P_{5} \oplus P_{7} \oplus P_{8} \oplus X_{42,2} \oplus X_{42,4} \oplus X_{44,2} \oplus X_{44,4} = K_{1,5} \oplus K_{1,7} \oplus K_{1,8} \oplus K_{2,6} \oplus K_{3,6} \oplus K_{3,14} \oplus K_{4,6} \oplus K_{4,8} \oplus K_{4,14} \oplus K_{4,16}$$
With bias: $2^{3} \left(\frac{1}{4}\right) \left(-\frac{1}{4}\right)^{3} = -\frac{1}{32}$

Build distinguisher for 3 rounds (w/ 4 key additions)

- Over many plaintext-ciphertext pairs measure probability of relation
- Is $\approx 0.5 \pm \frac{1}{32}$ \Rightarrow is blockcipher oracle with 3 rounds
- Is $\approx 0.5 \Rightarrow$ random oracle

Key-recovery attack idea:

- 1. Obtain many plaintext-ciphertext pairs
- Guess last round key => decrypt last round
 - Note how we only need to guess 8 key bits of K_5
- 3. Do distinguishing check
 - Outputs blockcipher oracle
 ⇒ right key guess, stop
 - Outputs random oracle
 ⇒ wrong key guess, try again with another guess

Key-recovery attack analysis

Count P-C pairs that match relation: C

Case correct key-guess:

- Binomial distribution with n samples and $p=0.5+\epsilon$
- $E[C] = n/2 + n \cdot \epsilon$

Case wrong key-guess:

- Binomial distribution with n samples and p=0.5
- E[C] = n/2

However, there are $\approx 2^8$ wrong key-guesses

- Does the correct key-guess stand out among <u>all of them?</u>
- Approximate with Normal distribution N: mean n/2 and SD $\sqrt{n/4}$
- Then $\Pr[|N mean| > x \cdot SD] \le e^{-x^2/2}$ (see lecture notes)
- For x=4, this probability is $\ll 2^{-8} \Rightarrow$ expect all samples bounded by $4 \cdot SD$

How many samples do we need to have the correct key-guess stand out?

•
$$n \cdot \epsilon > 4 \cdot SD \implies n \cdot \epsilon > 4\sqrt{n/4} \implies n > 4 \cdot \epsilon^{-2}$$

Wrap-up

- Block-cipher design:
 - Substitution: S-Box
 - Permutation: linear
 - Key-addition: linear
- Linear cryptanalysis
 - Input/output-linear relations with probability bias
 - LAT: Linear Approximation Table for S-Box
 - Build linear relation for block cipher by combining S-Box linear relations with piling-up lemma
- Linear distinguisher
 - Blockcipher oracle vs Random oracle
 - Distinguish by measuring non-zero bias vs zero bias
 - Based on good linear relation for block cipher
- Key-recovery attack
 - Use linear distinguisher on R-1 rounds
 - Guess last key and distinguish: random oracle ⇒ wrong key guess
 - Number of P-C pairs: $O(\epsilon^{-2})$