Selected Areas in Cryptology
Cryptanalysis
Week 4

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/

mailto:stevens@cwi.nl

Cryptographic Hash Functions

Theoretical Cryptology:

Hash function family with the same range H (e.g. {0,1}2°9)
F={f:{0,1}" - H)

Security games for any PPT adversary A

* Pre: pre-image resistance: f<F heH, winsif M < A(f,h)and f(M) = h

* ePre: everywhere Pre: h < A; f « F instead

* aPre: always Pre: f < A; h < H instead

* Sec: 2nd preimage resistance: f « F,M « {0,1}*", winif M' « A(f,M),f(M) = f(M')and M = M’
» eSec: everywhere Sec: M < A; f « F instead

* aSec: always Sec: f « A;M « {0,1}*" instead

e Coll: collision resistance feF,winif M,M <« A(f)and f(M) = f(M')and M = M’

Cryptographic Hash Functions

* Key-less Symmetric functionality, and has many applications!

* Often called the swiss knife of cryptography

* Inside construction of
* MAGCs: HMAC, KMAGC, ...
digital signatures: hash-then-sign, LMS, XMSS, SPHINCS+
Password authentication
Blockchain proof-of-work, Blockchain addresses

Cryptographic Hash Functions

Hash function standards H: {0,1}* — {0,1}":

* MD5: 128-bits hash function published in 1992
* Widely used till ~~2010
e Broken in 2004: first collision found [WYO05],

* SHA-1: 160-bit hash function published in 1995
* Widely used even today (TLS1.2, Git, ...)

e ‘Broken’ in 2005: first theoretical collision attack [WYYO05]
practical attack in 2017: first collision [SBKAM17]

* SHA-2 family: 224/256/384/512-bit hash functions published in 2001

* SHA-3 family: 224/256/384/512-bit hash functions published in 2015

Cryptographic hash functions

Fixed n-bit hash functions: f:{0,1}* — {0,1}"

* Pre, ePre, Sec, eSec, Coll security notions ill-defined

* aPre: always pre-image resistance:
« Givenrandomh « {0,1}"* find M s/t f(M) = h

* aSec: always second pre-image resistance:
« Givenrandom M « {0,1}*" find M' # M s/t f(M) = f(M")

* Secure if there is no attack faster than a generic attack

Generic pre-image attacks

* Generic (2"9) pre-image attack
 Given any hash output h, find x such that f(x) = h
e Algorithm
1. Define message space M with | M| = |H|
2. Samplex « M
3. If f(x) # hthen goto step 2
4. Return x
* Each attempt is Bernoulli trial with p = 277
* = Time: Geometric Distribution with p = 27" = average time: 2/%!

* Low-entropy pre-image attack
Old practice: store password hashes & compare hash to authenticate
Problem: password space has low entropy
E.g. there are only 2477 alphanumeric (a-zA-Z0-9) passwords of length < 8.
* = Can use Hellman’s time-memory trade-off attack to invert arbitrary function
Solution: salting each password p:
 Choose random salt s < {0,1}°* to prepend to password

e Store salt & hash: (s, f(s|p))

Collision conundrum

How to define collision resistance for fixed hash functions?

Mathematical existential security definitions?:

“There should exist no attack that is feasible/faster than generic attack/PPT
that finds a collision with non-negligible probability”

Conundrum:
Pigeon-hole principle = collisions exist
Any collision f(M) = f(M") with M = M’ leads to a trivial attack:
Algorithm A, ,,s: simply outputs the pair M, M’
Such algorithms exist and break security definitions

However, we can’t actually write down such algorithms
unless we first compute a collision... (i.e., its non-uniform)

Foundations of Hashing Dilemma:
No formal definition of collision resistance exists
Informal definition relies on human ignorance:
“There exists no known attack that is better than the generic collision attack”

Generic collision attack

e Generic collision attack

Fori =1, ..
Sample M; « {0,1}*", h; = f(M;)
If 3j < i:h; = h; then return (M;, M;)
e Cost analysis:
* Let X be the number of samples needed before a collision is found
ElX]|=Yp-1k -Pr[X =k] =Xr-1k - (Pr|[X >k —1] — Pr[X > k])
= D=0 Pr[X > K]

« Pr[X > k] =1 N; N};2 ...N_II;H =1 (1 — %) (1 — %) (1 — %) (“no collision after k samples”)
1z _3 _k-1 _k(k-1) x?
~]le Ne Ne N..e N =e 2N e*=1+x+=+
_kZZ—TL—l 2!

Estimate:
E[X] = X8 e k27" » fooo e k27" qk = [7/2 - 2V2 time cost
Memory cost: 0(2™/2)

Generic collision attack

Memory cost improvements

* |dea: compute trails and only store begin/end-points
like Hellman’s time-memory trade-off attack

Define search space: H := {0,1}"
Choose injective embedding ¢p: H — {0,1}"
cletg=fop: H->H
« = acollisionof H# H' of g (i.e., g(H) = g'(H)) is a collision ¢p(H) + ¢p(H') of f

Choose set of ‘distinguished points” S € H:
* Easily distinguishable: e.g. last [-bits are zero

Compute trails:
* Choose random starting point P,
* Iterate P; = g(P;_,) until a distinguishable point P; € S is encountered
* Then only store begin/end-point & length (P, P;, i)

Generic collision attack

e Compute trails:
* Choose random starting point P,
* Iterate g: P; = g(P;_,) until a distinguishable point P; € S is encountered
* Then only store begin/end-point & length (P, P;, i)
* What happens when a collision occurs:
* Py # Piand g(Py) = g(P)
* Since g is deterministic, the two trails merge: gk(Pl-) = gk(Pj)
* = End at the same distinguished point: g*(P;) = g*(P,)) € S
* Resolving a collision:
» Consider two trails (P, Py, k), (Py, P1, k") with P, = P,, € S (wlog k = k')
Assume collision occurs [iterations before end

* First synchronize: iterate longest trail k — k' iterations Pye—Lr—k’ ,
. / ‘ .) £ / Pk = Pk’
* Exceptional case: P, _,» = P, = ‘robin-hood’ failure Poarp — p!
. / k-l — Tk/—1
e |lteratefori=k —1,...,0:

e |f Pk—i = Plil_l- then return Cb(Pk—i—l)’ Cb(P;,c’_i_l)

Generic collision attack

Memory cost
* Expected total evaluations before collision occurs:
E[X] = \/m/2-2™/?
Expected trail length t := |H'|/|S]| (geometric distribution with p = [S|/|H|)
We expect = \/T/Z - 22/t trails to store

* If S consists of points with last [-bits zero
» then ¢t = 27/2""t = 2L and 0(2™/27!) memory cost

Additional costs:
* Once a collision occurs, need to finish the trail: t evaluations (expected trail length is memoryless)
* To compute the actual collision point: 2.5 t evaluations (analysis see link in lecture notes)

» Total 0(3.5t) = 0(3.5 - 2%) time cost
Suggested choice l = n/2 — 20
 Memory cost =1M trails
» Expected additional time cost: 0(2™/2/22°) « 0(2™/?)

Generic collision attack

* See lecture notes for full collision attack algorithm

* Unlikely problematic case:
* Atrail enters a cycle without ever reaching a distinguished point
* = collision attack would loop forever

e Solution:
e Discard trail if 20 t iterations is reached

* Discard case 1: no cycle reached
1 20t 1 20t
* Probability (1 — ?) ~ \e t)

* Discard case 2: cycle reached: internal collision
. Probability: 1 — e~(200%27"7" (“collision within 20t samples”)
* Need (20t)? « 2" for this probability to be small enough

* Both negligible losses

20 ~ 2—29

=e" (“no distinguished point found”)

Summary

* Cryptographic hash functions
* Theoretical cryptography: hash function families
* Practice: fixed hash function standards

* Foundations of Hashing Dilemma:
* No security definition possible for collision resistance for fixed hash functions
* Informal definition: “no known attack”

* Generic collision attack:
* Birthday paradox
* Use trails and distinguished points to reduce memory cost

Merkle-Damgard Framework

* Merkle-Damgard Iterative Design:
* Pad & split message M into pieces M, | ... |M,, (last block includes bitlength)

* Internal state: CV; with fixed initial value CVy = IV
* Update internal state with compression function

CV; = Compress(CV;_1, M;)

Pad message
to block boundary

Message
Message||1]|0's||message-length

Padded
Message

/

Compression
v ;
Function

Compression
Function

Compression
Function

* Many standards: MD4, MD5, SHA-1, SHA-2-224/256/384/512

Compression
Function

Finalization
(optional)

Merkle-Damgard Framework

e Reduction proof:
 Given a collision f(M) = f(M") with M = M’

* If M| # |M’| then
* The last blocks are different: they include the bitlength
* Thus they form a Compress collision:

f(M) = Compress(CV,,_{,M,,) = Compress(CVnr_l,M;l,) = f(M")

* Otherwise, if |[M| = |M’| then there must exist an i € {1, ..., n} such that:
* There is a compression function collision:

Compress(CV;_q,M;) = Compress(CV;_{,M;) with (CV;_{,M;) = (CV;_{, M)
* Because if no such i exists then M = M’

* Hence, if Compress is collision resistant then so is f

Merkle-Damgard Framework

* Types of collision attacks on Compress

e Collision: Given CV find Compress(CV,M) = Compress(CV,M")
 Pseudo-collision: find Compress(CV,M) = Compress(CV',M")
* Free-start pseudo-collision: find Compress(CV,M) = Compress(CV,M")

* Near-collision: Given CV,CV', D find Compress(CV,M) — Compress(CV',M") € D

* Weaknesses
e Length extension:

* Given h = f(M) and |[M| one can compute f(pad(M)|S) for any S without knowing M
* This implies that certain MAC constructions using f are insecure:

e MAC(K,M) = fx(M), here fx denotes that CV, = K
* MAC(K,M) = f(K | M)
* Also implies: 1 known collision = infinitely many known collisions by appending S

Merkle-Damgard Framework

* Weaknesses
e Joux’s Multi-collisions

* Assume a collision attack with given prefix P

* lLe., itoutputs f(M) = f(M") withM = P|S,M' = P|S" withS # S’

* Then one can chain collision attacks:
* £ (So) = (S0, f(SolS1) = f(SolS1), f(SolS11S2) = f(SolS11S2), ...
* Note that there are now 23 colliding messages:

f(SolS11S2) = f(S(’)|S1|Sz) = f(SolS11S2) = f(S(’)|S{|52) =
* More general: t chained collision attacks give a 2t multi-collision

e Concatenating hash functions is only as secure as the most secure one
* Let f(x) = (fi(x), f> (x)) with f; and f, Merkle-Damgard hash functions
WiIog let f; be the easiest to find collisions for, and let f,:{0,1}* — {0,1}"
Then generate a 2™ multi-collision for f; with n collision attacks
Now perform a generic collision attack over this 2" size message space for f,
The found collision f,(x) = f,(x") is by construction also a collision f; (x) = f;(x")

Compression function

How to construct a secure compression function?

* Davies-Meyer Feed-Forward:
Use a block cipher Ex(P) = C

#

IHV

Input message block as key, chaining value as plaintext
Feed-forward: also add input chaining value to output
Compress(CV,M) = E,(CV) + CV
[Winternitz 1984]:
e if E is anideal block cipher

* = f is collision resistant

* MD4 style-compression function:
* Davies-Meyer Feed-Forward
* Message is expanded into pieces
» Step function uses a single message piece

Step function }4 Mo

State 0 Expansion function

-

A |

| Expanded
| Message
Block

/ State 1

Step function ——"~A— Split into
| pieces

|
Step function jl—==l—

U S

/ State R

|

=

Addition ‘

A

* Entire message is processed at least 4 times

Qutput

LY)

MD5 / SHA-1 / SHA-256 compression function

A B c D A|B|C|D|E|F |G |H |
= =
i —b-t[]
Ki"‘E‘i N
S H
b -

A B C D .\ B C)] E

A[B[C|DI|E[F [G [H|

MD5 SHA-1 SHA-2

very cheap practically broken secure
collision attacks

linear recurrence non-linear

message expansion
16 x 32-bit — {64,80} x 32-bit

MDS5 compression function

[Rivest, 1991]
128-bit hash: 4 x 32-bit words
512-bit message block: 16 x 32-bit words

There are 4 rounds
e Each round has 16 steps
* and uses a permutation of the message

Starting state: (Q_3,Q_,,0Q_1,0_y) < CV
There are 64 steps:

« F; = fi(Qi, Qi-1,Qi—2)

i Ti = Fi + MTL’(i) + Qi—3 + ACL

* Qi+1 = Q; + RR(T;,RC;)

* Constants: AC;, RC;

Output: (@3, Q—2,Q—-1, Qo) + (Qe1, Qs2, Q63, Qosa)

Each step is a bijection between multiple pairs of variables
* (when fixing all others)
* My < Q-3 compute backward
* My © Qi1 compute forward

* Qi3 © Qi1

bitwise function
addition mod 232
bitwise cyclic rotation

=

2

A B C
v]\ 71
FH{F e —
. J
]
Y
~H
¥
<<q,
¥
Mg
L™

Differential Path

e Differential cryptanalysis
e Consider two related computations
* Right column: message expansion
* Left column: state computation

* Differential path

* Precise description of how differences
propagate through compression function

* Use signed difference of bits

* Last ~44 steps determine
most of attack’s complexity <€

* Translate differential path
into system of equations to solve

System of equations

System of equations
o Simple equations on state bits Q;[b], Q;[b]

o Chosen Message differences automatically hold

o First 16 steps easily solved: exploit control of message
= determines remaining 48 steps

o Make predictable small changes to solve up to step 25
(amortizes cost of earlier steps)
= only control about 39% of MD5

o Find many solutions up to step 25
to probabilistically fulfill remaining steps

* Example differential path

Example Differential Path

* First MD5 differential path [Wang et al, 2004]
* Made by hand !

* Note: near-collision attack: there is a difference in the end

* Just need a second near-collision attack to negate it again

Message M

J‘ preflx /

\

f near- near-
collision 4 collision
/ block B, f/ block B,
paddmg ‘

collision
achieved

Message M’

near- near-
¥ collision collision
block B’ block B',

sufﬁx

* Nowadays easy to create differential paths
* Project HashClash [Stevens, 2007]
https://github.com/cr-marcstevens/hashclash

* Build and execute your own collision attack:
* scripts/poc_no.sh

[t Bits Qr: b1 ... by #]
-3 10001010 11111100 01010110 11011110 | 32
-2 11000100 10011010 01100010 -0-10110 | 32
—1 01111101 01010011 01101110 -0-11110| 32
0 11101011 00011111 000010-+ +0-11010 | 32
1 ..0..0..11, 0-0-..01 -1-..... 13
2 1.10+.. 1+ =0++..00 ——+..... 15
3 11.01.. .0..+- 1-0-.... ——+..... 14
4 T— =1, 0. +=1, +1++. ... +ooa... 13
H 1-00-.00 ~-001-.0 101+0000 1+000000 | 30
6 1+11-011 ++11--01 1.+-1111 1.111111 | 30
7 1,.-... 00."—=.! = 01.... .1~.7... |15
8 1,.+... 10!-.... =.0-.0.. ..+0+..0 | 15
9 DR R 010.. -..+.0.. .!'001".0| 14
10 00.!-010 00.1..10 .00+!'+.0 .01+1-1-| 25
11 110.-111 11007011 01110+01 001-000+ | 31
12 .11700+1 0010+1+~ 0071111. 1-0-0+-0 | 30
13 “14-—--0 1-040+0- +++++++1 +——+-+4+0 | 32
14 -=1110-+ +++++0+1 00000010 +--0---. | 31
15 1+1+1-1- 011-1+10 0000000- 011-.10. | 30
16 01...00+ 10111+1. ..+..1.. 100-"01. | 21
17 0.7 +01 L1+, Lo-.01.7 .0.0..0. | 13
I8 | ..., 1 .+...+ R A 1010010 8
19 0....7.+0- . .= | 8
20 1 0... .7..1- 0....7 1. o9
21 +...1.. ..0-0 1 .0. 0|11
22 + .1 o 1..... +| 6
23 | T...... 0 ..0- 1....... . +.0.... 8
D 1 ..10. 0 0. ...1.. 8
20 | ... - L -....| 5
26 J e e 0+. 4
27 P 1o, oo, 1+ 7
28 R O.con oo = e 4
29 L0 e e 0. ..o, 2
30 T e e e [3
31 e e e e e 1
5372 P 0
33 B 1

ERIN. [0
52
532 S
63 | o e e o,

G L

https://github.com/cr-marcstevens/hashclash

Chosen-prefix collisions

* Chosen-prefix collision [Stevens et al, 2007]
* More powerful attack than a simple collision attack
* Make any 2 files collide by appending data
* Family of near-collision attacks

that combined sequentially can eliminate any ACV € D
* But first use a birthday search to find f(M|S) — f(M'|S') € D

o collision N
/" Message M achieved J

/ i b
/ _
| prefix padding lrb| Sa
/ P’ S / ‘
/ b

_ Message M’
S

Real world attacks

Chosen-prefix collisions attacks have been demonstrated in the real world
e [Stevens et al, 2007]
* Rogue Certificate Authority: can impersonate any website
[Flame malware, 2012]
 Windows Update Certificate
* They could create malicious windows updates & push to arbitrary windows machines
[Peled, Rozenshein, 2023]
e Confuse Windows CryptoAPI’s MD5 based indexing
* Exploit confusion with invalid certificate to impersonate websites
[GHHMSSS, 2024]

* Real-time chosen-prefix collision attack against
RADIUS authentication protocol

 RADIUS used in network equipment: ISP equipment, routers, WiFi controllers, ...
* Replace reject message with colliding accept message

Big collection of collision attacks for various file formats:
e https://github.com/corkami/collisions [AS]

https://github.com/corkami/collisions

