
Selected Areas in Cryptology
Cryptanalysis

Week 4

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/

mailto:stevens@cwi.nl

Cryptographic Hash Functions
Theoretical Cryptology:

Hash function family with the same range ℋ (e.g. 0,1 256)

ℱ= {𝑓: 0,1 ∗ → ℋ}

Security games for any PPT adversary 𝐴

• Pre: pre-image resistance: 𝑓 ← ℱ, ℎ ← ℋ, wins if 𝑀 ← 𝐴(𝑓, ℎ) and 𝑓 𝑀 = ℎ

• ePre: everywhere Pre: ℎ ← 𝐴; 𝑓 ← ℱ instead

• aPre: always Pre: 𝑓 ← 𝐴; ℎ ← ℋ instead

• Sec: 2nd preimage resistance: 𝑓 ← ℱ,𝑀 ← 0,1 ≤𝑛, win if 𝑀′ ← 𝐴 𝑓,𝑀 , 𝑓 𝑀 = 𝑓(𝑀′) and 𝑀 ≠ 𝑀′

• eSec: everywhere Sec: 𝑀 ← 𝐴; 𝑓 ← ℱ instead

• aSec: always Sec: 𝑓 ← 𝐴;𝑀 ← 0,1 ≤𝑛 instead

• Coll: collision resistance 𝑓 ← ℱ, win if 𝑀,𝑀′ ← 𝐴(𝑓) and 𝑓 𝑀 = 𝑓 𝑀′ and 𝑀 ≠ 𝑀′

2

Cryptographic Hash Functions
• Key-less Symmetric functionality, and has many applications!

• Often called the swiss knife of cryptography

• Inside construction of
• MACs: HMAC, KMAC, …

• digital signatures: hash-then-sign, LMS, XMSS, SPHINCS+

• Password authentication

• Blockchain proof-of-work, Blockchain addresses

• …

Cryptographic Hash Functions
Hash function standards 𝐻: 0,1 ∗ → 0,1 𝑛:

• MD5: 128-bits hash function published in 1992

• Widely used till ~~2010

• Broken in 2004: first collision found [WY05],

• SHA-1: 160-bit hash function published in 1995

• Widely used even today (TLS1.2, Git, …)

• ‘Broken’ in 2005: first theoretical collision attack [WYY05]
practical attack in 2017: first collision [SBKAM17]

• SHA-2 family: 224/256/384/512-bit hash functions published in 2001

• SHA-3 family: 224/256/384/512-bit hash functions published in 2015

4

Cryptographic hash functions
Fixed 𝑛-bit hash functions: 𝑓: 0,1 ∗ → 0,1 𝑛

• Pre, ePre, Sec, eSec, Coll security notions ill-defined

• aPre: always pre-image resistance:

• Given random ℎ ← 0,1 𝑛 find 𝑀 s/t 𝑓 𝑀 = ℎ

• aSec: always second pre-image resistance:

• Given random 𝑀 ← 0,1 ≤𝑛 find 𝑀′ ≠ 𝑀 s/t 𝑓 𝑀 = 𝑓 𝑀′

• Secure if there is no attack faster than a generic attack

5

Generic pre-image attacks
• Generic (2nd) pre-image attack

• Given any hash output ℎ, find 𝑥 such that 𝑓 𝑥 = ℎ
• Algorithm

1. Define message space ℳ with ℳ ≥ ℋ
2. Sample 𝑥 ← ℳ
3. If 𝑓 𝑥 ≠ ℎ then go to step 2
4. Return x

• Each attempt is Bernoulli trial with 𝑝 = 2−|ℎ|

• ⇒ Time: Geometric Distribution with 𝑝 = 2−|ℎ| ⇒ average time: 2|ℎ|

• Low-entropy pre-image attack
• Old practice: store password hashes & compare hash to authenticate
• Problem: password space has low entropy
• E.g. there are only 247.7 alphanumeric (a-zA-Z0-9) passwords of length ≤ 8.
• ⇒ Can use Hellman’s time-memory trade-off attack to invert arbitrary function
• Solution: salting each password 𝑝:

• Choose random salt 𝑠 ← 0,1 64 to prepend to password
• Store salt & hash: (s, 𝑓 𝑠 𝑝)

Collision conundrum
How to define collision resistance for fixed hash functions?

Mathematical existential security definitions?:

“There should exist no attack that is feasible/faster than generic attack/PPT
that finds a collision with non-negligible probability”

Conundrum:

Pigeon-hole principle ⇒ collisions exist

Any collision 𝑓 𝑀 = 𝑓(𝑀′) with 𝑀 ≠ 𝑀′ leads to a trivial attack:

Algorithm 𝐴𝑀,𝑀′: simply outputs the pair 𝑀,𝑀′

Such algorithms exist and break security definitions

However, we can’t actually write down such algorithms
unless we first compute a collision… (i.e., its non-uniform)

Foundations of Hashing Dilemma:

No formal definition of collision resistance exists

Informal definition relies on human ignorance:

“There exists no known attack that is better than the generic collision attack”

7

Generic collision attack
• Generic collision attack

For 𝑖 = 1,…

Sample 𝑀𝑖 ← 0,1 ≤𝑛, ℎ𝑖 = 𝑓(𝑀𝑖)

If ∃𝑗 < 𝑖: ℎ𝑗 = ℎ𝑖 then return (𝑀𝑗 , 𝑀𝑖)

• Cost analysis:

• Let 𝑋 be the number of samples needed before a collision is found

• 𝐸 𝑋 = σ𝑘=1
∞ 𝑘 ⋅ Pr[𝑋 = 𝑘] = σ𝑘=1

∞ 𝑘 ⋅ (Pr 𝑋 > 𝑘 − 1 − Pr 𝑋 > 𝑘)

= σ𝑘=0
∞ 𝑘 + 1 ⋅ Pr[𝑋 > 𝑘] − σ𝑘=1

∞ 𝑘 ⋅ Pr 𝑋 > 𝑘

= σ𝑘=0
∞ Pr[𝑋 > 𝑘]

• Pr 𝑋 > 𝑘 = 1
𝑁−1

𝑁

𝑁−2

𝑁
…

𝑁−𝑘+1

𝑁
= 1 1 −

1

𝑁
1 −

2

𝑁
… 1 −

𝑘−1

𝑁
(“no collision after k samples”)

≈ 1 𝑒−
1

𝑁 𝑒−
2

𝑁 𝑒−
3

𝑁…𝑒−
𝑘−1

𝑁 = 𝑒−
𝑘 𝑘−1

2𝑁 𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+⋯

≈ 𝑒−𝑘
22−𝑛−1

• Estimate:

𝐸 𝑋 ≈ σ𝑘=0
∞ 𝑒−𝑘

22−𝑛−1 ≈ 0׬
∞
𝑒−𝑘

22−𝑛−1 𝑑𝑘 = 𝜋/2 ⋅ 2𝑛/2 time cost

• Memory cost: 𝑂 2𝑛/2 8

Generic collision attack
• Memory cost improvements

• Idea: compute trails and only store begin/end-points
like Hellman’s time-memory trade-off attack

• Define search space: ℋ ≔ 0,1 𝑛

• Choose injective embedding 𝜙:ℋ → 0,1 ∗

• Let 𝑔 ≔ 𝑓 ∘ 𝜙: ℋ → ℋ

• ⇒ a collision of 𝐻 ≠ 𝐻′ of 𝑔 (i.e., 𝑔 𝐻 = 𝑔′(𝐻)) is a collision 𝜙 𝐻 ≠ 𝜙 𝐻′ of 𝑓

• Choose set of ‘distinguished points’ 𝑆 ⊂ ℋ:

• Easily distinguishable: e.g. last 𝑙-bits are zero

• Compute trails:
• Choose random starting point 𝑃0
• Iterate 𝑃𝑖 = 𝑔 𝑃𝑖−1 until a distinguishable point 𝑃𝑖 ∈ 𝑆 is encountered

• Then only store begin/end-point & length (𝑃0, 𝑃𝑖 , 𝑖)

9

Generic collision attack
• Compute trails:

• Choose random starting point 𝑃0
• Iterate 𝑔: 𝑃𝑖 = 𝑔 𝑃𝑖−1 until a distinguishable point 𝑃𝑖 ∈ 𝑆 is encountered

• Then only store begin/end-point & length (𝑃0, 𝑃𝑖 , 𝑖)

• What happens when a collision occurs:

• 𝑃𝑖 ≠ 𝑃𝑗 and 𝑔 𝑃𝑖 = 𝑔(𝑃𝑗)

• Since 𝑔 is deterministic, the two trails merge: 𝑔𝑘 𝑃𝑖 = 𝑔𝑘(𝑃𝑗)

• ⇒ End at the same distinguished point: 𝑔𝑘 𝑃𝑖 = 𝑔𝑘(𝑃𝑗) ∈ 𝑆

• Resolving a collision:

• Consider two trails (𝑃0, 𝑃𝑘 , 𝑘), (𝑃0
′ , 𝑃𝑘′

′ , 𝑘′) with 𝑃𝑘 = 𝑃𝑘′
′ ∈ 𝑆 (wlog 𝑘 ≥ 𝑘′)

• Assume collision occurs 𝑙 iterations before end

• First synchronize: iterate longest trail 𝑘 − 𝑘′ iterations

• Exceptional case: 𝑃𝑘−𝑘′ = 𝑃0
′ ⇒ ‘robin-hood’ failure

• Iterate for 𝑖 = 𝑘′ − 1,… , 0:

• If 𝑃𝑘−𝑖 = 𝑃𝑘′−𝑖
′ then return 𝜙 𝑃𝑘−𝑖−1 , 𝜙(𝑃𝑘′−𝑖−1

′)

10

𝑃0

𝑃0
′ 𝑃𝑘 = 𝑃𝑘′

′

𝑃𝑘−𝑙 = 𝑃𝑘′−𝑙
′

𝑃𝑘−𝑘′

Generic collision attack
Memory cost

• Expected total evaluations before collision occurs:

𝐸 𝑋 = 𝜋/2 ⋅ 2𝑛/2

• Expected trail length 𝑡 ≔ ℋ /|𝑆| (geometric distribution with 𝑝 = 𝑆 /|ℋ|)

• We expect ≈ 𝜋/2 ⋅ 2𝑛/2/𝑡 trails to store

• If 𝑆 consists of points with last 𝑙-bits zero

• then 𝑡 = 2𝑛/2𝑛−𝑙 = 2𝑙 and 𝑂 2𝑛/2−𝑙 memory cost

• Additional costs:

• Once a collision occurs, need to finish the trail: 𝑡 evaluations (expected trail length is memoryless)

• To compute the actual collision point: 2.5 𝑡 evaluations (analysis see link in lecture notes)

• Total 𝑂 3.5𝑡 = 𝑂(3.5 ⋅ 2𝑙) time cost

• Suggested choice 𝑙 = 𝑛/2 − 20

• Memory cost ≈1M trails

• Expected additional time cost: 𝑂 2𝑛/2/220 ≪ 𝑂 2𝑛/2

11

Generic collision attack
• See lecture notes for full collision attack algorithm

• Unlikely problematic case:
• A trail enters a cycle without ever reaching a distinguished point

• ⇒ collision attack would loop forever

• Solution:
• Discard trail if 20 𝑡 iterations is reached

• Discard case 1: no cycle reached

• Probability 1 −
1

𝑡

20 𝑡
≈ 𝑒−

1

𝑡

20𝑡

= 𝑒−20 ≈ 2−29 (“no distinguished point found”)

• Discard case 2: cycle reached: internal collision

• Probability: 1 − 𝑒− 20𝑡 2 2−𝑛−1 (“collision within 20𝑡 samples”)

• Need 20𝑡 2 ≪ 2𝑛 for this probability to be small enough

• Both negligible losses

12

Summary
• Cryptographic hash functions

• Theoretical cryptography: hash function families

• Practice: fixed hash function standards

• Foundations of Hashing Dilemma:

• No security definition possible for collision resistance for fixed hash functions

• Informal definition: “no known attack”

• Generic collision attack:

• Birthday paradox

• Use trails and distinguished points to reduce memory cost

13

Merkle-Damgard Framework
• Merkle-Damgard Iterative Design:

• Pad & split message 𝑀 into pieces 𝑀1 … 𝑀𝑛 (last block includes bitlength)

• Internal state: 𝐶𝑉𝑖 with fixed initial value 𝐶𝑉0 = 𝐼𝑉

• Update internal state with compression function

𝐶𝑉𝑖 = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝐶𝑉𝑖−1, 𝑀𝑖)

• Many standards: MD4, MD5, SHA-1, SHA-2-224/256/384/512

Merkle-Damgard Framework
• Reduction proof:

• Given a collision 𝑓 𝑀 = 𝑓 𝑀′ with 𝑀 ≠ 𝑀′

• If 𝑀 ≠ |𝑀′| then

• The last blocks are different: they include the bitlength

• Thus they form a 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 collision:

𝑓 𝑀 = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 𝐶𝑉𝑛−1, 𝑀𝑛 = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 𝐶𝑉𝑛′−1, 𝑀𝑛′
′ = 𝑓(𝑀′)

• Otherwise, if 𝑀 = |𝑀′| then there must exist an 𝑖 ∈ {1, … , 𝑛} such that:

• There is a compression function collision:

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 𝐶𝑉𝑖−1, 𝑀𝑖 = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 𝐶𝑉𝑖−1
′ , 𝑀𝑖

′ with 𝐶𝑉𝑖−1, 𝑀𝑖 ≠ (𝐶𝑉𝑖−1
′ , 𝑀𝑖

′)

• Because if no such 𝑖 exists then 𝑀 = 𝑀′

• Hence, if 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 is collision resistant then so is 𝑓

Merkle-Damgard Framework
• Types of collision attacks on 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠

• Collision: Given 𝐶𝑉 find 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 𝐶𝑉,𝑀 = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝐶𝑉,𝑀′)

• Pseudo-collision: find 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 𝐶𝑉,𝑀 = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝐶𝑉′, 𝑀′)

• Free-start pseudo-collision: find 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 𝐶𝑉,𝑀 = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝐶𝑉,𝑀′)

• Near-collision: Given 𝐶𝑉, 𝐶𝑉′, 𝒟 find 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 𝐶𝑉,𝑀 − 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 𝐶𝑉′, 𝑀′ ∈ 𝒟

• Weaknesses
• Length extension:

• Given ℎ = 𝑓(𝑀) and |𝑀| one can compute 𝑓 𝑝𝑎𝑑 𝑀 𝑆) for any 𝑆 without knowing 𝑀

• This implies that certain MAC constructions using 𝑓 are insecure:

• 𝑀𝐴𝐶 𝐾,𝑀 = 𝑓𝐾 𝑀 , here 𝑓𝐾 denotes that 𝐶𝑉0 = 𝐾

• 𝑀𝐴𝐶 𝐾,𝑀 = 𝑓 𝐾 𝑀)

• Also implies: 1 known collision ⇒ infinitely many known collisions by appending 𝑆

Merkle-Damgard Framework
• Weaknesses

• Joux’s Multi-collisions

• Assume a collision attack with given prefix 𝑃

• I.e., it outputs 𝑓 𝑀 = 𝑓(𝑀′) with 𝑀 = 𝑃|𝑆, 𝑀′ = 𝑃|𝑆′ with 𝑆 ≠ 𝑆′

• Then one can chain collision attacks:

• 𝑓 𝑆0 = 𝑓(𝑆0
′), 𝑓 𝑆0 𝑆1 = 𝑓(𝑆0|𝑆1

′), 𝑓 𝑆0 𝑆1|𝑆2 = 𝑓(𝑆0 𝑆1 𝑆2
′), ….

• Note that there are now 23 colliding messages:

𝑓 𝑆0 𝑆1 𝑆2 = 𝑓 𝑆0
′ 𝑆1 𝑆2 = 𝑓 𝑆0 𝑆1

′ 𝑆2 = 𝑓 𝑆0
′ 𝑆1

′ 𝑆2 = ⋯

• More general: 𝑡 chained collision attacks give a 2𝑡 multi-collision

• Concatenating hash functions is only as secure as the most secure one

• Let 𝑓 𝑥 = (𝑓1 𝑥 , 𝑓2 𝑥) with 𝑓1 and 𝑓2 Merkle-Damgard hash functions

• Wlog let 𝑓1 be the easiest to find collisions for, and let 𝑓2: 0,1
∗ → 0,1 𝑛

• Then generate a 2𝑛 multi-collision for 𝑓1 with 𝑛 collision attacks

• Now perform a generic collision attack over this 2𝑛 size message space for 𝑓2
• The found collision 𝑓2 𝑥 = 𝑓2 𝑥′ is by construction also a collision 𝑓1 𝑥 = 𝑓1(𝑥

′)

Compression function
• How to construct a secure compression function?

• Davies-Meyer Feed-Forward:

• Use a block cipher 𝐸𝐾 𝑃 = 𝐶

• Input message block as key, chaining value as plaintext

• Feed-forward: also add input chaining value to output

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 𝐶𝑉,𝑀 = 𝐸𝑀 𝐶𝑉 + 𝐶𝑉

• [Winternitz 1984]:

• if 𝐸 is an ideal block cipher

• ⇒ 𝑓 is collision resistant

• MD4 style-compression function:
• Davies-Meyer Feed-Forward

• Message is expanded into pieces

• Step function uses a single message piece

• Entire message is processed at least 4 times

MD5 / SHA-1 / SHA-256 compression function

MD5

very cheap
collision attacks

permutation

SHA-1

practically broken

linear recurrence

SHA-2

secure

non-linear

message expansion
16 x 32-bit → {64,80} x 32-bit

MD5 compression function
• [Rivest, 1991]

• 128-bit hash: 4 x 32-bit words

• 512-bit message block: 16 x 32-bit words

• There are 4 rounds
• Each round has 16 steps
• and uses a permutation of the message

• Starting state: 𝑄−3, 𝑄−2, 𝑄−1, 𝑄−0 ← 𝐶𝑉

• There are 64 steps:
• 𝐹𝑖 = 𝑓𝑖 𝑄𝑖 , 𝑄𝑖−1, 𝑄𝑖−2 bitwise function
• 𝑇𝑖 = 𝐹𝑖 +𝑀𝜋 𝑖 + 𝑄𝑖−3 + 𝐴𝐶𝑖 addition mod 232

• 𝑄𝑖+1 = 𝑄𝑖 + 𝑅𝑅 𝑇𝑖 , 𝑅𝐶𝑖 bitwise cyclic rotation
• Constants: 𝐴𝐶𝑖, 𝑅𝐶𝑖

• Output: 𝑄−3, 𝑄−2, 𝑄−1, 𝑄0 + 𝑄61, 𝑄62, 𝑄63, 𝑄64
• Each step is a bijection between multiple pairs of variables

• (when fixing all others)
• 𝑀𝜋 𝑖 ↔ 𝑄𝑖−3 compute backward
• 𝑀𝜋 𝑖 ↔ 𝑄𝑖+1 compute forward

• 𝑄𝑖−3 ↔ 𝑄𝑖+1

Differential Path
• Differential cryptanalysis

• Consider two related computations

• Right column: message expansion

• Left column: state computation

• Differential path
• Precise description of how differences

propagate through compression function

• Use signed difference of bits

• Last ~44 steps determine
most of attack’s complexity

• Translate differential path
into system of equations to solve

⊕

F
F

F

System of equations
System of equations

◦ Simple equations on state bits 𝑄𝑖 𝑏 , 𝑄𝑖
′[𝑏]

◦ Chosen Message differences automatically hold

◦ First 16 steps easily solved: exploit control of message
⇒ determines remaining 48 steps

◦ Make predictable small changes to solve up to step 25
(amortizes cost of earlier steps)
⇒ only control about 39% of MD5

◦ Find many solutions up to step 25
to probabilistically fulfill remaining steps

⊕

F
F

F

Example Differential Path
• Example differential path

• First MD5 differential path [Wang et al, 2004]

• Made by hand !

• Note: near-collision attack: there is a difference in the end

• Just need a second near-collision attack to negate it again

• Nowadays easy to create differential paths
• Project HashClash [Stevens, 2007]

• https://github.com/cr-marcstevens/hashclash

• Build and execute your own collision attack:

• scripts/poc_no.sh

https://github.com/cr-marcstevens/hashclash

Chosen-prefix collisions
• Chosen-prefix collision [Stevens et al, 2007]

• More powerful attack than a simple collision attack

• Make any 2 files collide by appending data

• Family of near-collision attacks

that combined sequentially can eliminate any ΔCV ∈ 𝒟

• But first use a birthday search to find 𝑓 𝑀 𝑆 − 𝑓 𝑀′ 𝑆′ ∈ 𝒟

Real world attacks
• Chosen-prefix collisions attacks have been demonstrated in the real world

• [Stevens et al, 2007]

• Rogue Certificate Authority: can impersonate any website

• [Flame malware, 2012]

• Windows Update Certificate

• They could create malicious windows updates & push to arbitrary windows machines

• [Peled, Rozenshein, 2023]

• Confuse Windows CryptoAPI’s MD5 based indexing

• Exploit confusion with invalid certificate to impersonate websites

• [GHHMSSS, 2024]

• Real-time chosen-prefix collision attack against
RADIUS authentication protocol

• RADIUS used in network equipment: ISP equipment, routers, WiFi controllers, …

• Replace reject message with colliding accept message

• Big collection of collision attacks for various file formats:

• https://github.com/corkami/collisions [AS]

https://github.com/corkami/collisions

