Selected Areas in Cryptology Cryptanalysis Week 4

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/

Cryptographic Hash Functions

Theoretical Cryptology:

Hash function family with the same range \mathcal{H} (e.g. $\{0,1\}^{256}$)

$$\mathcal{F} = \{f : \{0,1\}^* \to \mathcal{H}\}$$

Security games for any PPT adversary A

- Pre: pre-image resistance: $f \leftarrow \mathcal{F}, h \leftarrow \mathcal{H}$, wins if $M \leftarrow A(f, h)$ and f(M) = h
- ePre: everywhere Pre: $h \leftarrow A$; $f \leftarrow \mathcal{F}$ instead
- aPre: always Pre: $f \leftarrow A$; $h \leftarrow \mathcal{H}$ instead
- Sec: 2nd preimage resistance: $f \leftarrow \mathcal{F}, M \leftarrow \{0,1\}^{\leq n}$, win if $M' \leftarrow A(f,M), f(M) = f(M')$ and $M \neq M'$
- eSec: everywhere Sec: $M \leftarrow A$; $f \leftarrow \mathcal{F}$ instead
- aSec: always Sec: $f \leftarrow A; M \leftarrow \{0,1\}^{\leq n}$ instead
- Coll: collision resistance $f \leftarrow \mathcal{F}$, win if $M, M' \leftarrow A(f)$ and f(M) = f(M') and $M \neq M'$

Cryptographic Hash Functions

- Key-less Symmetric functionality, and has many applications!
- Often called the swiss knife of cryptography

- Inside construction of
 - MACs: HMAC, KMAC, ...
 - digital signatures: hash-then-sign, LMS, XMSS, SPHINCS+
 - Password authentication
 - Blockchain proof-of-work, Blockchain addresses
 - ...

Cryptographic Hash Functions

Hash function standards $H: \{0,1\}^* \rightarrow \{0,1\}^n$:

- MD5: 128-bits hash function published in 1992
 - Widely used till ~~2010
 - Broken in 2004: first collision found [WY05],
- SHA-1: 160-bit hash function published in 1995
 - Widely used even today (TLS1.2, Git, ...)
 - 'Broken' in 2005: first theoretical collision attack [WYY05] practical attack in 2017: first collision [SBKAM17]
- SHA-2 family: 224/256/384/512-bit hash functions published in 2001
- SHA-3 family: 224/256/384/512-bit hash functions published in 2015

Cryptographic hash functions

Fixed *n*-bit hash functions: $f: \{0,1\}^* \rightarrow \{0,1\}^n$

- Pre, ePre, Sec, eSec, Coll security notions ill-defined
- aPre: always pre-image resistance:
 - Given random $h \leftarrow \{0,1\}^n$ find M s/t f(M) = h
- aSec: always second pre-image resistance:
 - Given random $M \leftarrow \{0,1\}^{\leq n}$ find $M' \neq M$ s/t f(M) = f(M')
- Secure if there is no attack faster than a generic attack

Generic pre-image attacks

- Generic (2nd) pre-image attack
 - Given any hash output h, find x such that f(x) = h
 - Algorithm
 - 1. Define message space \mathcal{M} with $|\mathcal{M}| \geq |\mathcal{H}|$
 - 2. Sample $x \leftarrow \mathcal{M}$
 - 3. If $f(x) \neq h$ then go to step 2
 - 4. Return x
 - Each attempt is Bernoulli trial with $p = 2^{-|h|}$
 - \Rightarrow Time: Geometric Distribution with $p = 2^{-|h|} \Rightarrow$ average time: $2^{|h|}$

Low-entropy pre-image attack

- Old practice: store password hashes & compare hash to authenticate
- Problem: password space has low entropy
- E.g. there are only $2^{47.7}$ alphanumeric (a-zA-Z0-9) passwords of length ≤ 8 .
- ⇒ Can use Hellman's time-memory trade-off attack to invert arbitrary function
- Solution: *salting* each password *p*:
 - Choose random salt $s \leftarrow \{0,1\}^{64}$ to prepend to password
 - Store salt & hash: (s, f(s|p))

Collision conundrum

How to define collision resistance for fixed hash functions?

Mathematical existential security definitions?:

"There should exist no attack that is feasible/faster than generic attack/PPT that finds a collision with non-negligible probability"

Conundrum:

Pigeon-hole principle \Rightarrow collisions exist

Any collision f(M) = f(M') with $M \neq M'$ leads to a trivial attack:

Algorithm $A_{M,M'}$: simply outputs the pair M,M'

Such algorithms exist and break security definitions

However, we can't actually write down such algorithms unless we first compute a collision... (i.e., its non-uniform)

Foundations of Hashing Dilemma:

No formal definition of collision resistance exists

Informal definition relies on human ignorance:

"There exists no known attack that is better than the generic collision attack"

Generic collision attack

For
$$i=1,...$$

Sample $M_i \leftarrow \{0,1\}^{\leq n}$, $h_i=f(M_i)$
If $\exists j < i : h_i = h_i$ then return (M_i, M_i)

- Cost analysis:
 - Let X be the number of samples needed before a collision is found

•
$$E[X] = \sum_{k=1}^{\infty} k \cdot \Pr[X = k] = \sum_{k=1}^{\infty} k \cdot (\Pr[X > k - 1] - \Pr[X > k])$$

 $= \sum_{k=0}^{\infty} (k+1) \cdot \Pr[X > k] - \sum_{k=1}^{\infty} k \cdot \Pr[X > k]$
 $= \sum_{k=0}^{\infty} \Pr[X > k]$

•
$$\Pr[X > k] = 1 \frac{N-1}{N} \frac{N-2}{N} \dots \frac{N-k+1}{N} = 1 \left(1 - \frac{1}{N}\right) \left(1 - \frac{2}{N}\right) \dots \left(1 - \frac{k-1}{N}\right)$$
 ("no collision after k samples")
$$\approx 1 e^{-\frac{1}{N}} e^{-\frac{2}{N}} e^{-\frac{3}{N}} \dots e^{-\frac{k-1}{N}} = e^{-\frac{k(k-1)}{2N}}$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots$$

$$\approx e^{-k^{2}2^{-n-1}}$$

• Estimate:

$$E[X] \approx \sum_{k=0}^{\infty} e^{-k^2 2^{-n-1}} \approx \int_0^{\infty} e^{-k^2 2^{-n-1}} dk = \sqrt{\pi/2} \cdot 2^{n/2}$$
 time cost

• Memory cost: $O(2^{n/2})$

- Memory cost improvements
 - Idea: compute trails and only store begin/end-points like Hellman's time-memory trade-off attack
 - Define search space: $\mathcal{H} := \{0,1\}^n$
 - Choose injective embedding $\phi: \mathcal{H} \to \{0,1\}^*$
 - Let $g \coloneqq f \circ \phi \colon \mathcal{H} \to \mathcal{H}$
 - \Rightarrow a collision of $H \neq H'$ of g (i.e., g(H) = g'(H)) is a collision $\phi(H) \neq \phi(H')$ of f
 - Choose set of 'distinguished points' $S \subset \mathcal{H}$:
 - Easily distinguishable: e.g. last *l*-bits are zero
 - Compute trails:
 - Choose random starting point P_0
 - Iterate $P_i = g(P_{i-1})$ until a distinguishable point $P_i \in S$ is encountered
 - Then only store begin/end-point & length (P_0, P_i, i)

- Compute trails:
 - Choose random starting point P₀
 - Iterate $g: P_i = g(P_{i-1})$ until a distinguishable point $P_i \in S$ is encountered
 - Then only store begin/end-point & length (P_0, P_i, i)
- What happens when a collision occurs:
 - $P_i \neq P_j$ and $g(P_i) = g(P_j)$
 - Since g is deterministic, the two trails merge: $g^k(P_i) = g^k(P_i)$
 - \Rightarrow End at the same distinguished point: $g^k(P_i) = g^k(P_i) \in S$
- Resolving a collision:
 - Consider two trails (P_0, P_k, k) , $(P'_0, P'_{k'}, k')$ with $P_k = P'_{k'} \in S$ (wlog $k \ge k'$)
 - Assume collision occurs l iterations before end
 - First synchronize: iterate longest trail k k' iterations
 - Exceptional case: $P_{k-k'} = P'_0 \Rightarrow$ 'robin-hood' failure
 - Iterate for i = k' 1, ..., 0:
 - If $P_{k-i} = P'_{k'-i}$ then return $\phi(P_{k-i-1}), \phi(P'_{k'-i-1})$

Memory cost

Expected total evaluations before collision occurs:

$$E[X] = \sqrt{\pi/2} \cdot 2^{n/2}$$

- Expected trail length $t := |\mathcal{H}|/|S|$ (geometric distribution with $p = |S|/|\mathcal{H}|$)
- We expect $\approx \sqrt{\pi/2} \cdot 2^{n/2}/t$ trails to store
 - If S consists of points with last l-bits zero
 - then $t = 2^n/2^{n-l} = 2^l$ and $O(2^{n/2-l})$ memory cost
- Additional costs:
 - Once a collision occurs, need to finish the trail: t evaluations (expected trail length is memoryless)
 - To compute the actual collision point: 2.5 t evaluations (analysis see link in lecture notes)
 - Total $O(3.5t) = O(3.5 \cdot 2^l)$ time cost
- Suggested choice l = n/2 20
 - Memory cost ≈1M trails
 - Expected additional time cost: $O(2^{n/2}/2^{20}) \ll O(2^{n/2})$

- See lecture notes for full collision attack algorithm
- Unlikely problematic case:
 - A trail enters a cycle without ever reaching a distinguished point
 - ⇒ collision attack would loop forever
- Solution:
 - Discard trail if 20 t iterations is reached
 - Discard case 1: no cycle reached
 - Probability $\left(1 \frac{1}{t}\right)^{20 t} \approx \left(e^{-\frac{1}{t}}\right)^{20 t} = e^{-20} \approx 2^{-29}$
 - Discard case 2: cycle reached: internal collision
 - Probability: $1 e^{-(20t)^2 2^{-n-1}}$
 - Need $(20t)^2 \ll 2^n$ for this probability to be small enough
 - Both negligible losses

("no distinguished point found")

("collision within 20t samples")

<u>Summary</u>

- Cryptographic hash functions
 - Theoretical cryptography: hash function families
 - Practice: fixed hash function standards
- Foundations of Hashing Dilemma:
 - No security definition possible for collision resistance for fixed hash functions
 - Informal definition: "no known attack"

- Generic collision attack:
 - Birthday paradox
 - Use trails and distinguished points to reduce memory cost

- Merkle-Damgard Iterative Design:
 - Pad & split message M into pieces $M_1 \mid ... \mid M_n$ (last block includes bitlength)
 - Internal state: CV_i with fixed initial value $CV_0 = IV$
 - Update internal state with compression function

$$CV_i = Compress(CV_{i-1}, M_i)$$

• Many standards: MD4, MD5, SHA-1, SHA-2-224/256/384/512

- Reduction proof:
 - Given a collision f(M) = f(M') with $M \neq M'$
 - If $|M| \neq |M'|$ then
 - The last blocks are different: they include the bitlength
 - Thus they form a *Compress* collision:

$$f(M) = Compress(CV_{n-1}, M_n) = Compress(CV_{n'-1}, M'_{n'}) = f(M')$$

- Otherwise, if |M| = |M'| then there must exist an $i \in \{1, ..., n\}$ such that:
 - There is a compression function collision: $Compress(CV_{i-1}, M_i) = Compress(CV_{i-1}', M_i') \quad \text{with } (CV_{i-1}, M_i) \neq (CV_{i-1}', M_i')$
 - Because if no such i exists then M = M'
- Hence, if Compress is collision resistant then so is f

• Types of collision attacks on *Compress*

```
• Collision: Given CV find Compress(CV, M) = Compress(CV, M')
```

- Pseudo-collision: find Compress(CV, M) = Compress(CV', M')
- Free-start pseudo-collision: find Compress(CV, M) = Compress(CV, M')
- Near-collision: Given CV, CV', \mathcal{D} find $Compress(CV, M) Compress(CV', M') \in \mathcal{D}$

Weaknesses

- Length extension:
 - Given h = f(M) and |M| one can compute f(pad(M)|S) for any S without knowing M
 - This implies that certain MAC constructions using f are insecure:
 - $MAC(K, M) = f_K(M)$, here f_K denotes that $CV_0 = K$
 - $MAC(K, M) = f(K \mid M)$
 - Also implies: 1 known collision \Rightarrow infinitely many known collisions by appending S

Weaknesses

- Joux's Multi-collisions
 - Assume a collision attack with given prefix P
 - I.e., it outputs f(M) = f(M') with M = P|S, M' = P|S' with $S \neq S'$
 - Then one can chain collision attacks:
 - $f(S_0) = f(S'_0), f(S_0|S_1) = f(S_0|S'_1), f(S_0|S_1|S_2) = f(S_0|S_1|S'_2), \dots$
 - Note that there are now 2^3 colliding messages:

$$f(S_0|S_1|S_2) = f(S_0'|S_1|S_2) = f(S_0|S_1'|S_2) = f(S_0'|S_1'|S_2) = \cdots$$

- More general: t chained collision attacks give a 2^t multi-collision
- Concatenating hash functions is only as secure as the most secure one
 - Let $f(x) = (f_1(x), f_2(x))$ with f_1 and f_2 Merkle-Damgard hash functions
 - Wlog let f_1 be the easiest to find collisions for, and let $f_2: \{0,1\}^* \to \{0,1\}^n$
 - Then generate a 2^n multi-collision for f_1 with n collision attacks
 - Now perform a generic collision attack over this 2^n size message space for f_2
 - The found collision $f_2(x) = f_2(x')$ is by construction also a collision $f_1(x) = f_1(x')$

Compression function

- How to construct a secure compression function?
 - Davies-Meyer Feed-Forward:
 - Use a block cipher $E_K(P) = C$
 - Input message block as key, chaining value as plaintext
 - Feed-forward: also add input chaining value to output $Compress(CV, M) = E_M(CV) + CV$
 - [Winternitz 1984]:
 - if *E* is an *ideal* block cipher
 - \Rightarrow f is collision resistant
 - MD4 style-compression function:
 - Davies-Meyer Feed-Forward
 - Message is expanded into pieces
 - Step function uses a single message piece
 - Entire message is processed at least 4 times

MD5 / SHA-1 / SHA-256 compression function

MD5 compression function

bitwise function

addition mod 2^{32}

bitwise cyclic rotation

- [Rivest, 1991]
- 128-bit hash: 4 x 32-bit words
- 512-bit message block: 16 x 32-bit words
- There are 4 rounds
 - Each round has 16 steps
 - and uses a permutation of the message
- Starting state: $(Q_{-3}, Q_{-2}, Q_{-1}, Q_{-0}) \leftarrow CV$
- There are 64 steps:
 - $F_i = f_i(Q_i, Q_{i-1}, Q_{i-2})$
 - $T_i = F_i + M_{\pi(i)} + Q_{i-3} + AC_i$
 - $Q_{i+1} = Q_i + RR(T_i, RC_i)$
 - Constants: AC_i , RC_i
- Output: $(Q_{-3}, Q_{-2}, Q_{-1}, Q_0) + (Q_{61}, Q_{62}, Q_{63}, Q_{64})$
- Each step is a bijection between multiple pairs of variables
 - (when fixing all others)
 - $M_{\pi(i)} \leftrightarrow Q_{i-3}$ compute backward
 - $M_{\pi(i)} \leftrightarrow Q_{i+1}$ compute forward
 - $Q_{i-3} \leftrightarrow Q_{i+1}$

Differential Path

Differential cryptanalysis

- Consider two related computations
- Right column: message expansion
- Left column: state computation

Differential path

- Precise description of how differences propagate through compression function
- Use signed difference of bits
- Last ~44 steps determine most of attack's complexity
- Translate differential path into system of equations to solve

System of equations

System of equations

- Simple equations on state bits $Q_i[b]$, $Q'_i[b]$
- Chosen Message differences automatically hold
- First 16 steps easily solved: exploit control of message
 ⇒ determines remaining 48 steps
- Make predictable small changes to solve up to step 25
 (amortizes cost of earlier steps)
 ⇒ only control about 39% of MD5
- Find many solutions up to step 25 to probabilistically fulfill remaining steps

Example Differential Path

- Example differential path
 - First MD5 differential path [Wang et al, 2004]
 - Made by hand!
 - Note: near-collision attack: there is a difference in the end
 - Just need a second near-collision attack to negate it again

- Nowadays easy to create differential paths
 - Project HashClash [Stevens, 2007]
 - https://github.com/cr-marcstevens/hashclash
 - Build and execute your own collision attack:
 - scripts/poc_no.sh

t		Bits Q_t :	$b_{31} \dots b_0$		#
-3	10001010	11111100	01010110	11011110	32
-2	11000100	10011010	01100010	-0-10110	32
-1	01111101	01010011	01101110	-0-11110	32
0	11101011	00011111	000010-+	+0-11010	32
1	00	11	0-001	-1	13
2	.1.!0+	1+	-0++00	+	15
3	.1!.01	.0+	1-0	+	14
4	!1	.0+-!.	+1++	.+	13
5	!-0000	^-0010	101+0000	1+000000	30
6	!+11-011	++1101	1.+-1111	1.111111	30
7	!1	00.^!	01	.1^.^	15
8	!1+	10!	00	+0+0	15
9	!.1	010	+.0	.!001^.0	14
10	00.!-010	00.110	.00+!+.0	.01+1-1-	25
11	110111	1100^011	01110+01	001-000+	31
12	.11^00+1	0010+1+^	00^1111.	1-0-0+-0	30
13	^1+0	1-0+0+0-	+++++1	++-+0	32
14	1110-+	+++++0+1	00000010	+0	31
15	1+1+1-1-	011-1+10	0000000-	01110.	30
16	0100+	10111+1.	+1	100-^01.	21
17	.0.^.+.1	.1.^.+	1.^	.0.00.	13
18	1	.++	1+	.1.11.	8
19	0^.+	0			8
20	10	.^1	0^	.10	9
21	+1^	0-0	1.^	.0^0	11
22	+	1.^	+	.1+	6
23	^0	0-^	1	.+.0	8
24	^1	10	00.	1^	8
25		+		.^	5
26	0		0+.		4
27	1^	^1	1+.	^	7
28	+	0	+	• • • • • • • •	4
29	0	• • • • • • • • • • • • • • • • • • • •	0.		2
30		• • • • • • • • •	^1.		3
31					$\begin{array}{c c} 1 \\ 0 \end{array}$
32 33					1
34 - 60	!				0
					U
61		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •		
62		• • • • • • • • •		+	
63		• • • • • • • • •		+	
64				+	

Chosen-prefix collisions

- Chosen-prefix collision [Stevens et al, 2007]
 - More powerful attack than a simple collision attack
 - Make <u>any 2 files</u> collide by <u>appending data</u>
 - Family of near-collision attacks that combined sequentially can eliminate any $\Delta CV \in \mathcal{D}$
 - But first use a birthday search to find $f(M|S) f(M'|S') \in \mathcal{D}$

Real world attacks

- Chosen-prefix collisions attacks have been demonstrated in the real world
 - [Stevens et al, 2007]
 - Rogue Certificate Authority: can impersonate any website
 - [Flame malware, 2012]
 - Windows Update Certificate
 - They could create malicious windows updates & push to arbitrary windows machines
 - [Peled, Rozenshein, 2023]
 - Confuse Windows CryptoAPI's MD5 based indexing
 - Exploit confusion with invalid certificate to impersonate websites
 - [GHHMSSS, 2024]
 - Real-time chosen-prefix collision attack against RADIUS authentication protocol
 - RADIUS used in network equipment: ISP equipment, routers, WiFi controllers, ...
 - Replace reject message with colliding accept message
 - Big collection of collision attacks for various file formats:
 - https://github.com/corkami/collisions [AS]