
Selected Areas in Cryptology
Cryptanalysis

Week 5

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/

mailto:stevens@cwi.nl

Asymmetric from symmetric cryptography
• Can we build asymmetric cryptography from symmetric cryptography?

• Benefits:
• Symmetric cryptography seems generally to resist quantum cryptanalysis

• No number-theoretic assumptions that might

• This week:
• Hash-based signatures

Hash-Based Signatures (HBS)
• Entirely based on cryptographic hash functions

• Single assumption for signatures as we need hash functions anyway!

• Core concept:
• private key contains hash pre-images

• signatures selectively reveal these pre-images

• Most HBS are one-time: reusing a private key breaks security!

• Few-time HBS: can reuse private key a few times

• Build many-time HBS from many one-time/few-time HBS!

Cryptographic Hash Functions
Hash function standards 𝐻: 0,1 ∗ → 0,1 𝑛:

• MD5: 128-bits hash function published in 1992

• Widely used till ~~2010

• Broken in 2004: first collision found [WY05],

• SHA-1: 160-bit hash function published in 1995

• Widely used even today (TLS1.2, Git, …)

• ‘Broken’ in 2005: first theoretical collision attack [WYY05]
practical attack in 2017: first collision [SBKAM17]

• SHA-2 family: 224/256/384/512-bit hash functions published in 2001

• SHA-3 family: 224/256/384/512-bit hash functions published in 2015

4

Cryptographic hash functions
Fixed 𝑛-bit hash functions: 𝑓: 0,1 ∗ → 0,1 𝑛

• aPre: always pre-image resistance:

• Given random ℎ ← 0,1 𝑛 find 𝑀 s/t 𝑓 𝑀 = ℎ

• aSec: always second pre-image resistance:

• Given random 𝑀 ← 0,1 ≤𝑛 find 𝑀′ ≠ 𝑀 s/t 𝑓 𝑀 = 𝑓 𝑀′

• Secure if there is no attack faster than a generic attack

• Classically:

• aPre / aSec: brute force search: 𝑂(2𝑛)

• Coll: birthday search: 𝑂(2𝑛/2)

• Quantum:

• aPre / aSec: Grover: 𝑂(2(𝑛+𝑘)/2) on 2𝑘 quantum computers

• Coll: [CNS’17]: 𝑂(22(𝑛+𝑘)/5) on 2𝑘 quantum computers

• Cryptographic hash functions can be quantum-safe for sufficiently large output size: 256 bits

5

Preliminaries

• Consider input distributions 𝑋1, 𝑋2,…, 𝑋𝑘, and an index 𝐵 over {1,2, … , 𝑘}

• For a PPT algorithm 𝐴, a given input distribution implies an output distribution

• 𝑌𝑖 = 𝐴(𝑋𝑖)

• Consider 𝑋𝑖 and 𝑋𝑗 being sampled in different ways but their distributions are identical

• Then 𝑌𝑖 = 𝐴 𝑋𝑖 = 𝐴 𝑋𝑗 = 𝑌𝑗

• But then 𝑌𝐵 = 𝐴(𝑋𝐵) also independent from 𝐵

• Thus can even view 𝐵 as being chosen after A is run

Preliminaries
• If 𝑋𝑖 and 𝑋𝑗 have different distributions then 𝑌𝑖 and 𝑌𝑗 may or may not be identical distributed

• Always be careful in changing an algorithm’s input distribution: it’s success probability might change!

• But also: if output distribution changes significantly then it can thus distinguish between 𝑋𝑖 and 𝑋𝑗

• Distinguishing advantage: Adv𝐴 Xi, Xj = | Pr 𝐴 𝑋𝑖 = 1 − Pr 𝐴 𝑋𝑗 = 1 |

• Some security properties are defined as distinguishing games:

• 𝑋𝑛,1 represents a cryptographic scheme: say the hash output 𝑓𝑛 𝑥 of a randomly chosen message 𝑥

• 𝑋𝑛,2 a simplified idealized scheme: say a random bitstring of the same length as 𝑓𝑛(𝑥)

• The formal definition that the cryptographic scheme behaves as the simplified idealized scheme:

• for all PPT algorithms 𝐴: Adv𝐴 Xn,1, X𝑛,2 ∈ negl(𝑛) (viewing it as a function in 𝑛 ∈ ℕ)

• E.g.: formal definition that hash outputs “should look like random bitstrings”

• But be careful of more information: knowing the hash function and preimage, distinguishing is easy!

One-Time Signatures
• Signature Scheme consists of 3 algorithms

• 𝑠𝑘, 𝑝𝑘 ← keygen(1𝜆): generates private/public key pair for security parameter λ

• 𝜎 ← sign(𝑠𝑘,𝑚): generates signature 𝜎 for message 𝑚 with private key 𝑠𝑘

• 𝑏 ← verify(𝑝𝑘,𝑚, 𝜎): verifies signature 𝜎 for message 𝑚 with public key 𝑝𝑘

• A One-Time Signature (OTS) Scheme only allows to call sign once

• EU-CMA: Existential Unforgeability under adaptive Chosen Message Attack

• Attacker succeeds when it generates any forgery

• (𝑚∗, 𝜎∗) for which verify 𝑝𝑘,𝑚∗, 𝜎∗ = 1

• But 𝑚∗ must not have been signed by user before

• Adaptive Chosen Message Attack:

• Allowed to query 𝑘 signatures adaptively

• General: 𝑘 𝑛 ∈ poly(𝑛)

• OTS: 𝑘 = 1
(wlog attacker queries exactly 1 signature)

• Scheme is EU-CMA secure i.f.f. for all PPT attackers 𝐴: Pr 𝐴 succeeds ∈ negl(𝜆)

EU-CMA Game

Game 𝐺EU−CMA−OTS(1
𝑛, 𝑆, 𝐴):

1. 𝑠𝑘, 𝑝𝑘 ← S. keygen(1𝑛)
2. 𝑚 ← 𝐴 1𝑛, 𝑝𝑘
3. 𝜎𝑚 ← S. sign(𝑠𝑘,𝑚)
4. 𝑚∗, 𝜎∗ ← 𝐴(1𝑛, 𝜎𝑚)
5. Return 1 if

𝑚∗ ≠ 𝑚 ∧ S. verify 𝑝𝑘,𝑚∗, 𝜎∗ = 1
6. Return 0 otherwise

EU-CMA-OTS

𝐴

← 𝑝𝑘
→ 𝑚
← 𝜎𝑚
→ 𝑚∗, 𝜎∗

→ 1 if 𝑚∗ ≠ 𝑚 and
verify 𝑝𝑘,𝑚∗, 𝜎∗ = 1

0 otherwise

Lamport OTS
1-bit messages

Lamport OTS 1-bit message

𝑠𝑘0

𝑓

𝑝𝑘0

𝑠𝑘1

𝑓

𝑝𝑘1

Private
key

Public
key

𝜎1 = 𝑠𝑘1
𝑓

𝜎0 = 𝑠𝑘0
𝑓

Make either 𝑠𝑘0 or 𝑠𝑘1 public
as signature for 0 resp. 1.

Lamport OTS – 1-bit message
• Lamport OTS (One-Time Signature) for 1-bit message

• Private key: sample (𝑟0, 𝑟1) ← 0,1 𝑛×2

• Public key: (𝑝𝑘0, 𝑝𝑘1) = (𝑓 𝑟0 , 𝑓(𝑟1))

• Signing: sign 𝑚 ∈ {0,1}: output 𝜎𝑚 = 𝑟𝑚
• Verification: Verify 𝑓 𝜎𝑚 = 𝑝𝑘𝑚

• Limited to signing 1 message only of 1 bit only

• Security of Lamport OTS is based on security of underlying hash function 𝑓:

• (always) pre-image resistance: hard to find preimage for a randomly chosen hash

• Undetectability: hash outputs 𝑓(𝑥) are indistinguishable from randomly chosen bitstrings
(for randomly generated 𝑥 which is unknown to attacker)

Lamport OTS – 1-bit message
• (always) pre-image resistance:

• A computational puzzle game

• Outputs 1 only if 𝐴 finds solution

• This may only happen with negligible probability:

• Pre-secure iff Pr 𝐺Pre 1𝑛, 𝑓𝑛, 𝐴 = 1 ∈ negl(𝑛)

• Undetectability:

• A distinguishability / guessing game

• 𝐴 must not be able to distinguish with non-negligibly probability

• UD-secure iff | Pr 𝐺UD
0 1𝑛, 𝑓𝑛, 𝐴 = 1 − Pr[𝐺𝑈𝐷

1 1𝑛, 𝑓𝑛, 𝐴 = 1]| ∈ negl(𝑛)

Game 𝐺Pre(1
𝑛, 𝑓𝑛, 𝐴):

1. ℎ ← 0,1 𝑛

2. 𝑥 ← 𝐴 1𝑛, 𝑓𝑛, ℎ
3. Return 1 if 𝑓𝑛 𝑥 = ℎ
4. Return 0 otherwise

Game 𝐺UD
𝑔
(1𝑛, 𝑓𝑛, 𝐴):

1. 𝑥 ← 0,1 𝑛

2. If 𝑔 = 1 then: ℎ = 𝑥
3. Else: ℎ = 𝑓𝑛(𝑥)
4. Return 𝐴(1𝑛, 𝑓𝑛, ℎ)

• So given PPT 𝐴 for Game EU-CMA we’re going to embed it in a machine 𝑀𝐴

• This machine will embed a given hash value 𝑦 in the public key 𝑝𝑘(𝑦):

• it will try to use 𝐴 to find a preimage 𝜎′ for 𝑦: 𝑓 𝜎′ = 𝑦 or otherwise it returns ⊥

• We can use this machine 𝑀𝐴 as adversary for Pre-image & Undetectability

• By Pre-image resistance assumption it will have negligible success probability for Pre-image

• For Undetectability there are 2 possible inputs:

• 𝑦 = 𝑥: now 𝐴’s input distribution is identical to Pre-image ⇒ has negligible success prob.

• 𝑦 = 𝑓(𝑥): now 𝐴’s input distribution is identical to EU-CMA ⇒ contradiction if non-negligible prob.

Proof structure

EU-CMA

𝐴
← 𝑝𝑘
→ 𝑚′, 𝜎′

Machine 𝑀𝐴

← 𝑦
→ 𝜎′/⊥ or 1/0𝐴

← 𝑝𝑘(𝑦)
→ 𝑚′, 𝜎′

Pre-image

Machine 𝑀𝐴

← 𝑦
→ 𝜎′/⊥𝐴

← 𝑝𝑘(𝑦)
→ 𝑚′, 𝜎′

Undetectability

Machine 𝑀𝐴

← 𝑥 / 𝑓(𝑥)
→ 1/0𝐴

← 𝑝𝑘(𝑦)
→ 𝑚′, 𝜎′

Lamport OTS – 1-bit message
• Security proof by contradiction

• Given PPT 𝐴 that solves EU-CMA forgery game with probability 𝑝forg ∉ negl(𝑛)

• Build Machine 𝑀𝐴

• Idea: embedded pre-image challenge 𝑦 for message 𝑚 = 𝑏 in public key 𝑝𝑘

• A successful forgery for 𝑚 = 𝑏 should give a valid pre-image

• If 𝐴 asks for signature of 𝑚 = 𝑏 then we need to abort: we don’t know a valid signature

Game 𝐺EU−CMA−OTS(1
𝑛, 𝑓𝑛, 𝐴):

1. 𝑠𝑘, 𝑝𝑘 ← keygen(1𝑛)
2. 𝑚 ∈ {0,1} ← 𝐴 1𝑛, 𝑓𝑛, 𝑝𝑘
3. 𝑚∗, 𝜎∗ ← 𝐴(1𝑛, 𝑓𝑛, 𝜎𝑚 = 𝑠𝑘𝑚)
4. Return 1 if 𝑚′ ≠ 𝑚 ∧ 𝑓𝑛 𝜎∗ = 𝑝𝑘𝑚∗

5. Return 0 otherwise

Machine 𝑀𝐴(1𝑛, 𝑓𝑛, 𝑦):
1. 𝑠𝑘, 𝑝𝑘 ← keygen(1𝑛)
2. 𝑏 ← 0,1 , 𝑝𝑘𝑏 = 𝑦
3. 𝑚 ∈ {0,1} ← 𝐴 1𝑛, 𝑓𝑛, 𝑝𝑘
4. If 𝑚 = 𝑏 then return ⊥
5. 𝑚∗, 𝜎∗ ← 𝐴(1𝑛, 𝑓𝑛, 𝜎𝑚 = 𝑠𝑘𝑚)
6. If 𝑓 𝜎∗ = 𝑦 then return 𝜎∗

7. Else return ⊥

Lamport OTS – 1-bit message
𝑀𝐴 is designed as an adversary against Pre:

• 𝑝Pre ≔ Pr 𝐺Pre 1𝑛, 𝑓𝑛, 𝑀
𝐴 = 1 = Pr[𝑀𝐴 ≠⊥]

• By Pre assumption: 𝑝Pre ∈ negl(𝑛)

Game 𝐺Pre(1
𝑛, 𝑓𝑛, 𝐴):

1. ℎ ← 0,1 𝑛

2. 𝑥 ← 𝐴 1𝑛, ℎ
3. Return 1 if 𝑓𝑛 𝑥 = ℎ
4. Return 0 otherwise

Machine 𝑀𝐴(1𝑛, 𝑓𝑛, 𝑦):
1. 𝑠𝑘, 𝑝𝑘 ← keygen(1𝑛)
2. 𝑏 ← 0,1 , 𝑝𝑘𝑏 = 𝑦
3. 𝑚 ∈ {0,1} ← 𝐴 1𝑛, 𝑓𝑛, 𝑝𝑘
4. If 𝑚 = 𝑏 then return ⊥
5. 𝑚∗, 𝜎∗ ← 𝐴(1𝑛, 𝑓𝑛, 𝜎𝑚 = 𝑠𝑘𝑚)
6. If 𝑓 𝜎∗ = 𝑦 then return 𝜎∗

7. Else return ⊥

Note that 𝜎∗ is a preimage of 𝑦 = 𝑝𝑘𝑏
iff 𝜎∗ is a valid forgery for 𝑚∗ = 𝑏

Lamport OTS – 1-bit message
But 𝑀𝐴 is also an adversary for UD
(replace output ⊥→ 0, 𝜎∗ → 1)

• Pr 𝐺UD
1 1𝑛, 𝑓𝑛, 𝑀

𝐴 = 1 = 𝑝Pre ∈ negl 𝑛

• Returns 1 exactly when it wins game 𝐺Pre ⇒ has negligible probability!

• Pr 𝐺UD
0 1𝑛, 𝑓𝑛, 𝑀

𝐴 = 1 =
1

2
𝑝forg ∉ negl(𝑛)

• Case of 𝑦 = 𝑓𝑛(𝑥), thus 𝑝𝑘 is properly formed public-key: essentially EU-CMA-OTS game
• 𝑏 does not change input distribution of 𝐴 in step 3, so 𝑚 independent of 𝑏
• Thus probability of not having early abort is Pr 𝑏 ≠ 𝑚 = 1/2.
• Input distribution in step 5 also unchanged, as 𝑠𝑘𝑚 distribution is also independent of 𝑏
⇒ Unchanged forgery probability, conditioned on reaching step 5

• Now Pr 𝐺UD
0 1𝑛, 𝑓𝑛, 𝑀

𝐴 = 1 − Pr 𝐺UD
1 1𝑛, 𝑓𝑛, 𝑀

𝐴 = 1 ∉ negl 𝑛 contradiction for UD!!

Game 𝐺UD
𝑔
(1𝑛, 𝑓𝑛, 𝐴):

1. 𝑥 ← 0,1 𝑛

2. If 𝑔 = 1 then: ℎ = 𝑥
3. Else: ℎ = 𝑓𝑛(𝑥)
4. Return 𝐴(1𝑛, 𝑓𝑛, ℎ)

Machine 𝑀𝐴(1𝑛, 𝑓𝑛, 𝑦):
1. 𝑠𝑘, 𝑝𝑘 ← keygen(1𝑛)
2. 𝑏 ← 0,1 , 𝑝𝑘𝑏 = 𝑦
3. 𝑚 ∈ {0,1} ← 𝐴 1𝑛, 𝑓𝑛, 𝑝𝑘
4. If 𝑚 = 𝑏 then return 0 (was ⊥)
5. 𝑚∗, 𝜎∗ ← 𝐴(1𝑛, 𝑓𝑛, 𝜎𝑚 = 𝑠𝑘𝑚)
6. If 𝑓 𝜎∗ = 𝑦 then return 1 (was 𝜎∗)
7. Else return 0 (was ⊥)

Lamport OTS
k-bit messages

Lamport OTS – k-bit message
• Lamport OTS for 𝑘-bit messages

• Private key: sample 𝑟𝑗,0, 𝑟𝑗,1 𝑗=1

𝑘
← 0,1 𝑛×2×𝑘

• Public key: 𝑝𝑘𝑗,0, 𝑝𝑘𝑗,1 𝑗=1

𝑘
= 𝑓𝑛 𝑟𝑗,0 , 𝑓𝑛 𝑟𝑗,1

𝑗=1

𝑘

• Signing: sign 𝑚 = (𝑚1, … ,𝑚𝑘) ∈ 0,1 𝑘: output 𝜎𝑚 = 𝑟𝑗,𝑚𝑗 𝑗=1

𝑘

• Verification: Verify ℎ 𝜎𝑚 𝑗
𝑗=1

𝑘
= 𝑝𝑘𝑗,𝑚𝑗 𝑗=1

𝑘

• Security proof goes analogously

• Except we now need to pick random 𝑝𝑘𝑗,𝑏 to replace with 𝑦

• Already had loss factor of ½ of abort on sign query with 𝑚𝑗 = 𝑏

• Also means additional loss factor of Pr 𝑚𝑗
′ = 𝑏 since 𝑚′ ≠ 𝑚, but we actually need 𝑚𝑗

′ ≠ 𝑚𝑗

• Note that using hash-then-sign with 𝑘 = 𝑛 gives an OTS for arbitrary length messages

Lamport OTS – k-bit message
• Security proof by contradiction

• Given PPT 𝐴 that solves forgery game with probability 𝑝forg ∉ negl(𝑛)

• Build Machine 𝑀𝐴

• Idea: embedded pre-image challenge 𝑦 in public key entry 𝑝𝑘𝑖,𝑏
• A successful forgery with 𝑚𝑖 = 𝑏 should give a valid pre-image: 𝑓 𝜎𝑖

∗ = 𝑦

• If 𝐴 asks for signature with 𝑚𝑖 = 𝑏 then we need to abort: we don’t know a valid signature

Game 𝐺EU−CMA−OTS(1
𝑛, 𝑓𝑛, 𝐴):

1. 𝑠𝑘, 𝑝𝑘 ← keygen(1𝑛)
2. 𝑚 ∈ 0,1 𝑘 ← 𝐴 1𝑛, 𝑓𝑛, 𝑝𝑘

3. 𝑚∗, 𝜎∗ ← 𝐴 1𝑛, 𝑓𝑛, 𝜎𝑚 = 𝑠𝑘𝑚𝑖 𝑖=1

𝑘

4. Return 1 if 𝑚′ ≠ 𝑚 ∧ verify 𝑝𝑘,𝑚∗, 𝜎∗ = 1
5. Return 0 otherwise

Machine 𝑀𝐴(1𝑛, 𝑓𝑛, 𝑦):
1. 𝑠𝑘, 𝑝𝑘 ← keygen(1𝑛)
2. 𝑏 ← 0,1 , 𝑖 ← {1,… , 𝑘}, 𝑝𝑘𝑖,𝑏 = 𝑦
3. 𝑚 ← 𝐴 1𝑛, 𝑓𝑛, 𝑝𝑘
4. If 𝑚𝑖 = 𝑏 then return ⊥
5. 𝑚∗, 𝜎∗ ← 𝐴(1𝑛, 𝑓𝑛, 𝜎𝑚 = 𝑠𝑘𝑚)
6. If not (𝑚∗ ≠ 𝑚 ∧ verify 𝑝𝑘,𝑚∗, 𝜎∗ = 1) return ⊥
7. If 𝑚𝑖

∗ = 𝑏 then return 𝜎∗ else return ⊥

Lamport OTS – k-bit message
𝑀𝐴 is designed as an adversary against Pre:

• 𝑝Pre ≔ Pr 𝐺Pre 1𝑛, 𝑓𝑛, 𝑀
𝐴 = 1 = Pr[𝑀𝐴 ≠⊥]

• By Pre assumption: 𝑝Pre ∈ negl(𝑛)

Game 𝐺Pre(1
𝑛, 𝑓𝑛, 𝐴):

1. ℎ ← 0,1 𝑛

2. 𝑥 ← 𝐴 1𝑛, ℎ
3. Return 1 if 𝑓𝑛 𝑥 = ℎ
4. Return 0 otherwise

Machine 𝑀𝐴(1𝑛, 𝑓𝑛, 𝑦):
1. 𝑠𝑘, 𝑝𝑘 ← keygen(1𝑛)
2. 𝑏 ← 0,1 , 𝑖 ← {1,… , 𝑘}, 𝑝𝑘𝑖,𝑏 = 𝑦
3. 𝑚 ← 𝐴 1𝑛, 𝑓𝑛, 𝑝𝑘
4. If 𝑚𝑖 = 𝑏 then return ⊥
5. 𝑚∗, 𝜎∗ ← 𝐴(1𝑛, 𝑓𝑛, 𝜎𝑚 = 𝑠𝑘𝑚)
6. If not (𝑚∗ ≠ 𝑚 ∧ verify 𝑝𝑘,𝑚∗, 𝜎∗ = 1) return ⊥
7. If 𝑚𝑖

∗ = 𝑏 then return 𝜎𝑖
∗ else return ⊥

Note that 𝜎𝑖
∗ is a preimage of 𝑦 = 𝑝𝑘𝑖,𝑏

iff 𝜎∗ is a valid forgery for 𝑚∗ with 𝑚𝑖
∗ = 𝑏

Lamport OTS – k-bit message
But 𝑀𝐴 is also an adversary for UD
(replace output ⊥→ 0, 𝜎∗ → 1)

• Pr 𝐺UD
1 1𝑛, 𝑓𝑛, 𝑀

𝐴 = 1 = 𝑝Pre ∈ negl 𝑛

• Returns 1 exactly when it wins game 𝐺Pre ⇒ has negligible probability!

• Pr 𝐺UD
0 1𝑛, 𝑓𝑛, 𝑀

𝐴 = 1 ≥
1

2

1

𝑘
𝑝forg ∉ 𝑛𝑒𝑔𝑙(𝑛)

• Case of 𝑦 = 𝑓𝑛(𝑥), thus 𝑝𝑘 is properly formed public-key: essentially EU-CMA-OTS game

• 𝑖, 𝑏 do not change input (and thus output) distribution of 𝐴

• ⇒ Unchanged forgery probability, except prob ½ of not having early abort
• And prob ≥ 1/𝑘 of having solved the challenge, namely when 𝑚𝑖

∗ = 𝑏 (conditioned on 𝑚∗ ≠ 𝑚 and 𝑚𝑖 ≠ 𝑏)

• Now Pr 𝐺UD
0 1𝑛, 𝑓𝑛, 𝑀

𝐴 = 1 − Pr 𝐺UD
1 1𝑛, 𝑓𝑛, 𝑀

𝐴 = 1 ∉ negl 𝑛 contradiction for UD!!

Game 𝐺UD
𝑔
(1𝑛, 𝑓𝑛, 𝐴):

1. 𝑥 ← 0,1 𝑛

2. If 𝑔 = 1 then: ℎ = 𝑥
3. Else: ℎ = 𝑓𝑛(𝑥)
4. Return 𝐴(1𝑛, 𝑓𝑛, ℎ)

Machine 𝑀𝐴(1𝑛, 𝑓𝑛, 𝑦):
1. 𝑠𝑘, 𝑝𝑘 ← keygen(1𝑛)
2. 𝑏 ← 0,1 , 𝑖 ← {1,… , 𝑘}, 𝑝𝑘𝑖,𝑏 = 𝑦
3. 𝑚 ← 𝐴 1𝑛, 𝑓𝑛, 𝑝𝑘
4. If 𝑚𝑖 = 𝑏 then return 0
5. 𝑚∗, 𝜎∗ ← 𝐴(1𝑛, 𝑓𝑛, 𝜎𝑚 = 𝑠𝑘𝑚)
6. If not (𝑚∗ ≠ 𝑚 ∧ verify 𝑝𝑘,𝑚∗, 𝜎∗ = 1) return 0
7. If 𝑚𝑖

∗ = 𝑏 then return 1 else return 0

Lamport OTS – k-bit message
• Lamport has large private/public keys

• For practical purposes typically 𝑘 = 256 then:
• Private key : 2*256*256 bits = 16KiB

• Public key : 2*256*256 bits = 16KiB

• Signature : 1*256*256 bits = 8KiB

• That’s for a single OTS key, we want to sign many messages

• Can we do better?

Winternitz OTS
(k-bit messages)

Winternitz OTS (WOTS)

𝑠𝑘 𝑝𝑘

𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓

𝑠𝑘

𝑓 𝑓 𝑓

𝜎

𝑝𝑘

𝑓 𝑓 𝑓 𝑓

𝜎

Sign(𝑠𝑘, 3)

Verify(𝑝𝑘, 3, 𝜎)

Sign multiple bits at once: 𝑚 ∈ {0,1,2,3,4,5,6,7}

Then need hash chain with 8 points, or 7 calls to 𝑓.

Winternitz OTS (WOTS)
• Idea: tradeoff speed for size using hash chains of length 𝑤

• Key generation:

• Choose random 𝑠𝑘 ∈ 0,1 𝑛

• Then 𝑝𝑘 = 𝑓𝑤−1 𝑠𝑘 (hash chain of length 𝑤)

• Sign:

• Given message 𝑚 ∈ {0,… ,𝑤 − 1}

• Output 𝜎 = 𝑓𝑚(𝑠𝑘)

• Verify:

• Given message 𝑚 and signature 𝜎

• Verify that 𝑓𝑤−1−𝑚 𝜎 =? 𝑝𝑘, since 𝑓𝑤−1−𝑚 𝑓𝑚 𝑠𝑘 = 𝑓𝑤−1 𝑠𝑘 = 𝑝𝑘

• To sign 𝑘-bit message 𝑚 ∈ 0,1 𝑘:

• First interpret as integer: 𝑚 ∈ ℤ, 0 ≤ 𝑚 < 2𝑘

• Then write in radix 𝑤:

𝑚 = σ𝑗𝑚𝑗𝑤
𝑗 with each 𝑚𝑗 ∈ {0,… ,𝑤 − 1}

• We need to sign each 𝑚𝑗, thus we need 𝑙1 = 𝑘/ log2𝑤 hash chains

Winternitz OTS (WOTS)
• Problem: any signature 𝜎𝑚 = 𝑓𝑚(𝑠𝑘) can be modified into signature for larger 𝑚:

• 𝜎𝑚+𝑎 = 𝑓𝑚+𝑎 𝑠𝑘 = 𝑓𝑎 𝑓𝑚 𝑠𝑘 = 𝑓𝑎 𝜎𝑚

• Winternitz’s solution:

• Add checksum hashchains that necessarily decrease for larger 𝑚𝑗

𝑐 = 𝑙1 𝑤 − 1 −෍

𝑗

𝑚𝑗

then
0 ≤ 𝑐 < 𝑙1 𝑤 − 1 + 1

• Also write 𝑐 in radix 𝑤: 𝑐 = σ𝑗 𝑐𝑗𝑤
𝑗 with each 𝑐𝑗 ∈ {0, … , 𝑤 − 1}

• Need 𝑙2 = log2 𝑙1 𝑤 − 1 + 1 / log2𝑤 additional hash chains

• Define function split m = 𝑚1, … ,𝑚𝑙1 , 𝑐1, … , 𝑐𝑙2

Winternitz OTS (WOTS)
• Security proof:

• A successful forgery must do a (second-)preimage attack on at least 1 chain

• Can embed a pre-image challenge in a random chain at a random position, similar to Lamport

• But now also need hybrid argument for undetectability for hash chains!:
• In each game replace one hash function call at the beginning of a chain with random bitstring

• In the first game, all 𝑝𝑘𝑖 are properly generated hash chains

• In the last game, all 𝑝𝑘𝑖 are simply randomly chosen bitstrings

• If the adversary can distinguish between the first and last game with non-negligible probability

• Then there is at least one game hop, from game 𝑖 to game 𝑖 + 1,
for which it also has non-negligible probability

• But distinguishing between game 𝑖 and game 𝑖 + 1 implies breaking UD:
as one hash function output is replaced by random bitstring ⇒ contradiction!

• However, a successful forgery can also be created from second pre-images

• Unfortunately WOTS does not allow to embed a second-preimage challenge

• And thus instead reduces to Collision resistance

Winternitz OTS (WOTS)

𝑠𝑘 𝑝𝑘

𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓

𝑦𝑐 𝑝𝑘′

𝑓 𝑓 𝑓 𝑓
Embedding pre-image challenge 𝑦𝑐

𝜎∗ 𝑝𝑘′

𝑓 𝑓 𝑓 𝑓 𝑓
Forgery 𝜎∗ with good preimage

𝜎∗ 𝑝𝑘′

𝑓 𝑓 𝑓
Forgery 𝜎∗ that misses embedded challenge

𝑦𝑐 𝑝𝑘′

𝑓 𝑓 𝑓 𝑓
Forgery 𝜎∗ with second-preimage
But there was no such challenge!
Instead the reduction can output

collision pair 𝑦𝑐 , 𝜎
∗ 𝜎∗

𝑓

𝑦𝑐

Winternitz OTS+ (WOTS+)

𝑦𝑐 𝑝𝑘′

𝑔 ⋅, 𝑟4 𝑔 ⋅, 𝑟5 𝑔 ⋅, 𝑟6 𝑔 ⋅, 𝑟7Embedding pre-image challenge 𝑦𝑐

𝑠𝑘 𝑝𝑘

𝑔 ⋅, 𝑟1 𝑔 ⋅, 𝑟2 𝑔 ⋅, 𝑟3 𝑔 ⋅, 𝑟4 𝑔 ⋅, 𝑟5 𝑔 ⋅, 𝑟6 𝑔 ⋅, 𝑟7𝑔 𝑥, 𝑟 = 𝑓(𝑥 ⊕ 𝑟)

𝑦𝑐 𝑝𝑘′

𝑔 ⋅, 𝑟4 𝑔 ⋅, 𝑟5
′ 𝑔 ⋅, 𝑟6 𝑔 ⋅, 𝑟7Embedding second pre-image challenge 𝑥𝑐

𝑥4 𝑥5 𝑥6𝑟5
′ = 𝑥4 ⊕𝑥𝑐 ⇒ 𝑥5 = 𝑓 𝑥4 ⊕𝑟5

′ = 𝑓 𝑥𝑐

Forgery 𝜎∗ with good second pre-image
𝑔 𝜎∗, 𝑟5

′ = 𝑓 𝜎∗ ⊕ 𝑟5
′ = 𝑥5 = 𝑓(𝑥𝑐)

Can now output 𝜎∗ ⊕𝑟5
′ as second preimage!

𝑦𝑐 𝑝𝑘′

𝑔 ⋅, 𝑟4 𝑔 ⋅, 𝑟5
′ 𝑔 ⋅, 𝑟6 𝑔 ⋅, 𝑟7

𝑥4 𝑥5 𝑥6

𝜎∗
𝑔(⋅, 𝑟5

′)

Security proof similar to Lamport, now extended with second pre-image.
But also need hybrid argument for undetectability at each hash chain depth!
For more details see: https://eprint.iacr.org/2017/965.pdf

• WOTS+ is a strengthened version of WOTS that does reduce to preimage & second-preimage security

Winternitz OTS+ (WOTS+)
• WOTS+ is a strengthened version of WOTS that does reduce to preimage & second-preimage security

• Idea:

• Add random bitstrings 𝑟 = 𝑟1, … , 𝑟𝑤−1 ∈ 0,1 𝑛×(𝑤−1) to public key

• Those random bitstrings are used in hash chain
in such a way to allow programming second preimage challenges

• Chain definition:

• 𝑐𝑖 𝑥, 𝑟 = 𝑓 𝑐𝑖−1 𝑥, 𝑟 ⊕ 𝑟𝑖
• 𝑐0 𝑥, 𝑟 = 𝑥

• Key generation (𝑙 = 𝑙1 + 𝑙2):

• 𝑟 = 𝑟1, … , 𝑟𝑤−1 ← 0,1 𝑛× 𝑤−1

• 𝑠𝑘1, … , 𝑠𝑘l ← 0,1 𝑛×𝑙

• 𝑠𝑘 = 𝑟, 𝑠𝑘1, … , 𝑠𝑘𝑙

• 𝑝𝑘 = 𝑟, 𝑐𝑤−1 𝑠𝑘1, 𝑟 , … , 𝑐𝑤−1 𝑠𝑘𝑙 , 𝑟

• Sign(𝑠𝑘,𝑚):

• Let 𝑏𝑗 𝑗=1

𝑙
← split 𝑚

• 𝜎 = 𝑐𝑏1 𝑠𝑘1, 𝑟 , … , 𝑐𝑏𝑙 𝑠𝑘𝑙 , 𝑟

• Verify 𝑝𝑘,𝑚, 𝜎 :

• Let 𝑏𝑗 𝑗=1

𝑙
← split 𝑚

• Verify that 𝑐𝑤−1−𝑏𝑖 𝜎𝑖 , 𝑟[𝑏𝑖+1,𝑤−1] = 𝑝𝑘𝑖
for all 𝑖 = 1, … , 𝑙

Winternitz OTS+ (WOTS+)
• Winternitz OTS+ can trade more work for smaller keys

• Let 𝑤 = 24 (and 𝑘 = 256)

• Then 𝑙1 =
256

4
= 64 and 𝑙2 = log2(𝑙1 ⋅ 15 + 1)/4 = 3

• Total number of chains: 𝑙 = 64 + 3 = 67

• Then private/public key/signature size: 𝑙 ⋅ 256 bits = 2144 B ~ 2 KiB

• Total work: 𝑙 ⋅ 𝑤 = 64 ⋅ 16 = 1024

• Let 𝑤 = 28 (and 𝑘 = 256)

• Then 𝑙1 =
256

8
= 32 and 𝑙2 = log2(𝑙1 ⋅ 255 + 1)/8 = 2

• Total number of chains: 𝑙 = 32 + 2 = 34

• Then private/public key/signature size: 𝑙 ⋅ 256 bits = 1088 B ~ 1 KiB

• Total work: 𝑙 ⋅ 𝑤 = 34 ⋅ 256 = 8704

• Compare to Lamport OTS : Priv/Pub Key: 16 KiB, Signature: 8 KiB

Merkle Trees:
From one-time to many-time

Many-time HBS
• To sign 𝑅 messages with one-time HBS’s, we need 𝑅 one-time HBS key pairs

• Typically we want 𝑅 = 220, 240, 260

• For WOTS+-256-28 that would mean 1MiB, 1TiB, 1EiB of data!

• One solution is to expand private keys from a private seed

• E.g.: 𝑠𝑘𝑖
(𝑟)

← 𝑓(𝑠𝑒𝑒𝑑|𝑟|𝑖)

• This reduces private key storage to only the seed

• Individual WOTS+-256-2^8 private keys can generated on demand during signing

• Still need to publish all public keys for public verification!

• Can we do better? Yes: Merkle Trees

Merkle Tree
• Merkle Tree is a membership proof using hash functions in a tree structure

• First compute & publish root

• To prove 𝑚3 is in set:

• Outputs 𝑚3, (3,𝑚4, ℎ12, ℎ5678)

• Note the position 3 defines Path and
in which order to concatenate elements

• Verifier computes:

• Path using the position 3

• ℎ34
′ = 𝑓 𝑚3 𝑚4

• ℎ1234
′ = 𝑓 ℎ12, ℎ34

′

• ℎ12345678
′ = 𝑓 ℎ1234

′ , ℎ5678
• Verifies ℎ12345678

′ =? 𝑟𝑜𝑜𝑡

• Security reduces to Pre or Coll (but WOTS+ trick applicable: Coll → SecPre)

𝑚1

𝑚2

𝑚3

𝑚4

𝑚5

𝑚6

𝑚7

𝑚8

Root:
𝑓(ℎ1234|ℎ5678)
= ℎ12345678

𝑓 𝑚1 𝑚2 = ℎ12

𝑓 𝑚3 𝑚4

𝑓 𝑚5 𝑚6

𝑓 𝑚7 𝑚8

𝑓 ℎ12 ℎ34 = ℎ1234

𝑓 ℎ56 ℎ78

Merkle Tree
• Composite signature scheme using e.g. WOTS-256-28

• Key generation:

• Generate random 𝑠𝑒𝑒𝑑

• Generate 𝑅 private keys 𝑠𝑘1, … , 𝑠𝑘𝑅 from 𝑠𝑒𝑒𝑑

• Compute public keys 𝑝𝑘1, … , 𝑝𝑘𝑅
• Secret key: 𝑠𝑒𝑒𝑑, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 1

• Public key: Merkle tree root 𝑃𝐾 over 𝑝𝑘1, … , 𝑝𝑘𝑅

• Each signature needs to be extended with
corresponding public key & membership proof

• Signing a message 𝑚
• Increase 𝑐𝑜𝑢𝑛𝑡𝑒𝑟, say now 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 3

• Generate (𝑠𝑘3, 𝑝𝑘3) from 𝑠𝑒𝑒𝑑

• Generate signature 𝜎3
• Output 𝜎 = 𝜎3, 𝑝𝑘3, 3, 𝑝𝑘4, ℎ12, ℎ56789

• Verifying a signature

• Verify 𝜎3 for message 𝑚 under 𝑝𝑘3
• Verify membership proof of 𝑝𝑘3 to root 𝑃𝐾

𝑝𝑘1

𝑝𝑘2

𝑝𝑘3

𝑝𝑘4

𝑝𝑘5

𝑝𝑘6

𝑝𝑘7

𝑝𝑘8

Root:
ℎ12345678

𝑓 𝑝𝑘1 𝑝𝑘2 = ℎ12

𝑓 𝑝𝑘3 𝑝𝑘4

𝑓 𝑝𝑘5 𝑝𝑘6

𝑓 𝑝𝑘7 𝑝𝑘8

𝑓 ℎ12 ℎ34 = ℎ1234

𝑓 ℎ56 ℎ78

Merkle Tree
• Let’s use WOTS+-256-28 then

• Private key: 256 + log2 𝑅 bits (seed + index)

• Public key: 256 bits (root)

• Signature: (WOTS+ signature & public key, membership proof)
• Total: 8704 + 8704 + log2 𝑅 + log2 𝑅 ⋅ 256 bits
• 𝑅 = 210: 2498 B ~ 2.4 KiB
• 𝑅 = 220: 2819 B ~ 2.8 KiB

• Total keygen work: 𝑅 ⋅ 34 + 𝑅 ⋅ 8704 + 𝑅 (𝑠𝑘 gen + 𝑝𝑘 gen + root)
• Thus total work ~ 213+log2 𝑅

• 𝑅 = 210 ⇒ work = 223 costs less than a second on single CPU
• 𝑅 = 220 ⇒ work = 233 costs minutes on single CPU
• 𝑅 = 240 ⇒ work = 253 costs decades on single CPU, not usable!
• 𝑅 = 260 ⇒ work = 273 really not usable!

• Note that signature work is the same as keygen, but can be optimized by storing hashes on current path.
• ⇒ On average only a few WOTS+ keys need to be computed per signature.

Trees of Trees

Trees of Trees
• Composite signature scheme of composite signature scheme

• Each sub-tree is 1 Merkle Tree of 𝑅 WOTS+ public keys

• Sub-trees are used to sign root public key of child sub-trees

• Parameter: 𝐷 depth of tree ⇒ 𝑅𝐷 total amount of signatures

• Keygen:

• Generate 𝑠𝑒𝑒𝑑

• Generate top subtree root 𝑃𝐾(1) from 𝑠𝑒𝑒𝑑

• Private key: 𝑠𝑒𝑒𝑑, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0

• Public key: 𝑃𝐾 1

• Sign message 𝑚:
• Increase counter

• Compute path, e.g. (3,1,5,2)

• Generate subtrees on path from 𝑠𝑒𝑒𝑑

• Output Sig. 𝑚 with subtree leaf 𝑝𝑘2
3,1,5

• Output Sig. of each child subtree with parent

• Verify:

• Verify entire path of signatures to 𝑃𝐾(1)

𝑝𝑘1
(1)
, … , 𝑝𝑘𝑅

1

𝑃𝐾(1)

𝑝𝑘1
2,𝑅

, … , 𝑝𝑘𝑅
(2,𝑅)

𝑃𝐾 2,𝑅

𝑝𝑘1
2,1

, … , 𝑝𝑘𝑅
2,1

𝑃𝐾(2,1)
Sign

Sign

𝑝𝑘1
3,1,𝑅

, … , 𝑝𝑘𝑅
(3,1,𝑅)

𝑃𝐾 3,1,𝑅

𝑝𝑘1
3,1,1

, … , 𝑝𝑘𝑅
3,1,1

𝑃𝐾(3,1,1)
Sign

Sign

Trees of Trees
• Let’s use MerkleTree-WOTS+-256-28 and 𝑅 = 2𝑟

• Private key: 256 + 𝐷 ⋅ 𝑟 bits (seed + index)

• Public key: 256 bits (root 𝑃𝐾 1)

• Signature: 𝐷 ⋅ (2 ⋅ 8704 + 𝑟 ⋅ 257) (𝐷 MerkleTree-WOTS+-256-28 signatures)

• Examples for 260 signatures (private key = 316 bits, public key = 256 bits):

• 𝑟 = 20, 𝐷 = 3 : signature size: 8456 B ~ 8.3 KiB

• 𝑟 = 10, 𝐷 = 6 : signature size: 14984 B ~ 14.6 KiB

• 𝑟 = 5, 𝐷 = 12 : signature size: 28040 B ~ 27.4 KiB

Real World Schemes
• Stateful HBS: need to be really careful maintaining state!

• XMSS: Based on MerkleTree using WOTS+ (NIST standard)

• XMSS-MT: Based on Tree of XMSS (NIST standard)

• LMS: Based on MerkleTree using WOTS (NIST standard)

• HSS: Based on Tree of LMS (NIST standard)

• Note these have various tweaks including:

• Optimized TreeHash algorithm to maintain internal state of current path
to prevent signature calls with a lot of update work

• Extra prefix/suffix per hash call to avoid various attacks

• Stateless HBS: avoid keeping track of state by enabling random paths!

• SPHINCS+: Based on Trees of MerkleTrees of WOTS+ (NIST standard)

• Uses FORS instead of WOTS+ at leaf MerkleTree

• FORS is a few-time signature scheme

• Number of potential signatures is so large, one can randomly choose path to a HORST instance

• Even with many signatures, the probability a HORST instance is used too often is negligible

Summary
• Lamport 1-bit and k-bit message OTS

• 2𝑘 pre-images as private key, reveal 𝑘 pre-images selectively based on message

• Hash function needs to be Pre-secure and UD-secure

• Winternitz(+) OTS
• Use hashchains to trade-off speed for size by signing multiple bits at once

• Use extra checksum hashchains to prevent trivial manipulation

• WOTS+: Hash function needs to be Pre-, Sec-, and UD-secure

• MerkleTree
• Compact composite public key for many OTS public keys

• Each signature includes membership proof for used OTS public key

• Trees of Trees
• Tree of MerkleTrees, Parent Tree sign public key of Child Trees

• These are all Stateful: need to keep track of state or break security!

