Selected Areas in Cryptology Cryptanalysis Week 5

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/

Asymmetric from symmetric cryptography

Can we build asymmetric cryptography from symmetric cryptography?

- Benefits:
 - Symmetric cryptography seems generally to resist quantum cryptanalysis
 - No number-theoretic assumptions that might

- This week:
 - Hash-based signatures

Hash-Based Signatures (HBS)

- Entirely based on cryptographic hash functions
 - Single assumption for signatures as we need hash functions anyway!

- Core concept:
 - private key contains hash pre-images
 - signatures selectively reveal these pre-images

- Most HBS are one-time: reusing a private key breaks security!
- Few-time HBS: can reuse private key a few times
- Build many-time HBS from many one-time/few-time HBS!

Cryptographic Hash Functions

Hash function standards $H: \{0,1\}^* \rightarrow \{0,1\}^n$:

- MD5: 128-bits hash function published in 1992
 - Widely used till ~~2010
 - Broken in 2004: first collision found [WY05],
- SHA-1: 160-bit hash function published in 1995
 - Widely used even today (TLS1.2, Git, ...)
 - 'Broken' in 2005: first theoretical collision attack [WYY05] practical attack in 2017: first collision [SBKAM17]
- SHA-2 family: 224/256/384/512-bit hash functions published in 2001
- SHA-3 family: 224/256/384/512-bit hash functions published in 2015

Cryptographic hash functions

Fixed *n*-bit hash functions: $f: \{0,1\}^* \rightarrow \{0,1\}^n$

- aPre: always pre-image resistance:
 - Given random $h \leftarrow \{0,1\}^n$ find M s/t f(M) = h
- aSec: always second pre-image resistance:
 - Given random $M \leftarrow \{0,1\}^{\leq n}$ find $M' \neq M$ s/t f(M) = f(M')
- Secure if there is no attack faster than a generic attack
 - Classically:
 - aPre / aSec: brute force search: $O(2^n)$
 - Coll: birthday search: $O(2^{n/2})$
 - Quantum:
 - aPre / aSec: Grover: $O(2^{(n+k)/2})$ on 2^k quantum computers
 - Coll: [CNS'17]: $O(2^{2(n+k)/5})$ on 2^k quantum computers
 - Cryptographic hash functions can be quantum-safe for sufficiently large output size: 256 bits

<u>Preliminaries</u>

- Consider input distributions $X_1, X_2, ..., X_k$, and an index B over $\{1, 2, ..., k\}$
- For a PPT algorithm A, a given input distribution implies an output distribution
 - $Y_i = A(X_i)$
- Consider X_i and X_j being sampled in different ways but their distributions are identical
 - Then $Y_i = A(X_i) = A(X_j) = Y_j$
 - But then $Y_B = A(X_B)$ also independent from B
 - Thus can even view B as being chosen after A is run

Preliminaries

- If X_i and X_j have different distributions then Y_i and Y_j may or may not be identical distributed
 - Always be careful in changing an algorithm's input distribution: it's success probability might change!
 - But also: if output distribution changes significantly then it can thus distinguish between X_i and X_j
 - Distinguishing advantage: $Adv^A(X_i, X_j) = |Pr[A(X_i) = 1] Pr[A(X_j) = 1]|$
- Some security properties are defined as distinguishing games:
 - $X_{n,1}$ represents a cryptographic scheme: say the hash output $f_n(x)$ of a randomly chosen message x
 - $X_{n,2}$ a simplified idealized scheme: say a random bitstring of the same length as $f_n(x)$
 - The formal definition that the cryptographic scheme behaves as the simplified idealized scheme:
 - for all PPT algorithms $A: Adv^A(X_{n,1}, X_{n,2}) \in negl(n)$ (viewing it as a function in $n \in \mathbb{N}$)
 - E.g.: formal definition that hash outputs "should look like random bitstrings"
 - But be careful of more information: knowing the hash function and preimage, distinguishing is easy!

One-Time Signatures

- Signature Scheme consists of 3 algorithms
 - $(sk, pk) \leftarrow \text{keygen}(1^{\lambda})$:
 - $\sigma \leftarrow \text{sign}(sk, m)$:
 - $b \leftarrow \text{verify}(pk, m, \sigma)$:

- generates private/public key pair for security parameter $\boldsymbol{\lambda}$
- generates signature σ for message m with private key sk
- verifies signature σ for message m with public key pk
- A One-Time Signature (OTS) Scheme only allows to call sign once
- EU-CMA: Existential Unforgeability under adaptive Chosen Message Attack
 - Attacker succeeds when it generates any forgery
 - (m^*, σ^*) for which verify $(pk, m^*, \sigma^*) = 1$
 - But m^* must not have been signed by user before
 - Adaptive Chosen Message Attack:
 - Allowed to query k signatures adaptively
 - General: $k(n) \in poly(n)$
 - OTS: k = 1 (wlog attacker queries exactly 1 signature)
 - Scheme is EU-CMA secure i.f.f. for all PPT attackers A: $Pr[A \text{ succeeds}] \in negl(\lambda)$

EU-CMA Game

Game $G_{\text{EU-CMA-OTS}}(1^n, S, A)$:

- 1. $(sk, pk) \leftarrow S. \text{keygen}(1^n)$
- 2. $m \leftarrow A(1^n, pk)$
- 3. $\sigma_m \leftarrow \text{S.sign}(sk, m)$
- 4. $(m^*, \sigma^*) \leftarrow A(1^n, \sigma_m)$
- 5. Return 1 if $m^* \neq m \land S. verify(pk, m^*, \sigma^*) = 1$
- 6. Return 0 otherwise

Lamport OTS 1-bit messages

Lamport OTS 1-bit message

Make either sk_0 or sk_1 public as signature for 0 resp. 1.

• Lamport OTS (One-Time Signature) for 1-bit message

• Private key: sample $(r_0, r_1) \leftarrow \{0,1\}^{n \times 2}$

• Public key: $(pk_0, pk_1) = (f(r_0), f(r_1))$

• Signing: sign $m \in \{0,1\}$: output $\sigma_m = r_m$

• Verification: Verify $f(\sigma_m) = pk_m$

Limited to signing 1 message only of 1 bit only

- Security of Lamport OTS is based on security of underlying hash function f:
 - (always) pre-image resistance: hard to find preimage for a randomly chosen hash
 - Undetectability: hash outputs f(x) are indistinguishable from randomly chosen bitstrings (for randomly generated x which is unknown to attacker)

- (always) pre-image resistance:
 - A computational puzzle game
 - Outputs 1 only if *A* finds solution
 - This may only happen with negligible probability:
 - Pre-secure iff $Pr[G_{Pre}(1^n, f_n, A) = 1] \in negl(n)$

Game $G_{\text{Pre}}(1^n, f_n, A)$:

- 1. $h \leftarrow \{0,1\}^n$
- 2. $x \leftarrow A(1^n, f_n, h)$
- 3. Return 1 if $f_n(x) = h$
- 4. Return 0 otherwise

- Undetectability:
 - A distinguishability / guessing game
 - A must not be able to distinguish with non-negligibly probability
 - UD-secure iff $|\Pr[G_{UD}^0(1^n, f_n, A) = 1] \Pr[G_{UD}^1(1^n, f_n, A) = 1]| \in \text{negl}(n)$

Game $G_{\mathrm{UD}}^{g}(1^{n},f_{n},A)$:

- 1. $x \leftarrow \{0,1\}^n$
- 2. If g = 1 then: h = x
- 3. Else: $h = f_n(x)$
- 4. Return $A(1^n, f_n, h)$

Proof structure

• So given PPT A for Game EU-CMA we're going to embed it in a machine M^A

- This machine will embed a given hash value y in the public key pk(y):
 - it will try to use A to find a preimage σ' for y: $f(\sigma') = y$ or otherwise it returns \bot
- We can use this machine M^A as adversary for Pre-image & Undetectability

- By Pre-image resistance assumption it will have negligible success probability for Pre-image
- For Undetectability there are 2 possible inputs:
 - y = x: now A's input distribution is identical to Pre-image \Rightarrow has negligible success prob.
 - y = f(x): now A's input distribution is identical to EU-CMA \Rightarrow contradiction if non-negligible prob.

- Security proof by contradiction
 - Given PPT A that solves EU-CMA forgery game with probability $p_{\text{forg}} \notin \text{negl}(n)$
 - Build Machine M^A
 - Idea: embedded pre-image challenge y for message m=b in public key pk
 - A successful forgery for m=b should give a valid pre-image
 - If A asks for signature of m=b then we need to abort: we don't know a valid signature

Game $G_{\text{EU-CMA-OTS}}(1^n, f_n, A)$:

- 1. $(sk, pk) \leftarrow \text{keygen}(1^n)$
- 2. $m \in \{0,1\} \leftarrow A(1^n, f_n, pk)$
- 3. $(m^*, \sigma^*) \leftarrow A(1^n, f_n, \sigma_m = sk_m)$
- 4. Return 1 if $m' \neq m \land f_n(\sigma^*) = pk_{m^*}$
- 5. Return 0 otherwise

Machine $M^A(1^n, f_n, y)$:

- 1. $(sk, pk) \leftarrow \text{keygen}(1^n)$
- 2. $b \leftarrow \{0,1\}, pk_b = y$
- 3. $m \in \{0,1\} \leftarrow A(1^n, f_n, pk)$
- 4. If m = b then return \bot
- 5. $(m^*, \sigma^*) \leftarrow A(1^n, f_n, \sigma_m = sk_m)$
- 6. If $f(\sigma^*) = y$ then return σ^*
- 7. Else return ⊥

 M^A is designed as an adversary against Pre:

- $p_{\text{Pre}} := \Pr[G_{\text{Pre}}(1^n, f_n, M^A) = 1] = \Pr[M^A \neq \bot]$
- By Pre assumption: $p_{\text{Pre}} \in \text{negl}(n)$

Machine $M^A(1^n, f_n, y)$:

- 1. $(sk, pk) \leftarrow \text{keygen}(1^n)$
- 2. $b \leftarrow \{0,1\}, pk_b = y$
- 3. $m \in \{0,1\} \leftarrow A(1^n, f_n, pk)$
- 4. If m = b then return \perp
- 5. $(m^*, \sigma^*) \leftarrow A(1^n, f_n, \sigma_m = sk_m)$
- 6. If $f(\sigma^*) = y$ then return σ^*
- 7. Else return ⊥

Note that σ^* is a preimage of $y=pk_b$ iff σ^* is a valid forgery for $m^*=b$

Game $G_{\text{Pre}}(1^n, f_n, A)$:

- 1. $h \leftarrow \{0,1\}^n$
- 2. $x \leftarrow A(1^n, h)$
- 3. Return 1 if $f_n(x) = h$
- 4. Return 0 otherwise

But M^A is also an adversary for UD (replace output $\bot \to 0$, $\sigma^* \to 1$)

Game
$$G_{\mathrm{UD}}^{g}(1^{n},f_{n},A)$$
:

- 1. $x \leftarrow \{0,1\}^n$
- 2. If g = 1 then: h = x
- 3. Else: $h = f_n(x)$
- 4. Return $A(1^n, f_n, h)$
- $\Pr[G_{\text{UD}}^1(1^n, f_n, M^A) = 1] = p_{\text{Pre}} \in \text{negl}(n)$
 - Returns 1 exactly when it wins game $G_{\text{Pre}} \Rightarrow$ has negligible probability!
- $\Pr[G_{\text{UD}}^0(1^n, f_n, M^A) = 1] = \frac{1}{2} p_{\text{forg}} \notin \text{negl}(n)$
 - Case of $y = f_n(x)$, thus pk is properly formed public-key: essentially EU-CMA-OTS game
 - b does not change input distribution of A in step 3, so m independent of b
 - Thus probability of not having early abort is $Pr[b \neq m] = 1/2$.
 - Input distribution in step 5 also unchanged, as sk_m distribution is also independent of b \Rightarrow Unchanged forgery probability, conditioned on reaching step 5
- Now $\Pr[G_{\mathrm{UD}}^0(1^n, f_n, M^A) = 1] \Pr[G_{\mathrm{UD}}^1(1^n, f_n, M^A) = 1] \notin \operatorname{negl}(n)$ contradiction for UD!!

- Machine $M^A(1^n, f_n, y)$:
- 1. $(sk, pk) \leftarrow \text{keygen}(1^n)$
- 2. $b \leftarrow \{0,1\}, pk_b = y$
- 3. $m \in \{0,1\} \leftarrow A(1^n, f_n, pk)$
- 4. If m = b then return 0 (was \perp)
- 5. $(m^*, \sigma^*) \leftarrow A(1^n, f_n, \sigma_m = sk_m)$
- 6. If $f(\sigma^*) = y$ then return 1 (was σ^*)
- 7. Else return 0 (was \perp)

Lamport OTS k-bit messages

- Lamport OTS for *k*-bit messages
 - Private key: sample $(r_{j,0}, r_{j,1})_{j=1}^k \leftarrow \{0,1\}^{n \times 2 \times k}$
 - Public key: $(pk_{j,0}, pk_{j,1})_{j=1}^k = (f_n(r_{j,0}), f_n(r_{j,1}))_{j=1}^k$

 - Verification: Verify $\left(h(\sigma_m[j])\right)_{j=1}^k = \left(pk_{j,m_j}\right)_{j=1}^k$
- Security proof goes analogously
 - Except we now need to pick random $pk_{i,b}$ to replace with y
 - Already had loss factor of $\frac{1}{2}$ of abort on sign query with $m_i = b$
 - Also means additional loss factor of $\Pr[m'_j = b]$ since $m' \neq m$, but we actually need $m'_j \neq m_j$
- Note that using hash-then-sign with k=n gives an OTS for arbitrary length messages

- Security proof by contradiction
 - Given PPT A that solves forgery game with probability $p_{\text{forg}} \notin \text{negl}(n)$
 - Build Machine M^A
 - Idea: embedded pre-image challenge y in public key entry $pk_{i,b}$
 - A successful forgery with $m_i = b$ should give a valid pre-image: $f(\sigma_i^*) = y$
 - If A asks for signature with $m_i = b$ then we need to abort: we don't know a valid signature

Game $G_{\text{EU-CMA-OTS}}(1^n, f_n, A)$:

- 1. $(sk, pk) \leftarrow \text{keygen}(1^n)$
- 2. $m \in \{0,1\}^k \leftarrow A(1^n, f_n, pk)$
- 3. $(m^*, \sigma^*) \leftarrow A\left(1^n, f_n, \sigma_m = \left(sk_{m_i}\right)_{i=1}^k\right)$
- 4. Return 1 if $m' \neq m \land \text{verify}(pk, m^*, \sigma^*) = 1$
- 5. Return 0 otherwise

Machine $M^A(1^n, f_n, y)$:

- 1. $(sk, pk) \leftarrow \text{keygen}(1^n)$
- 2. $b \leftarrow \{0,1\}, i \leftarrow \{1,...,k\}, pk_{i,b} = y$
- 3. $m \leftarrow A(1^n, f_n, pk)$
- 4. If $m_i = b$ then return \perp
- 5. $(m^*, \sigma^*) \leftarrow A(1^n, f_n, \sigma_m = sk_m)$
- 6. If not $(m^* \neq m \land \text{verify}(pk, m^*, \sigma^*) = 1)$ return \bot
- 7. If $m_i^* = b$ then return σ^* else return \bot

 M^A is designed as an adversary against Pre:

- $p_{\text{Pre}} := \Pr[G_{\text{Pre}}(1^n, f_n, M^A) = 1] = \Pr[M^A \neq \bot]$
- By Pre assumption: $p_{\text{Pre}} \in \text{negl}(n)$

Machine $M^A(1^n, f_n, y)$:

- 1. $(sk, pk) \leftarrow \text{keygen}(1^n)$
- 2. $b \leftarrow \{0,1\}, i \leftarrow \{1, ..., k\}, pk_{i,b} = y$
- 3. $m \leftarrow A(1^n, f_n, pk)$
- 4. If $m_i = b$ then return \perp
- 5. $(m^*, \sigma^*) \leftarrow A(1^n, f_n, \sigma_m = sk_m)$
- 6. If not $(m^* \neq m \land \text{verify}(pk, m^*, \sigma^*) = 1)$ return \bot
- 7. If $m_i^* = b$ then return σ_i^* else return \bot

Game $G_{Pre}(1^n, f_n, A)$:

- 1. $h \leftarrow \{0,1\}^n$
- 2. $x \leftarrow A(1^n, h)$
- 3. Return 1 if $f_n(x) = h$
- 4. Return 0 otherwise

Note that σ_i^* is a preimage of $y=pk_{i,b}$ iff σ^* is a valid forgery for m^* with $m_i^*=b$

But M^A is also an adversary for UD (replace output $\bot \to 0$, $\sigma^* \to 1$)

Game $G_{\text{UD}}^g(1^n, f_n, A)$: 1. $x \leftarrow \{0,1\}^n$

- 2. If g = 1 then: h = x
- 3. Else: $h = f_n(x)$
- 4. Return $A(1^n, f_n, h)$

Machine $M^A(1^n, f_n, y)$:

- 1. $(sk, pk) \leftarrow \text{keygen}(1^n)$
- 2. $b \leftarrow \{0,1\}, i \leftarrow \{1,...,k\}, pk_{i,b} = y$
- 3. $m \leftarrow A(1^n, f_n, pk)$
- 4. If $m_i = b$ then return 0
- 5. $(m^*, \sigma^*) \leftarrow A(1^n, f_n, \sigma_m = sk_m)$
- 6. If not $(m^* \neq m \land \text{verify}(pk, m^*, \sigma^*) = 1)$ return 0
- 7. If $m_i^* = b$ then return 1 else return 0
- $Pr[G_{\mathrm{UD}}^{1}(1^{n}, f_{n}, M^{A}) = 1] = p_{Pre} \in negl(n)$
 - Returns 1 exactly when it wins game $G_{\text{Pre}} \Rightarrow$ has negligible probability!
- $\Pr[G_{\mathrm{UD}}^{0}(1^{n}, f_{n}, M^{A}) = 1] \ge \frac{1}{2} \frac{1}{k} p_{\mathrm{forg}} \notin negl(n)$
 - Case of $y = f_n(x)$, thus pk is properly formed public-key: essentially EU-CMA-OTS game
 - *i*, *b* do not change input (and thus output) distribution of *A*
 - ⇒ Unchanged forgery probability, except prob ½ of not having early abort
 - And prob $\geq 1/k$ of having solved the challenge, namely when $m_i^* = b$ (conditioned on $m^* \neq m$ and $m_i \neq b$)
- Now $\Pr[G_{\mathrm{UD}}^0(1^n, f_n, M^A) = 1] \Pr[G_{\mathrm{UD}}^1(1^n, f_n, M^A) = 1] \notin \operatorname{negl}(n)$ contradiction for UD!!

- Lamport has large private/public keys
- For practical purposes typically k = 256 then:
 - Private key: 2*256*256 bits = 16KiB
 - Public key : 2*256*256 bits = 16KiB
 - Signature : 1*256*256 bits = 8KiB

• That's for a single OTS key, we want to sign many messages

Can we do better?

Winternitz OTS (k-bit messages)

Sign multiple bits at once: $m \in \{0,1,2,3,4,5,6,7\}$

Then need hash chain with 8 points, or 7 calls to f.

- Idea: tradeoff speed for size using hash chains of length w
 - Key generation:
 - Choose random $sk \in \{0,1\}^n$
 - Then $pk = f^{w-1}(sk)$ (hash chain of length w)
 - Sign:
 - Given message $m \in \{0, ..., w 1\}$
 - Output $\sigma = f^m(sk)$
 - Verify:
 - Given message m and signature σ
 - Verify that $f^{w-1-m}(\sigma) = pk$, since $f^{w-1-m}(f^m(sk)) = f^{w-1}(sk) = pk$
- To sign k-bit message $m \in \{0,1\}^k$:
 - First interpret as integer: $m \in \mathbb{Z}$, $0 \le m < 2^k$
 - Then write in radix w:

$$m = \sum_j m_j w^j$$
 with each $m_j \in \{0, ..., w-1\}$

• We need to sign each m_i , thus we need $l_1 = \lceil k/\log_2 w \rceil$ hash chains

- Problem: any signature $\sigma_m = f^m(sk)$ can be modified into signature for larger m:
 - $\sigma_{m+a} = f^{m+a}(sk) = f^a(f^m(sk)) = f^a(\sigma_m)$
- Winternitz's solution:
 - Add checksum hashchains that necessarily decrease for larger m_i

$$c = l_1(w-1) - \sum_j m_j$$

then

$$0 \le c < l_1(w-1) + 1$$

- Also write c in radix w: $c = \sum_i c_i w^j$ with each $c_i \in \{0, ..., w-1\}$
- Need $l_2 = \lceil \log_2(l_1(w-1) + 1) / \log_2 w \rceil$ additional hash chains
- Define function split(m) = $(m_1, ..., m_{l_1}, c_1, ..., c_{l_2})$

- Security proof:
 - A successful forgery must do a (second-)preimage attack on at least 1 chain
 - Can embed a pre-image challenge in a random chain at a random position, similar to Lamport
 - But now also need hybrid argument for undetectability for hash chains!:
 - In each game replace one hash function call at the beginning of a chain with random bitstring
 - In the first game, all pk_i are properly generated hash chains
 - In the last game, all pk_i are simply randomly chosen bitstrings
 - If the adversary can distinguish between the first and last game with non-negligible probability
 - Then there is at least one game hop, from game i to game i+1, for which it also has non-negligible probability
 - But distinguishing between game i and game i+1 implies breaking UD: as one hash function output is replaced by random bitstring \Rightarrow contradiction!
 - However, a successful forgery can also be created from second pre-images
 - Unfortunately WOTS does not allow to embed a second-preimage challenge
 - And thus instead reduces to Collision resistance

Embedding pre-image challenge y_c

Forgery σ^* that misses embedded challenge

Forgery σ^* with good preimage

Forgery σ^* with second-preimage But there was no such challenge! Instead the reduction can output collision pair (y_c, σ^*)

WOTS+ is a strengthened version of WOTS that does reduce to preimage & second-preimage security

$$g(x,r) = f(x \oplus r)$$

$$g(\cdot,r_1) \qquad g(\cdot,r_2) \qquad g(\cdot,r_3) \qquad g(\cdot,r_4) \qquad g(\cdot,r_5) \qquad g(\cdot,r_6) \qquad g(\cdot,r_7)$$

$$sk \qquad pk$$

Embedding pre-image challenge y_c

Embedding second pre-image challenge x_c

$$r_5' = x_4 \oplus x_c \Rightarrow x_5 = f(x_4 \oplus r_5') = f(x_c)$$

Forgery σ^* with good second pre-image $g(\sigma^*, r_5') = f(\sigma^* \oplus r_5') = x_5 = f(x_c)$

Can now output $\sigma^* \oplus r_5'$ as second preimage!

$$g(\cdot, r_4) \qquad g(\cdot, r_5) \qquad g(\cdot, r_6) \qquad g(\cdot, r_7)$$

$$y_c \qquad pk'$$

$$g(\cdot, r_4) \qquad g(\cdot, r_5') \qquad g(\cdot, r_6) \qquad g(\cdot, r_7)$$

$$y_c \qquad x_4 \qquad x_5 \qquad x_6 \qquad pk'$$

Security proof similar to Lamport, now extended with second pre-image. But also need hybrid argument for undetectability at each hash chain depth! For more details see: https://eprint.iacr.org/2017/965.pdf

- WOTS+ is a strengthened version of WOTS that does reduce to preimage & second-preimage security
- Idea:
 - Add random bitstrings $r = (r_1, ..., r_{w-1}) \in \{0,1\}^{n \times (w-1)}$ to public key
 - Those random bitstrings are used in hash chain in such a way to allow programming second preimage challenges
- Chain definition:
 - $c^{i}(x,r) = f(c^{i-1}(x,r) \oplus r_i)$
 - $c^{0}(x,r) = x$
- Key generation $(l = l_1 + l_2)$:
 - $r = (r_1, ..., r_{w-1}) \leftarrow \{0,1\}^{n \times (w-1)}$
 - $(sk_1, ..., sk_l) \leftarrow \{0,1\}^{n \times l}$
 - $sk = (r, (sk_1, \dots, sk_l))$
 - $pk = (r, (c^{w-1}(sk_1, r), ..., c^{w-1}(sk_l, r)))$

- Sign(sk, m):
 - Let $(b_j)_{j=1}^l \leftarrow \operatorname{split}(m)$
 - $\sigma = \left(c^{b_1}(sk_1, r), \dots, c^{b_l}(sk_l, r)\right)$
- Verify (pk, m, σ) :
 - Let $(b_j)_{j=1}^l \leftarrow \operatorname{split}(m)$
 - Verify that $c^{w-1-b_i}(\sigma_i, r_{[b_i+1,w-1]}) = pk_i$ for all $i=1,\ldots,l$

- Winternitz OTS+ can trade more work for smaller keys
- Let $w = 2^4$ (and k = 256)
 - Then $l_1 = \frac{256}{4} = 64$ and $l_2 = \lceil \log_2(l_1 \cdot 15 + 1)/4 \rceil = 3$
 - Total number of chains: l = 64 + 3 = 67
 - Then private/public key/signature size: $l \cdot 256$ bits = 2144 B ~ 2 KiB
 - Total work: $l \cdot w = 64 \cdot 16 = 1024$
- Let $w = 2^8$ (and k = 256)
 - Then $l_1 = \frac{256}{8} = 32$ and $l_2 = \lceil \log_2(l_1 \cdot 255 + 1)/8 \rceil = 2$
 - Total number of chains: l = 32 + 2 = 34
 - Then private/public key/signature size: $l \cdot 256$ bits = 1088 B ~ 1 KiB
 - Total work: $l \cdot w = 34 \cdot 256 = 8704$
- Compare to Lamport OTS: Priv/Pub Key: 16 KiB, Signature: 8 KiB

Merkle Trees: From one-time to many-time

Many-time HBS

- To sign R messages with one-time HBS's, we need R one-time HBS key pairs
- Typically we want $R = 2^{20}, 2^{40}, 2^{60}$
- For WOTS+-256-2⁸ that would mean 1MiB, 1TiB, 1EiB of data!
- One solution is to expand private keys from a private seed
 - E.g.: $sk_i^{(r)} \leftarrow f(seed|r|i)$
 - This reduces private key storage to only the seed
 - Individual WOTS+-256-2^8 private keys can generated on demand during signing
- Still need to publish all public keys for public verification!
- Can we do better? Yes: Merkle Trees

Merkle Tree

- Merkle Tree is a membership proof using hash functions in a tree structure
- First compute & publish root
- To prove m_3 is in set:
 - Outputs m_3 , $(3, m_4, h_{12}, h_{5678})$
 - Note the position 3 defines Path and in which order to concatenate elements
- Verifier computes:
 - Path using the position 3
 - $h'_{34} = f(m_3|m_4)$
 - $h'_{1234} = f(h_{12}, h'_{34})$
 - $h'_{12345678} = f(h'_{1234}, h_{5678})$
 - Verifies $h'_{12345678} = ? root$

• Security reduces to Pre or Coll (but WOTS+ trick applicable: Coll → SecPre)

Merkle Tree

- Composite signature scheme using e.g. WOTS-256-28
- Key generation:
 - Generate random seed
 - Generate R private keys $sk_1, ..., sk_R$ from seed
 - Compute public keys $pk_1, ..., pk_R$
 - Secret key: *seed*, *counter* = 1
 - Public key: Merkle tree root PK over $pk_1, ..., pk_R$
- Each signature needs to be extended with corresponding public key & membership proof
- Signing a message *m*
 - Increase counter, say now counter = 3
 - Generate (sk_3, pk_3) from seed
 - Generate signature σ_3
 - Output $\sigma = (\sigma_3, pk_3, (3, pk_4, h_{12}, h_{56789}))$
- Verifying a signature
 - Verify σ_3 for message m under pk_3
 - Verify membership proof of pk_3 to root PK

Merkle Tree

• Let's use WOTS+-256-28 then

```
• Private key: 256 + \lceil \log_2 R \rceil bits (seed + index)
```

- Public key: 256 bits (root)
- Signature: (WOTS+ signature & public key, membership proof)
 - Total: $8704 + 8704 + \lceil \log_2 R \rceil + \lceil \log_2 R \rceil \cdot 256$ bits
 - $R = 2^{10}$: 2498 B ~ 2.4 KiB
 - $R = 2^{20}$: 2819 B ~ 2.8 KiB
- Total keygen work: $R \cdot 34 + R \cdot 8704 + R$ (sk gen + pk gen + root)
 - Thus total work $\sim 2^{13 + \log_2 R}$
 - $R = 2^{10} \Rightarrow \text{work} = 2^{23}$ costs less than a second on single CPU
 - $R = 2^{20} \Rightarrow \text{work} = 2^{33}$ costs minutes on single CPU
 - $R = 2^{40} \Rightarrow \text{work} = 2^{53}$ costs decades on single CPU, not usable!
 - $R = 2^{60} \Rightarrow \text{work} = 2^{73}$ really not usable!
- Note that signature work is the same as keygen, but can be optimized by storing hashes on current path.
 - ⇒ On average only a few WOTS+ keys need to be computed per signature.

Trees of Trees

Trees of Trees

- Composite signature scheme of composite signature scheme
 - Each sub-tree is 1 Merkle Tree of R WOTS+ public keys
 - Sub-trees are used to sign root public key of child sub-trees
 - Parameter: D depth of tree $\Rightarrow R^D$ total amount of signatures

• Keygen:

- Generate seed
- Generate top subtree root $PK^{(1)}$ from seed
- Private key: seed, counter = 0
- Public key: $PK^{(1)}$
- Sign message *m*:
 - Increase counter
 - Compute path, e.g. (3,1,5,2)
 - Generate subtrees on path from seed
 - Output Sig. m with subtree leaf $pk_2^{(3,1,5)}$
 - Output Sig. of each child subtree with parent
- Verify:
 - Verify entire path of signatures to $PK^{(1)}$

Trees of Trees

• Let's use MerkleTree-WOTS+-256-2⁸ and $R=2^r$

```
• Private key: 256 + D \cdot r bits (seed + index)
```

- Public key: 256 bits (root $PK^{(1)}$)
- Signature: $D \cdot (2 \cdot 8704 + r \cdot 257)$ (D MerkleTree-WOTS+-256-2⁸ signatures)
- Examples for 2^{60} signatures (private key = 316 bits, public key = 256 bits):
 - r = 20, D = 3: signature size: 8456 B ~ 8.3 KiB
 - r = 10, D = 6: signature size: 14984 B ~ 14.6 KiB
 - r = 5, D = 12: signature size: 28040 B ~ 27.4 KiB

Real World Schemes

Stateful HBS: need to be really careful maintaining state!

XMSS: Based on MerkleTree using WOTS+ (NIST standard)

• XMSS-MT: Based on Tree of XMSS (NIST standard)

LMS: Based on MerkleTree using WOTS (NIST standard)

HSS: Based on Tree of LMS (NIST standard)

- Note these have various tweaks including:
 - Optimized TreeHash algorithm to maintain internal state of current path to prevent signature calls with a lot of update work
 - Extra prefix/suffix per hash call to avoid various attacks
- Stateless HBS: avoid keeping track of state by enabling random paths!
 - SPHINCS+: Based on Trees of MerkleTrees of WOTS+ (NIST standard)
 - Uses FORS instead of WOTS+ at leaf MerkleTree
 - FORS is a few-time signature scheme
 - Number of potential signatures is so large, one can randomly choose path to a HORST instance
 - Even with many signatures, the probability a HORST instance is used too often is negligible

<u>Summary</u>

- Lamport 1-bit and k-bit message OTS
 - 2k pre-images as private key, reveal k pre-images selectively based on message
 - Hash function needs to be Pre-secure and UD-secure
- Winternitz(+) OTS
 - Use hashchains to trade-off speed for size by signing multiple bits at once
 - Use extra checksum hashchains to prevent trivial manipulation
 - WOTS+: Hash function needs to be Pre-, Sec-, and UD-secure
- MerkleTree
 - Compact composite public key for many OTS public keys
 - Each signature includes membership proof for used OTS public key
- Trees of Trees
 - Tree of MerkleTrees, Parent Tree sign public key of Child Trees
- These are all Stateful: need to keep track of state or break security!