Selected Areas in Cryptology
Cryptanalysis
Week 5

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/

mailto:stevens@cwi.nl

Asymmetric from symmetric cryptography

e Can we build asymmetric cryptography from symmetric cryptography?

* Benefits:
* Symmetric cryptography seems generally to resist quantum cryptanalysis
* No number-theoretic assumptions that might

* This week:
* Hash-based signatures

Hash-Based Signatures (HBS)

* Entirely based on cryptographic hash functions
 Single assumption for signatures as we need hash functions anyway!

* Core concept:
* private key contains hash pre-images
 signatures selectively reveal these pre-images

* Most HBS are one-time: reusing a private key breaks security!
* Few-time HBS: can reuse private key a few times
* Build many-time HBS from many one-time/few-time HBS!

Cryptographic Hash Functions

Hash function standards H: {0,1}* — {0,1}":

* MD5: 128-bits hash function published in 1992
* Widely used till ~~2010
e Broken in 2004: first collision found [WYO05],

* SHA-1: 160-bit hash function published in 1995
* Widely used even today (TLS1.2, Git, ...)

e ‘Broken’ in 2005: first theoretical collision attack [WYYO05]
practical attack in 2017: first collision [SBKAM17]

* SHA-2 family: 224/256/384/512-bit hash functions published in 2001

* SHA-3 family: 224/256/384/512-bit hash functions published in 2015

Cryptographic hash functions

Fixed n-bit hash functions: f:{0,1}* — {0,1}"

* aPre: always pre-image resistance:
* Givenrandomh « {0,1}" find M s/t f(M) = h

* aSec: always second pre-image resistance:
« Givenrandom M « {0,1}*" find M' = M s/t f(M) = f(M")

* Secure if there is no attack faster than a generic attack

e Classically:
* aPre /aSec: brute force search: 0(2™)
e Coll: birthday search: 0(2™/?)
* Quantum:
* aPre /aSec: Grover: 0(2("+K)/2) on 2% quantum computers
* Coll: [CNS'17]: 0(22(M+k)/5) on 2% quantum computers

e Cryptographic hash functions can be quantum-safe for sufficiently large output size: 256 bits

Preliminaries

* Consider input distributions X, X5,..., X, and an index B over {1,2, ..., k}

* For a PPT algorithm A, a given input distribution implies an output distribution
* Y = AX;)

* Consider X; and X; being sampled in different ways but their distributions are identical
* ThenY; = A(X;) = A(X;) =Y

* Butthen Yy = A(Xp) also independent from B

* Thus can even view B as being chosen after A is run

Preliminaries

* If X; and X; have different distributions then Y; and ¥; may or may not be identical distributed
* Always be careful in changing an algorithm’s input distribution: it’s success probability might change!
* But also: if output distribution changes significantly then it can thus distinguish between X; and X;

 Distinguishing advantage: AdvA(Xi,X]-) = | Prl[A(X;) = 1] — Pr[A(Xj) = 1] |

* Some security properties are defined as distinguishing games:

* X, 1 represents a cryptographic scheme: say the hash output f;,, (x) of a randomly chosen message x
X, 2 asimplified idealized scheme: say a random bitstring of the same length as f,,(x)

The formal definition that the cryptographic scheme behaves as the simplified idealized scheme:
 forall PPT algorithms A: AdVA(Xn,l,Xn’z) € negl(n) (viewing it as a functioninn € N)

E.g.: formal definition that hash outputs “should look like random bitstrings”
But be careful of more information: knowing the hash function and preimage, distinguishing is easy!

One-Time Signatures

e Signature Scheme consists of 3 algorithms

o (sk,pk) « keygen(ll): generates private/public key pair for security parameter A
* 0 « sign(sk,m): generates signature o for message m with private key sk
* b « verify(pk,m,o): verifies signature o for message m with public key pk

* A One-Time Signature (OTS) Scheme only allows to call sign once

* EU-CMA: Existential Unforgeability under adaptive Chosen Message Attack
» Attacker succeeds when it generates any forgery
« (m*, a*) for which verify(pk, m*,c*) = 1
e But m™ must not have been signed by user before
* Adaptive Chosen Message Attack:
* Allowed to query k signatures adaptively
* General: k(n) € poly(n)
e OTS: k=1
(wlog attacker queries exactly 1 signature)

* Scheme is EU-CMA secure i.f.f. for all PPT attackers A: Pr[A succeeds] € negl(1)

EU-CMA Game

1ifm* # mand
verify(pk,m*,c*) = 1
0 otherwise

Game Ggy-cma-ors(1™, S, 4):
1. (sk,pk) < S.keygen(1™)
2. m« A(1", pk)
3. oy < S.sign(sk,m)
4, (m*,0*) « A(A", 0,)
5. Return 1 if
m* #=m A S.verify(pk,m*,c*) =1
6. Return O otherwise

Lamport OTS
1-bit messages

Lamport OTS 1-bit message

._f'+“_j_*‘%25%
sko pko
Make either sk or sk4 public
f as signature for O resp. 1.
o >0« —~——-® 0y = sk,
skq pkq

Private Public
key key

Lamport OTS — 1-bit message

* Lamport OTS (One-Time Signature) for 1-bit message

* Private key: sample (1g,17) <« {0,1}%*2

* Public key: (Pko, pk1) = (f (1), £ (1))

* Signing: signm € {0,1}: output g,,, = 73,
* Verification: Verify f(0,,) = vk,

Limited to signing 1 message only of 1 bit only

 Security of Lamport OTS is based on security of underlying hash function f:
» (always) pre-image resistance: hard to find preimage for a randomly chosen hash

* Undetectability: hash outputs f (x) are indistinguishable from randomly chosen bitstrings
(for randomly generated x which is unknown to attacker)

Lamport OTS — 1-bit message

* (always) pre-image resistance:
* A computational puzzle game

Game Gpre (1", f,, A):

. _ _ 1. h«{01}"
* Outputs 1 only if 4 finds solution 2. x <« A(™ £, h)
yJn»
* This may only happen with negligible probability: 3. Return 1if f,(x) = h
* Pre-secure iff Pr|Gp. (1", f;,, A) = 1] € negl(n) 4. Return 0 otherwise

e Undetectability:
A distinguishability / guessing game
* A must not be able to distinguish with non-negligibly probability
» UD-secure iff | Pr|GOp(1™, fy,, A) = 1] — Pr[G{p (17, £, A) = 1]| € negl(n)

Game GgD(ln,fn,A):

1. x « {0,1}"

2. Ifg=1then: h=x

3. Else: h=f,(x)
4. Return A(1"%, f,,, h)

Proof structure

So given PPT A for Game EU-CMA we’re going to embed it in a machine M4

EU-CMA Machine M4
« pk <pk(y) <y
A _)I(’m,,o,,) A = (m',6") —d'/L or 1/0

This machine will embed a given hash value y in the public key pk(y):
* it will try to use A to find a preimage ¢’ for y: f(c') = y or otherwise it returns L

We can use this machine M4 as adversary for Pre-image & Undetectability

Pre-image Undetectability
Machine M4 Machine M4
<pk(y) <y <pk(y) <x/fX)
A - (m',e') -ada'/l A - (m',a’) ->1/0

By Pre-image resistance assumption it will have negligible success probability for Pre-image

For Undetectability there are 2 possible inputs:
* y=Xx: now A’s input distribution is identical to Pre-image = has negligible success prob.
* y=f(x): now A’sinput distribution is identical to EU-CMA = contradiction if non-negligible prob.

Lamport OTS — 1-bit message

* Security proof by contradiction
* Given PPT A that solves EU-CMA forgery game with probability pforg negl(n)

 Build Machine M4

* ldea: embedded pre-image challenge y for message m = b in public key pk
* A successful forgery for m = b should give a valid pre-image
* If A asks for signature of m = b then we need to abort: we don’t know a valid signature

Game Ggy-cma-ots(1™ fn, A4):

1. (sk,pk) < keygen(1™)

2. me{0,1} « A1™, f,,, pk)

3. (m* o)« A(A™, £, 00 = Sk;)

4. Return 1ifm' #mA f,(6*) = pkyy
5. Return 0 otherwise

Machine MA(1", £, y):

1. (sk,pk) < keygen(1™)

2. b« {01}, pk, =y

3. me{0,1} « A(1™, f,,, pk)

4. If m = b then return L

5. (m*0") « A(A™, f,,, 00y = Ski)
6. If f(6*) = ythenreturng”

7. Elsereturn L

Lamport OTS — 1-bit message

M4 is designed as an adversary against Pre:
* Ppre — Pr[GPre(lnrfn' MA) =1] = PI‘[MA #1]

* By Pre assumption: pp.e € negl(n)

Machine MA(1™, £, y):

1. (sk,pk) « keygen(1™)

2. b<{01}, pk, =7y

3. me{0,1} « AQ™, f,., pk)

4. If m = b thenreturn L

5. (m*0*) « A", f,, 0y = Sk;)
6. If f(o*) = ythenreturnc”
7

. Else return L \

Note that ¢ is a preimage of y = pk,,
iff o™ is a valid forgery form™ = b

Game Gppre (1", £, A):

1. h« {0,1}"

2. x < A(1™, h)

3. Return1if f,,(x) =h
4. Return O otherwise

Lamport OTS — 1-bit message

But M4 is also an adversary for UD
(replace output L— 0,0 — 1)

Game GgD(ln, fnA):

1. x « {0,1}"
2. fg=1then:h=x
3. Else: h = f,(x)

4. Return A(1", f,,, h)
* Pr[GlljD(lnrfnrMA) — 1] = Ppre € negl(n)

Machine MA(1™, f,,,v):

1.
2.
3.
4.
5
6.
7. Else return O (was 1)

(sk,pk) < keygen(1™)

b « {071}1 pkb =Y

m € {0,1} « A(1™, f,,, pk)

If m = b then return 0 (was 1)
(m*,0%) « A(1", f, o = Skin)

If f(c*) = y thenreturn 1 (was ¢*)

* Returns 1 exactly when it wins game Gp.. = has negligible probability!

1
* Pr[GI(.)ID(lnrfn' M4) = 1] = 7 Pforg ¢ negl(n)

* Caseof y = f,,(x), thus pk is properly formed public-key: essentially EU-CMA-OTS game
* b does not change input distribution of A in step 3, so m independent of b

* Thus probability of not having early abort is Pr[b # m] = 1/2.
* Input distribution in step 5 also unchanged, as sk, distribution is also independent of b

= Unchanged forgery probability, conditioned on reaching step 5

* Now Pr|GJp (1", fr, M) = 1] — Pr|G{p (17, £, MA) = 1] € negl(n) contradiction for UD!!

Lamport OTS
K-bit messages

Lamport OTS — k-bit message

e Lamport OTS for k-bit messages

* Private key: sample (7}-,0,7}',1);(:1 < {O'l}nXZXk
. k k

* Public key: (ij,o»ij,l)J-=1 = (fn(ﬁ,o)’f"(n'l))jﬂ
k

* Signing: signm = (my, .., my) € {0,13": output o, = (7jm;). 1
j=

.o o H / k k
e Verification: Verify (h(Um[I]))jzl - (pkf»mj)j=1

* Security proof goes analogously
* Except we now need to pick random pk; ;, to replace with y

* Already had loss factor of %2 of abort on sign query with m; = b
* Also means additional loss factor of Pr[m]’- = b] since m’ # m, but we actually need m]'- + m;

* Note that using hash-then-sign with kK = n gives an OTS for arbitrary length messages

Lamport OTS — k-bit message

* Security proof by contradiction

* Given PPT A that solves forgery game with probability pg,.g € negl(n)

 Build Machine M4

* ldea: embedded pre-image challenge y in public key entry pk; ;,
* A successful forgery with m; = b should give a valid pre-image: f(g;") =y
* If A asks for signature with m; = b then we need to abort: we don’t know a valid signature

Game Ggy-cma-ots(1", fn, 4):

1.
2.

3.

4. Return 1if m' = m Averify(pk,m*,*) =1
5.

(sk,pk) < keygen(1™)
m € {0,1}* « A(1™, £,,, pk)

(m*,0%) « A (1",fn, O = (skmi)ill)

Return 0 otherwise

Machine MA(1", f,,, y):

1.

(sk,pk) < keygen(1™)

b« {01},i < {1,.. k},pkip=1y

m < A(1", f, pk)

If m; = b thenreturn L

(m*,0%) « A", fr, o = Skp)

If not (m* # m A verify(pk,m*,6*) = 1) return L
If m; = b then return ¢”* else return L

Lamport OTS — k-bit message

M4 is designed as an adversary against Pre:
* Ppre — Pr[GPre(lnrfn' MA) =1] = PF[MA #1]

* By Pre assumption: ppr. € negl(n)

Machine MA(1", f,,, y):

1. (sk,pk) < keygen(1™)
2. b« {0,1}, | « {1, ...,k}, pki,b =Yy
3. m« A(1™, fp, pk)
4. If m; = b thenreturn L
(m*,0%) « A(L", f, o = Ski)

Game Gppre (1", f1, A):

1. h« {0,1}"

2. x < A(1™, h)

3. Return1if f,,(x) =h
4. Return O otherwise

5
6. If not (m* = m Averify(pk,m*,c*) = 1) return L
7. If m; = b then return g; else return L

Note that o; is a preimage of y = pk;
iff 0™ is a valid forgery for m* with m; = b

Lamport OTS — k-bit message

But M4 is also an adversary for UD Machine MA(1", f; :
; Jn Y):
(replace output L= 0,0" — 1) 1. (sk,pk) « keygen(1™)
2. b<{01},i < {1,..,k},pkip =1y
Game G{ip (1™, fn, A): P P ETLD
1an;ce<—U{%(1}nfn) 3. m«< A(1", fo, pk)
'] _ 4. If m; = b thenreturn 0
2. Ifg=1then:h=x . _x n
_ 5. (m",0%) « A(1", f, 0 = Skin)
3. Else: h = f,(x) . : g
4. Return A(1™ £, h) 6. If not (m* # m A verify(pk,m*,0*) = 1) return 0
' P 7. Ifm; = b then return 1 else return 0

* Pr[GéD(lnrfn: MA) = 1] = Ppre € negl(n)
e Returns 1 exactly when it wins game Gp.. = has negligible probability!

11
* PF[GI(_)ID(ln»fn»MA) = 1] = Ezpforg ¢ negl(n)
* Caseof y = f,,(x), thus pk is properly formed public-key: essentially EU-CMA-OTS game
* i,b do not change input (and thus output) distribution of A

= Unchanged forgery probability, except prob 72 of not having early abort
And prob > 1/k of having solved the challenge, namely when m; = b (conditioned on m* # m and m; # b)

* Now Pr|GJp (1™, f,, MA) = 1| — Pr|Gp (1%, f,, M4) = 1] € negl(n) contradiction for UD!!

Lamport OTS — k-bit message

* Lamport has large private/public keys

* For practical purposes typically k = 256 then:
e Private key : 2*256*256 bits = 16KiB
e Public key :2*256*256 bits = 16KiB
e Signature :1*256%256 bits = 8KiB

* That’s for a single OTS key, we want to sign many messages

e Can we do better?

Winternitz OTS
(k-bit messages)

Sign(sk, 3)

Verify(pk, 3, 0)

Winternitz OTS (WOTS)

Sign multiple bits at once: m € {0,1,2,3,4,5,6,7}

Then need hash chain with 8 points, or 7 calls to f.

O f Ne f Ne f Ne f -0 f e f e 0
sk pk
® f >® f 0, f >®
sk o
O f e f =0 f =0 +0
o pk

Winternitz OTS (WOTS)

* |dea: tradeoff speed for size using hash chains of length w

* Key generation:
e Choose random sk € {0,1}"
* Then pk = fW~1(sk) (hash chain of length w)
* Sign:
* Given messagem € {0, ..., w — 1}
* Outputo = f™(sk)
* Verify:
* Given message m and signature o
» Verify that fW~1"™(g) =? pk, since fW™1"™(f™(sk)) = fW~1(sk) = pk

e To sign k-bit message m € {0,1}*:
* First interpret as integer: m € Z,0 < m < 2k
* Then write in radix w:

m=; mjwj with each m; € {0,...,w — 1}

* We need to sign each m;, thus we need [; = [k/log, w] hash chains

Winternitz OTS (WOTS)

* Problem: any signature g,,, = f™(sk) can be modified into signature for larger m:

* Om+a = fm+a(5k) = fa(fm(Sk)) = f%(om)

* Winternitz’s solution:
* Add checksum hashchains that necessarily decrease for larger m;

]
J

then

* Also write cinradixw: ¢ = }; Cjo with each ¢; € {0, ...,w — 1}
* Needl, = [log,(l;(w — 1) + 1) /log, w] additional hash chains

* Define function split(m) = (ml, My, Cq, ...,clz)

Winternitz OTS (WOTS)

Security proof:
* A successful forgery must do a (second-)preimage attack on at least 1 chain

* Can embed a pre-image challenge in a random chain at a random position, similar to Lamport

* But now also need hybrid argument for undetectability for hash chains!:

In each game replace one hash function call at the beginning of a chain with random bitstring
In the first game, all pk; are properly generated hash chains

In the last game, all pk; are simply randomly chosen bitstrings

If the adversary can distinguish between the first and last game with non-negligible probability

Then there is at least one game hop, from game i to game i + 1,
for which it also has non-negligible probability

But distinguishing between game i and game i + 1 implies breaking UD:
as one hash function output is replaced by random bitstring = contradiction!

* However, a successful forgery can also be created from second pre-images
* Unfortunately WOTS does not allow to embed a second-preimage challenge
* And thus instead reduces to Collision resistance

Winternitz OTS (WOTS)

Embedding pre-image challenge y,

Forgery o™ that misses embedded challenge

Forgery o™ with good preimage O

Forgery o™ with second-preimage

But there was no such challenge!

Instead the reduction can output
collision pair (y., ™)

>0 f >0
@ f >@
Ve
@
O_*
@ f >0
Ve
o
yC f
O_*

Winternitz OTS+ (WOTS+)

« WOTS+ is a strengthened version of WOTS that does reduce to preimage & second-preimage security

gle,r) =fx @) o 9Gm) _gCm) ~gCms) ~gtr) —gCrs) gCre) gCry)
sk pk

Embedding pre-image challenge y, ® g(-,r4):. g(-,r5)=. 9("r6):. 9("7"7);.

Ye pk’
i i YT 4 Ts YT YT
Embedding second pre-image challenge x, o g(4);. 9g(5);. 9(6);. 9(7);.
s =x, Dx; > x5 =f(xs D15) = fx) Ve X4 X5 X6 pk’
Forgery o* with good second pre-image ® 9¢, r4);. 96, r5)>. 96, r6)>. g(-,r7);.
g(o*, 1) = flo" D rg) = x5 = f(x) Ve X4 X5 Xg pk'
g(,7s)
Can now output ¢* @ 1= as second preimage! o*

Security proof similar to Lamport, now extended with second pre-image.
But also need hybrid argument for undetectability at each hash chain depth!
For more details see: https://eprint.iacr.org/2017/965.pdf

Winternitz OTS+ (WOTS+)

WOTS+ is a strengthened version of WOTS that does reduce to preimage & second-preimage security

ldea:
« Add random bitstrings r = (13, ..., 7,,—1) € {0,1}**W=1 10 public key

* Those random bitstrings are used in hash chain
in such a way to allow programming second preimage challenges

Chain definition: * Sign(sk,m):
e cli(x,r) = f(ci_l(x, r) D Ti) ¢ Let (bf);=1 « split(m)

e ¥ —
C (x) r) X ¢ 0 = (Cbl(Skl)r)) "-;Cbl(Skl' T'))

Key generation ([= [, + L,): « Verify (pk,m, 0):

$ 7= (e o) < (01D .+ Let(by),_, « split(m)
o (skq,...,sk)) < {0,213 j=

e sk = (r, (Skl, ...,Skl))
+ pk= (1, (" (sky, 1),y €M (s 7))

* Verify that CW_l_bi(O'i,T[bﬁl’W_l]) = pk;
foralli=1,...,1

Winternitz OTS+ (WOTS+)

Winternitz OTS+ can trade more work for smaller keys

Let w = 2% (and k = 256)

Thenl; = =2 = 64 and I, = [log,(l; - 15 + 1)/4] = 3

Total number of chains: |l = 64 + 3 = 67

Then private/public key/signature size: [- 256 bits = 2144 B ~ 2 KiB
Total work: [-w = 64 - 16 = 1024

Let w = 28 (and k = 256)
+ Thenl; = =2 =32and [, = [log,(L; - 255 + 1)/8] = 2
e Total number of chains: [=32+ 2 = 34
* Then private/public key/signature size: [- 256 bits = 1088 B ~ 1 KiB

* Totalwork: [-w = 34 - 256 = 8704

Compare to Lamport OTS : Priv/Pub Key: 16 KiB, Signature: 8 KiB

Merkle Trees:
From one-time to many-time

Many-time HBS

To sign R messages with one-time HBS’s, we need R one-time HBS key pairs

Typically we want R = 220,240 260

For WOTS+-256-28 that would mean 1MiB, 1TiB, 1EiB of data!

One solution is to expand private keys from a private seed
+ Eg:sk” « f(seed|r|i)
* This reduces private key storage to only the seed
* Individual WOTS+-256-2/8 private keys can generated on demand during signing

Still need to publish all public keys for public verification!

Can we do better? Yes: Merkle Trees

Merkle Tree

Merkle Tree is a membership proof using hash functions in a tree structure

First compute & publish root

.\f(m1|mz) = hyy

my 0.
To prove my is in set: o

e f(h12|h34) = N334

* Outputs mg, (3, my, hqy, hsgrg)

ms
* Note the position 3 defines Path and i S /
in which order to concatenate elements s />‘/
o [f(mg|my)

+® Root:

f (h1234|hs678)
= hy2345678

Verifier computes:

putes: f (mg|me)
* Path using the position 3 Mms
h’34 = f(m3|m4)

! ! m6
h1234 — f(h12; h34)
Ri2345678 = f (R1234, R5678) rr>-/

. / _ 9 7
VerIerS h’12345678 —_ T‘OOt f(m7|m8)

mg

38 F(hsslyg)

» Security reduces to Pre or Coll (but WOTS+ trick applicable: Coll = SecPre)

Merkle Tree

Composite signature scheme using e.g. WOTS-256-28

Key generation:
* Generate random seed
* Generate R private keys sk, ..., Sk from seed
* Compute public keys pk4, ..., pkg
» Secret key: seed, counter = 1
* Public key: Merkle tree root PK over pky, ..., pkg

Each signature needs to be extended with
corresponding public key & membership proof

Signing a message m
* Increase counter, say now counter = 3
* Generate (sk3,pks) from seed
* Generate signature o3

* Output 0 = (03, pks, (3, Pka, hyz, hse7s9))
Verifying a signature

* Verify g3 for message m under pk;

* Verify membership proof of pks to root PK

f(Pk1|Pk2) = hy,

pk, f(hizlhss) = 334

f (pkslpks)

Pk, Root:
f(ks|pke) h12345678

pks

Pk f (hselh7e)

f (pk;|pks)

Merkle Tree

Let’s use WOTS+-256-28 then

Private key: 256 + [log, R] bits (seed + index)
Public key: 256 bits (root)

Signature: (WOTS+ signature & public key, membership proof)
 Total: 8704 + 8704 + [log, R] + [log, R]| - 256 bits
« R=210:2498B~2.4KiB
« R =220:2819B~2.8KiB

Total keygen work: R - 34 + R - 8704 + R (sk gen + pk gen + root)
Thus total work ~ 213+10g2 R

R = 210 = work = 223 costs less than a second on single CPU

R = 22Y = work = 233 costs minutes on single CPU

R = 2%% = work = 2°3 costs decades on single CPU, not usable!
e« R=2% = work =273 really not usable!

Note that signature work is the same as keygen, but can be optimized by storing hashes on current path.
= On average only a few WOTS+ keys need to be computed per signature.

Trees of Trees

Trees of Trees

Composite signature scheme of composite signature scheme
e Each sub-tree is 1 Merkle Tree of R WOTS+ public keys
e Sub-trees are used to sign root public key of child sub-trees

PK@®

 Parameter: D depth of tree = RP total amount of signatures

Keygen:
 Generate seed pk(l), ...,pkél)
« Generate top subtree root PK(Y) from seed Sign
* Private key: seed, counter = 0 ’
* Public key: PK®

Sign message m:
* Increase counter pkgz’l), ...,pkéz’l) | pk;™", ..., pkp
 Compute path, e.g. (3,1,5,2) A/Sign Sign
« Generate subtrees on path from seed PKGLD PK (LR

k§3,1,5)

* Qutput Sig. m with subtree leaf p
e OQOutput Sig. of each child subtree with parent EEssEEEEEEEEEE

Verify: pkGLD pp 3L pkGR | pk R
* Verify entire path of signatures to PK@

Trees of Trees

Let’s use MerkleTree-WOTS+-256-2% and R = 27

Private key: 256 + D - r bits (seed + index)
Public key: 256 bits (root PK (1)
Signature: D - (2-8704 +r-257) (D MerkleTree-WOTS+-256-28 signatures)

Examples for 20 signatures (private key = 316 bits, public key = 256 bits):
e v+ =20,D = 3 :signature size: 8456 B~ 8.3 KiB
e r=10,D = 6 : signature size: 14984 B ~ 14.6 KiB
« r=05,D = 12 : signature size: 28040 B ~ 27.4 KiB

Real World Schemes

» Stateful HBS: need to be really careful maintaining state!

e XMSS: Based on MerkleTree using WOTS+ (NIST standard)
* XMSS-MT: Based on Tree of XMSS (NIST standard)
e LMS: Based on MerkleTree using WOTS (NIST standard)
e HSS: Based on Tree of LMS (NIST standard)

Note these have various tweaks including:

e Optimized TreeHash algorithm to maintain internal state of current path
to prevent signature calls with a lot of update work

 Extra prefix/suffix per hash call to avoid various attacks

» Stateless HBS: avoid keeping track of state by enabling random paths!
e SPHINCS+: Based on Trees of MerkleTrees of WOTS+ (NIST standard)
e Uses FORS instead of WOTS+ at leaf MerkleTree
* FORS is a few-time signature scheme
 Number of potential signatures is so large, one can randomly choose path to a HORST instance
* Even with many signatures, the probability a HORST instance is used too often is negligible

Summary

e Lamport 1-bit and k-bit message OTS

» 2k pre-images as private key, reveal k pre-images selectively based on message
e Hash function needs to be Pre-secure and UD-secure

* Winternitz(+) OTS
* Use hashchains to trade-off speed for size by signing multiple bits at once
* Use extra checksum hashchains to prevent trivial manipulation
 WOTS+: Hash function needs to be Pre-, Sec-, and UD-secure

* MerkleTree
 Compact composite public key for many OTS public keys
* Each signature includes membership proof for used OTS public key

* Trees of Trees
* Tree of MerkleTrees, Parent Tree sign public key of Child Trees

* These are all Stateful: need to keep track of state or break security!

