Selected Areas in Cryptology
Cryptanalysis
Week 6

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/

mailto:stevens@cwi.nl

Asymmetric from symmetric cryptography

e Can we build asymmetric cryptography from symmetric cryptography?

* Benefits:
* Symmetric cryptography seems generally to resist quantum cryptanalysis
* No number-theoretic assumptions needed

* This week:
e Hash-based signatures (continued): making schemes more practical
* MPC-in-the-head on symmetric cryptography

Summary last week

e Lamport 1-bit and k-bit message OTS

» 2k pre-images as private key, reveal k pre-images selectively based on message
e Hash function needs to be Pre-secure and UD-secure

* Winternitz(+) OTS
* Use hashchains to trade-off speed for size by signing multiple bits at once
* Use extra checksum hashchains to prevent trivial manipulation
 WOTS+: Hash function needs to be Pre-, Sec-, and UD-secure

* MerkleTree
 Compact composite public key for many OTS public keys
* Each signature includes membership proof for used OTS public key

* Trees of Trees
* Tree of MerkleTrees, Parent Tree sign public key of Child Trees

* These are all Stateful: need to keep track of state or break security!

Real World Schemes

» Stateful HBS: need to be really careful maintaining state!

XMSS: Based on MerkleTree using WOTS+ (NIST standard)
XMSS-MT: Based on Tree of XMSS (NIST standard)
LMS: Based on MerkleTree using WOTS (NIST standard)
HSS: Based on Tree of LMS (NIST standard)

Note these have various tweaks including:

» Extra prefix/suffix/tweak per hash call to avoid various attacks
(tweak=alter function instead of more input)

« [BDSO08] algorithm to maintain internal state of current path
to prevent signature calls with a lot of update work

Let’s cover important improvements!

Merkle Tree Signature Time

Key generation: can compute all leaf pk; from 1 seed

Hence, private key is simply seed, counter

To generate i-th signature we need all nodes for i-th path
* No nodes stored = need to compute all leaf pk; again
* Note that node on height v is needed for 2¥ consecutive sigs

Trick 1: store authentication path (h nodes) & reuse
* On average h leaf pk; need to be computed

e But worst case is switching from left-half to right-half:
2" leaf pk; need to be computed!

Trick 2: store 2% nodes for top k levels
* Worst case is now only 2"7% |eaf pk; to be computed

Trick 3: [BDS08] distribute computation of future needed nodes
* Extra storage: ~ (3.5 h + 2%) hashes
* Persignature: < ((h —k)/2 + 1) leaf pk; to be computed

Hash-then-sign

Transform signature scheme S for k-bit messages into scheme S’ for arbitrary length messages
« S'.sign(sk,m) =S. sign(sk,f(m))

A signature forgery (m*,c*) for S" implies
e Either hash collision f(m*) = f(m), ¢* = g, for a message m # m* that has been signed
* Otherwise, if f(m™) hasn’t been signed by S before then this must be a forgery for S

And indeed, an attacker finding a hash collision f(m*) = f(m) directly results in a forgery
* Requesting a signature g,,, for m = (m*, g,,,) is a valid forgery
* Actually used in real world: Rogue Certificate Authority [SSA+09], [FS15]

A better way:
« S'.sign(sk,m) = r|o, where r « {0,1}", 0 « S.sign(sk, f (pk|r|m)
* To use a hash collision, the attacker first needs to guess r correctly

* Also prevents brute-force multi-user attacks:
a second pre-image guess f(pk'|r'|m") needs to match pk’ = pk for a specific user

Trees of Trees PK

Composite signature scheme of composite signature scheme
* Each sub-tree is 1 Merkle Tree of R WOTS+ public keys

e Sub-trees are used to sign root public key of child sub-trees CioryPk Sign
. n
* Tree Depth D = RP total amount of signatures pK21) 8 pK 2R
« Deterministic sub-trees to ensure PK %)) cannot vary
An attack on this composite scheme implies e
e either a WOTS+ signature forgery pk(z,l) pk(z,l) pk(Z’R) pk(Z'R)
(incl hash-then-sign) v PR ok ! R
| Sign? igr
* and/or a MerkleTree membership forgery pKg (LD pKG.LR)
* Ordoesit?...
Attack can confuse verifier by extending tree 1 3LD) pk(3,1,1) pk(3,1,R) j GLR)
by having his own WOTS+ public key signed L PR / 1 P TR
pR(A) — S Sign™E

= strengthen scheme by using hash-then-sign
with different prefixes for signing keys vs messages

Very similar to Certificate signing

kiA), ...,pkgA) >ign »m*, 0"

P

Merkle Tree

Composite signature scheme using e.g. WOTS+-256-28

An attack on this composite scheme implies

e either a WOTS+ signature forgery
(including hash-then-sign)

* and/or a second pre-image (using WOTS+ trick)

However, an attacker has many Sec/Pre targets
e With carefully crafted chain

e Can target any hash value in MerkleTree:
#targetsT =R —1

» = Attack cost ~ 2™/T
* Number of targets T for Trees of Trees even larger!
* Multi-user: obtain even more targets

Reduce multi-user/multi-target attacks
» Use different prefix/suffix/tweak for each:
* MerkleTree node
e Subtree index in Trees-of-Trees

* User
(add chosen random value to top level public key)

f(Pk1|Pk2) = hy,

pk, f(hizlhss) = 334

pks;

pky Root:
hi2345678

pks

Pke f(hselhsg)

WOTS+ Random Bitstrings

WOTS+ requires w — 1 random bitstrings in public key

g = fx D7) o 90 gt gCrs) - gCim) ~g9Crs) ~ gCre) ~ gCiry)
sk pk
Can we use less random bitstrings? Say only 1°?
No!
* Ifry =+ =1, =1 then changing r5 implies changing 4, ..., 74 and thus x,

* We cannot efficiently embed second pre-image challenge x,. anymore

Embedding second pre-image challenge x, o g(, 7"4)“ g(, 7"5’):. g(, 7’6):. g(, 7’7)“

ri=x,@x. = x5=f(xa D7) = flx) Ve X4 Xs Xg pk’

But! We can reuse random bitstrings for all WOTS+ instances in composite scheme

* Reduction proof now requires guessing if there’s a forgery for which WOTS+ instance it will be
(But number of WOTS+ instances is polynomial in A, so still only polynomial factor loss extra)
= Only need to give 1 sequence of random bitstrings in top composite scheme’s public key

= Reduces signature size
Note: random bitstrings can also be reused for MerkleTree to get Coll—>Sec

State Footcannon!

Stateful HBS: need to be really careful maintaining state!

What can go wrong?
* Programming errors
» Hardware failures (crash / write error) causing fail to record that a key is used
e Virtual Machine cloning:
 Now 2 VM’s are set to sign using the same key
* But possibly different messages!
* Active attacks changing state, e.g. computer hack, or physical attack against smartcard

For federal use, NIST has strict rules to prevent any procedural fault that leads to reusing same leaf key

Can we also build stateless HBS?

Goldreich’s stateless HBS

e Goldreich’s stateless HBS:

PK@®

« HBS scheme with very large 224 number of possible signatures
* For each signature, index i « {1, ..., 22’1} is message hash or randomly selected

* Expected amount of signatures before a collision occurs:

VI

. 7” 2% signatures = A-bit security against key reuse

e Original construction is binary tree of OTS
* = signature size > 1MiB

* SPHINCS:

e Use deterministic virtual Tree of Trees with WOTS+

e Leaf HBS are instead few-time HBS: HORST

« = Only need OTS T-o-T for 20 signatures instead of 22°°

* Sizes: PK/SK/SIG: ~ 1KiB / 1KiB / 40KiB
* SPHINCS+:

* Each hash function call has different tweak & bitmask

* Replaced HORST — FORS
e SPHINCS+-128s-robust (NIST level 1)
* Sizes: PK/SK/SIG:~64B/32B/7.7KiB

PK 2V pPK (2R

2,1 2,1
pki*V, o pk Y @R @R

PK(B,l,R)

3,1,R 3,1,R
pk§3’1’1), ...,pkég’l’l) pkg) ...,pké)

ETSGLY)

by

mqi my m3

HORS

HORS is a few-time HBS
* Secret key: set of 2¢ secret values {skq, ..., Skya}
Public key: hash outputs of secret key {f(sk,), ..., f(sk,)}
Signing:
* Split n-bit hash f(r|m) into coefficients ¢4, ..., ¢; of a bits, wherea -t =n

* Reveal indexed secret values: ,,, = (1,04, ..., 0;) = (r,skcl, ...,skct)
* Note that indices might not be different: just reveal the same value again

Verifier:
 Split k-bit message into coefficients ¢y, ..., ¢; of a bits
* Verify f(0;) =?pk, foralli=1,..,t¢
Security reduces to
* Sec + Pre + UD: can program pk; = y. or sk; = x. (and abortif j € {cy, ..., ¢;})

* Finding a m™ for which the signature components have all been revealed by queries

* i.e.f{cf, ., ¢/} € Up querieat€i [(c1, -, ¢r) < split(m)}

HORS

* For example:
e Parameters:n = 256,a = 16,t = 16
* Secret key: 2% = 65536 values of n bits (can all be generated from 1 seed)
* Public key: 2¢ = 65536 hash values of n bits (in total: 16 MiB !)

* Signature: t values of n bits

* Consider that the adversary has queried 4 signatures

: 4-t 1 _ :
* = afraction = = 2710 of secret values are public
65536 1024

* Assuming outputs of f behave as random bitstrings
16
* = Pr[skcs, ..., sk¢r are public] < (2710)" = 27160 for (cf, ..., ¢f) « split(m*)

* Security decreases with # signatures: T

1 (16/216)16 _ 9—192

* Note that due tor, 16
adversary cannot predict which 2 (32/2%)" =277¢
sk; are revealed each query 4 (64/216)16 _ 144
8 (128/216)16 — 2—128

16 (256/216)16 — 2—112

HORST

 HORS publickeyis 16 MiBfora =t = 16 andn = 256

e Can we do better?

e HORST = HORS with Trees

* Use MerkleTree for public key values
 HORST public key is MerkleTree root hash value: 256 bits

pkq pk; pk;

* Signature increases with membership proofs of revealed values
* t-n bits for revealing secret values
e ~t-a-n bits for membership proofs

 Example: ~ 8 KiB

* Verify signature:
* Verify pre-images

(can be made smaller with more optimizations)

* Verify membership proofs to root hash

* Verify indices ¢; with position of pk_. in tree!

PK

pkoa

FORS

* SPHINCS+ is improvement of SPHINCS that replaces HORST by FORS

* Variant on HORST with added security
* Avoid that coefficients with same value ¢; = ¢; reveal the same secret value

* |Idea: use HORST scheme for each coefficient independently

PK = f(PK{|PK,| ...|PK,)
PK, PK, PK,

Pk1,1 pk1,2a pk2,1 sz,za Pkt,1 Pkt,za

* New public key is still single hash value: hash of concatenation of the t root hashes
 Membership proof variant:
 MerkleTree membership proof contains index & the values to reveal to be able to compute root
* Instead of verifying individual roots PK; =? PK;,
* FORS verifies all recomputed roots together:
* f(PK{|PK;|...PK{) =?PK
* = no extra overhead in publishing PK; in public key or signature

Real World Schemes

» Stateful HBS: need to be really careful maintaining state!

e XMSS: Based on MerkleTree using WOTS+ (NIST standard)
* XMSS-MT: Based on Tree of XMSS (NIST standard)
e LMS: Based on MerkleTree using WOTS (NIST standard)
e HSS: Based on Tree of LMS (NIST standard)

Note these have various tweaks including:

» Extra prefix/suffix/tweak per hash call to avoid various attacks
(tweak=alter function instead of more input)

* Optimized TreeHash algorithm to maintain internal state of current path
to prevent signature calls with a lot of update work

» Stateless HBS: avoid keeping track of state by enabling random paths!
e SPHINCS+: Based on Trees of MerkleTrees of WOTS+ (NIST standard)
e Uses FORS instead of WOTS+ at leaf MerkleTree
* FORS is a few-time signature scheme (FTS)
 Number of potential signatures is so large, one can randomly choose path to a FTS instance
* Even with many signatures, the probability a FTS instance is used too often is negligible

Summary

* MerkleTree signature time improvements
* Storing extra nodes & distribute computation of future needed nodes

* Security improvements
* Hash-then-sign: unpredictable message hash with signer’s randomness
* Trees-of-trees: separation between signing subtree vs message
* Multi-target/user attacks: specialize every hash function call
 WOTS+: can reuse randomness in MerkleTree/Trees-of-trees

* Stateless HBS
e Goldreich: HBS with > 224 signatures = 24 signatures at A-bit security
* Few-time HBS schemes: HORS, HORST, FORS
* SPHINCS: Trees-of-trees with WOTS+, and HORST as leaf FTS
e SPHINCS+: improved SPHINCS with FORS, NIST standard

