
Selected Areas in Cryptology
Cryptanalysis

Week 6

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/

mailto:stevens@cwi.nl

Asymmetric from symmetric cryptography
• Can we build asymmetric cryptography from symmetric cryptography?

• Benefits:
• Symmetric cryptography seems generally to resist quantum cryptanalysis

• No number-theoretic assumptions needed

• This week:
• Hash-based signatures (continued): making schemes more practical

• MPC-in-the-head on symmetric cryptography

Summary last week
• Lamport 1-bit and k-bit message OTS

• 2𝑘 pre-images as private key, reveal 𝑘 pre-images selectively based on message

• Hash function needs to be Pre-secure and UD-secure

• Winternitz(+) OTS
• Use hashchains to trade-off speed for size by signing multiple bits at once

• Use extra checksum hashchains to prevent trivial manipulation

• WOTS+: Hash function needs to be Pre-, Sec-, and UD-secure

• MerkleTree
• Compact composite public key for many OTS public keys

• Each signature includes membership proof for used OTS public key

• Trees of Trees
• Tree of MerkleTrees, Parent Tree sign public key of Child Trees

• These are all Stateful: need to keep track of state or break security!

Real World Schemes
• Stateful HBS: need to be really careful maintaining state!

• XMSS: Based on MerkleTree using WOTS+ (NIST standard)

• XMSS-MT: Based on Tree of XMSS (NIST standard)

• LMS: Based on MerkleTree using WOTS (NIST standard)

• HSS: Based on Tree of LMS (NIST standard)

• Note these have various tweaks including:

• Extra prefix/suffix/tweak per hash call to avoid various attacks
(tweak=alter function instead of more input)

• [BDS08] algorithm to maintain internal state of current path
to prevent signature calls with a lot of update work

• Let’s cover important improvements!

Merkle Tree Signature Time
• Key generation: can compute all leaf 𝑝𝑘𝑖 from 1 𝑠𝑒𝑒𝑑

• Hence, private key is simply 𝑠𝑒𝑒𝑑, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟

• To generate 𝑖-th signature we need all nodes for 𝑖-th path
• No nodes stored ⇒ need to compute all leaf 𝑝𝑘𝑖 again
• Note that node on height 𝑣 is needed for 2𝑣 consecutive sigs

• Trick 1: store authentication path (ℎ nodes) & reuse
• On average ℎ leaf 𝑝𝑘𝑖 need to be computed
• But worst case is switching from left-half to right-half:
2ℎ leaf 𝑝𝑘𝑖 need to be computed!

• Trick 2: store 2𝑘 nodes for top 𝑘 levels
• Worst case is now only 2ℎ−𝑘 leaf 𝑝𝑘𝑖 to be computed

• Trick 3: [BDS08] distribute computation of future needed nodes
• Extra storage: ~ (3.5 ℎ + 2𝑘) hashes

• Per signature: ≤ ℎ − 𝑘 /2 + 1 leaf 𝑝𝑘𝑖 to be computed

Hash-then-sign
• Transform signature scheme 𝑆 for 𝑘-bit messages into scheme 𝑆′ for arbitrary length messages

• 𝑆′. sign 𝑠𝑘,𝑚 = 𝑆. sign 𝑠𝑘, 𝑓 𝑚

• A signature forgery (𝑚∗, 𝜎∗) for 𝑆′ implies

• Either hash collision 𝑓 𝑚∗ = 𝑓 𝑚 , 𝜎∗ = 𝜎𝑚 for a message 𝑚 ≠ 𝑚∗ that has been signed

• Otherwise, if 𝑓(𝑚∗) hasn’t been signed by 𝑆 before then this must be a forgery for 𝑆

• And indeed, an attacker finding a hash collision 𝑓 𝑚∗ = 𝑓 𝑚 directly results in a forgery

• Requesting a signature 𝜎𝑚 for 𝑚⇒ 𝑚∗, 𝜎𝑚 is a valid forgery

• Actually used in real world: Rogue Certificate Authority [SSA+09], [FS15]

• A better way:

• 𝑆′. sign 𝑠𝑘,𝑚 = 𝑟|𝜎, where 𝑟 ← 0,1 𝑛, 𝜎 ← 𝑆. sign 𝑠𝑘, 𝑓(𝑝𝑘|𝑟|𝑚

• To use a hash collision, the attacker first needs to guess 𝑟 correctly

• Also prevents brute-force multi-user attacks:
a second pre-image guess 𝑓(𝑝𝑘′ 𝑟′ 𝑚′) needs to match 𝑝𝑘′ = 𝑝𝑘 for a specific user

Trees of Trees
• Composite signature scheme of composite signature scheme

• Each sub-tree is 1 Merkle Tree of 𝑅 WOTS+ public keys

• Sub-trees are used to sign root public key of child sub-trees

• Tree Depth 𝐷 ⇒ 𝑅𝐷 total amount of signatures

• Deterministic sub-trees to ensure 𝑃𝐾(𝑖,𝑗) cannot vary

• An attack on this composite scheme implies

• either a WOTS+ signature forgery
(incl hash-then-sign)

• and/or a MerkleTree membership forgery

• Or does it?...

• Attack can confuse verifier by extending tree
by having his own WOTS+ public key signed

• ⇒ strengthen scheme by using hash-then-sign
with different prefixes for signing keys vs messages

• Very similar to Certificate signing

𝑝𝑘1
(1)
, … , 𝑝𝑘𝑅

1

𝑃𝐾(1)

𝑝𝑘1
2,𝑅

, … , 𝑝𝑘𝑅
(2,𝑅)

𝑃𝐾 2,𝑅

𝑝𝑘1
2,1

, … , 𝑝𝑘𝑅
2,1

𝑃𝐾(2,1)
Sign

Sign

𝑝𝑘1
3,1,𝑅

, … , 𝑝𝑘𝑅
(3,1,𝑅)

𝑃𝐾 3,1,𝑅

𝑝𝑘1
3,1,1

, … , 𝑝𝑘𝑅
3,1,1

𝑃𝐾(3,1,1)
Sign

Sign

𝑝𝑘1
𝐴
, … , 𝑝𝑘𝑅

𝐴

𝑃𝐾(𝐴) = 𝑚 Sign

𝑚∗, 𝜎∗Sign

pk
pk

pk
pk

msg

Merkle Tree
• Composite signature scheme using e.g. WOTS+-256-28

• An attack on this composite scheme implies
• either a WOTS+ signature forgery

(including hash-then-sign)

• and/or a second pre-image (using WOTS+ trick)

• However, an attacker has many Sec/Pre targets
• With carefully crafted chain

• Can target any hash value in MerkleTree:
targets 𝑇 = 𝑅 − 1

• ⇒ Attack cost ~ 2𝑛/𝑇

• Number of targets 𝑇 for Trees of Trees even larger!

• Multi-user: obtain even more targets

• Reduce multi-user/multi-target attacks
• Use different prefix/suffix/tweak for each:

• MerkleTree node

• Subtree index in Trees-of-Trees

• User
(add chosen random value to top level public key)

𝑝𝑘1

𝑝𝑘2

𝑝𝑘3

𝑝𝑘4

𝑝𝑘5

𝑝𝑘6

𝑝𝑘7

𝑝𝑘8

Root:
ℎ12345678

𝑓 𝑝𝑘1 𝑝𝑘2 = ℎ12

𝑓 𝑝𝑘3 𝑝𝑘4

𝑓 𝑝𝑘5 𝑝𝑘6

𝑓 𝑝𝑘7 𝑝𝑘8

𝑓 ℎ12 ℎ34 = ℎ1234

𝑓 ℎ56 ℎ78

𝑝𝑘𝐴

𝑓 𝑝𝑘𝐴 𝑓 𝑝𝑘𝐴 𝑓 𝑝𝑘𝐴 ∗

WOTS+ Random Bitstrings
• WOTS+ requires 𝑤 − 1 random bitstrings in public key

• Can we use less random bitstrings? Say only 1?

• No!

• If 𝑟1 = ⋯ = 𝑟7 = 𝑟 then changing 𝑟5 implies changing 𝑟1, … , 𝑟4 and thus 𝑥4
• We cannot efficiently embed second pre-image challenge 𝑥𝑐 anymore

• But! We can reuse random bitstrings for all WOTS+ instances in composite scheme

• Reduction proof now requires guessing if there’s a forgery for which WOTS+ instance it will be

• (But number of WOTS+ instances is polynomial in 𝜆, so still only polynomial factor loss extra)

• ⇒ Only need to give 1 sequence of random bitstrings in top composite scheme’s public key

• ⇒ Reduces signature size

• Note: random bitstrings can also be reused for MerkleTree to get Coll→Sec

𝑠𝑘 𝑝𝑘

𝑔 ⋅, 𝑟1 𝑔 ⋅, 𝑟2 𝑔 ⋅, 𝑟3 𝑔 ⋅, 𝑟4 𝑔 ⋅, 𝑟5 𝑔 ⋅, 𝑟6 𝑔 ⋅, 𝑟7𝑔 𝑥, 𝑟 = 𝑓(𝑥 ⊕ 𝑟)

𝑦𝑐 𝑝𝑘′

𝑔 ⋅, 𝑟4 𝑔 ⋅, 𝑟5
′ 𝑔 ⋅, 𝑟6 𝑔 ⋅, 𝑟7Embedding second pre-image challenge 𝑥𝑐

𝑥4 𝑥5 𝑥6𝑟5
′ = 𝑥4 ⊕𝑥𝑐 ⇒ 𝑥5 = 𝑓 𝑥4 ⊕𝑟5

′ = 𝑓 𝑥𝑐

State Footcannon!
• Stateful HBS: need to be really careful maintaining state!

• What can go wrong?

• Programming errors

• Hardware failures (crash / write error) causing fail to record that a key is used

• Virtual Machine cloning:

• Now 2 VM’s are set to sign using the same key

• But possibly different messages!

• Active attacks changing state, e.g. computer hack, or physical attack against smartcard

• For federal use, NIST has strict rules to prevent any procedural fault that leads to reusing same leaf key

• Can we also build stateless HBS?

Goldreich’s stateless HBS
• Goldreich’s stateless HBS:

• HBS scheme with very large 22𝜆 number of possible signatures

• For each signature, index 𝑖 ← {1, … , 22𝜆} is message hash or randomly selected

• Expected amount of signatures before a collision occurs:

•
𝜋

2
2𝜆 signatures ⇒ 𝜆-bit security against key reuse

• Original construction is binary tree of OTS

• ⇒ signature size > 1MiB

• SPHINCS:
• Use deterministic virtual Tree of Trees with WOTS+

• Leaf HBS are instead few-time HBS: HORST

• ⇒ Only need OTS T-o-T for 260 signatures instead of 2256

• Sizes: PK / SK / SIG: ~ 1KiB / 1KiB / 40KiB

• SPHINCS+:
• Each hash function call has different tweak & bitmask

• Replaced HORST → FORS

• SPHINCS+-128s-robust (NIST level 1)

• Sizes: PK / SK / SIG : ~ 64B / 32B / 7.7KiB

𝑝𝑘1
(1)
, … , 𝑝𝑘𝑅

1

𝑃𝐾(1)

𝑝𝑘1
2,𝑅

, … , 𝑝𝑘𝑅
(2,𝑅)

𝑃𝐾 2,𝑅

𝑝𝑘1
2,1

, … , 𝑝𝑘𝑅
2,1

𝑃𝐾(2,1)

𝑝𝑘1
3,1,𝑅

, … , 𝑝𝑘𝑅
(3,1,𝑅)

𝑃𝐾 3,1,𝑅

𝑝𝑘1
3,1,1

, … , 𝑝𝑘𝑅
3,1,1

𝑃𝐾(3,1,1)

FTS(3,1,1)

𝑚1 𝑚2 𝑚3

HORS
• HORS is a few-time HBS

• Secret key: set of 2𝑎 secret values {𝑠𝑘1, … , 𝑠𝑘2𝑎}

• Public key: hash outputs of secret key 𝑓 𝑠𝑘1 , … , 𝑓 𝑠𝑘𝑎
• Signing:

• Split 𝑛-bit hash 𝑓(𝑟|𝑚) into coefficients 𝑐1, … , 𝑐𝑡 of 𝑎 bits, where 𝑎 ⋅ 𝑡 = 𝑛

• Reveal indexed secret values: 𝜎𝑚 = 𝑟, 𝜎1, … , 𝜎𝑡 = 𝑟, 𝑠𝑘𝑐1 , … , 𝑠𝑘𝑐𝑡
• Note that indices might not be different: just reveal the same value again

• Verifier:

• Split 𝑘-bit message into coefficients 𝑐1, … , 𝑐𝑡 of 𝑎 bits

• Verify 𝑓 𝜎𝑖 =?𝑝𝑘𝑐𝑖 for all 𝑖 = 1, … , 𝑡

• Security reduces to

• Sec + Pre + UD: can program 𝑝𝑘𝑗 = 𝑦𝑐 or 𝑠𝑘𝑗 = 𝑥𝑐 (and abort if 𝑗 ∈ {𝑐1, … , 𝑐𝑡})

• Finding a 𝑚∗ for which the signature components have all been revealed by queries

• i.e.: 𝑐1
∗, … , 𝑐𝑡

∗ ⊂ 𝑚queried{𝑐𝑖ڂ 𝑐1, … , 𝑐𝑡 ← split 𝑚

HORS
• For example:

• Parameters: 𝑛 = 256, 𝑎 = 16, 𝑡 = 16

• Secret key: 2𝑎 = 65536 values of 𝑛 bits (can all be generated from 1 seed)

• Public key: 2𝑎 = 65536 hash values of 𝑛 bits (in total: 16 MiB !)

• Signature: 𝑡 values of 𝑛 bits

• Consider that the adversary has queried 4 signatures

• ⇒ a fraction
4⋅𝑡

65536
=

1

1024
= 2−10 of secret values are public

• Assuming outputs of 𝑓 behave as random bitstrings

• ⇒ Pr[𝑠𝑘𝑐1∗ , … , 𝑠𝑘𝑐𝑡∗ are public] ≤ 2−10
16

= 2−160, for 𝑐1
∗, … , 𝑐𝑡

∗ ← split(𝑚∗)

• Security decreases with # signatures:

• Note that due to 𝑟,
adversary cannot predict which
𝑠𝑘𝑖 are revealed each query

Signatures Probability of all 𝒔𝒌_(𝒄𝒊
∗) being public ≤

1 16/216
16

= 2−192

2 32/216
16

= 2−176

4 64/216
16

= 2−144

8 128/216
16

= 2−128

16 256/216
16

= 2−112

32 16

HORST
• HORS public key is 16 MiB for 𝑎 = 𝑡 = 16 and 𝑛 = 256

• Can we do better?

• HORST = HORS with Trees

• Use MerkleTree for public key values

• HORST public key is MerkleTree root hash value: 256 bits

• Signature increases with membership proofs of revealed values

• 𝑡 ⋅ 𝑛 bits for revealing secret values

• ~ 𝑡 ⋅ 𝑎 ⋅ 𝑛 bits for membership proofs

• Example: ~ 8 KiB (can be made smaller with more optimizations)

• Verify signature:

• Verify pre-images

• Verify membership proofs to root hash

• Verify indices 𝑐𝑖 with position of 𝑝𝑘𝑐𝑖 in tree!

𝑃𝐾

𝑝𝑘1 𝑝𝑘2 𝑝𝑘3 … 𝑝𝑘2𝑎

FORS
• SPHINCS+ is improvement of SPHINCS that replaces HORST by FORS

• Variant on HORST with added security

• Avoid that coefficients with same value 𝑐𝑖 = 𝑐𝑗 reveal the same secret value

• Idea: use HORST scheme for each coefficient independently

• New public key is still single hash value: hash of concatenation of the 𝑡 root hashes

• Membership proof variant:

• MerkleTree membership proof contains index & the values to reveal to be able to compute root

• Instead of verifying individual roots 𝑃𝐾𝑖
′ =?𝑃𝐾𝑖,

• FORS verifies all recomputed roots together:

• 𝑓 𝑃𝐾1
′ 𝑃𝐾2

′ …𝑃𝐾𝑡
′ =?𝑃𝐾

• ⇒ no extra overhead in publishing 𝑃𝐾𝑖 in public key or signature

𝑃𝐾1

𝑝𝑘1,1 … 𝑝𝑘1,2𝑎

𝑃𝐾2

𝑝𝑘2,1 … 𝑝𝑘2,2𝑎

𝑃𝐾𝑡

𝑝𝑘𝑡,1 … 𝑝𝑘𝑡,2𝑎

𝑃𝐾 = 𝑓(𝑃𝐾1 𝑃𝐾2 … |𝑃𝐾𝑡)

Real World Schemes
• Stateful HBS: need to be really careful maintaining state!

• XMSS: Based on MerkleTree using WOTS+ (NIST standard)

• XMSS-MT: Based on Tree of XMSS (NIST standard)

• LMS: Based on MerkleTree using WOTS (NIST standard)

• HSS: Based on Tree of LMS (NIST standard)

• Note these have various tweaks including:

• Extra prefix/suffix/tweak per hash call to avoid various attacks
(tweak=alter function instead of more input)

• Optimized TreeHash algorithm to maintain internal state of current path
to prevent signature calls with a lot of update work

• Stateless HBS: avoid keeping track of state by enabling random paths!

• SPHINCS+: Based on Trees of MerkleTrees of WOTS+ (NIST standard)

• Uses FORS instead of WOTS+ at leaf MerkleTree

• FORS is a few-time signature scheme (FTS)

• Number of potential signatures is so large, one can randomly choose path to a FTS instance

• Even with many signatures, the probability a FTS instance is used too often is negligible

Summary
• MerkleTree signature time improvements

• Storing extra nodes & distribute computation of future needed nodes

• Security improvements
• Hash-then-sign: unpredictable message hash with signer’s randomness

• Trees-of-trees: separation between signing subtree vs message

• Multi-target/user attacks: specialize every hash function call

• WOTS+: can reuse randomness in MerkleTree/Trees-of-trees

• Stateless HBS
• Goldreich: HBS with ≥ 22𝜆 signatures ⇒ 2𝜆 signatures at 𝜆-bit security

• Few-time HBS schemes: HORS, HORST, FORS

• SPHINCS: Trees-of-trees with WOTS+, and HORST as leaf FTS

• SPHINCS+: improved SPHINCS with FORS, NIST standard

